HUF75852G3 [ONSEMI]

N 沟道,UltraFET 功率 MOSFET,150V,75A,16mΩ;
HUF75852G3
型号: HUF75852G3
厂家: ONSEMI    ONSEMI
描述:

N 沟道,UltraFET 功率 MOSFET,150V,75A,16mΩ

文件: 总12页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOSFET – Power, N-Channel,  
Ultrafet  
150 V, 75 A, 16 mW  
HUF75852G3  
Features  
www.onsemi.com  
Ultra Low OnResistance  
r  
= 0.016 W, V = 10 V  
GS  
DS(ON)  
Simulation Models  
D
Temperature Compensated PSPICEand SABERElectrical  
Models  
Spice and SABER Thermal Impedance Models  
www.onsemi.com  
G
Peak Current vs Pulse Width Curve  
UIS Rating Curve  
S
This Device is PbFree, Halogen Free/BFR Free and is RoHS  
Compliant  
Packing  
TO2473LD  
CASE 340CK  
MARKING DIAGRAMS  
Figure 1.  
$Y&Z&3&K  
75852G  
$Y  
&Z  
&3  
&K  
= ON Semiconductor Logo  
= Assembly Plant Code  
= Data Code (Year & Week)  
= Lot  
75852G  
= Specific Device Code  
ORDERING INFORMATION  
Part Number  
HUF75852G3  
Package  
Brand  
TO2473LD  
75852G  
© Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2020 Rev. 3  
HUF75852G3/D  
HUF75852G3  
ABSOLUTE MAXIMUM RATINGS T = 25°C unless otherwise noted  
C
Description  
Symbol  
Ratings  
150  
Units  
Drain to Source Voltage (Note 1)  
V
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R = 20 kW) (Note 1)  
V
150  
GS  
Gate to Source Voltage  
Drain Current  
V
GS  
+20  
Continuous (T = 25°C, V = 10 V) (Figure 2)  
I
75  
75  
Figure 4  
A
A
C
C
GS  
D
D
Continuous (T = 100°C, V = 10 V) (Figure 2)  
I
GS  
Pulsed Drain Current  
I
DM  
Pulsed Avalanche Rating  
UIS  
Figures 6, 14, 15  
Power Dissipation  
Derate Above 25°C  
P
D
500  
3.33  
W
W/°C  
Operating and Storage Temperature  
T , T  
55 to 175  
°C  
J
STG  
Maximum Temperature for Soldering  
Leads at 0.063 in (1.6 mm) from Case for 10 s  
Package Body for 10 s, See Techbrief TB334  
T
pkg  
300  
260  
°C  
°C  
L
T
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. TJ = 25°C to 150°C.  
www.onsemi.com  
2
 
HUF75852G3  
ELECTRICAL SPECIFICATIONS T = 25°C unless otherwise noted  
J
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
OFF STATE SPECIFICATIONS  
BV Drain to Source Breakdown Voltage  
I
= 250 mA, V = 0 V (Figure 11)  
150  
V
D
GS  
DSS  
Zero Gate Voltage Drain Current  
V
V
V
= 140 V, V = 0 V  
1
mA  
mA  
nA  
I
DSS  
DS  
DS  
GS  
GS  
= 135 V, V = 0 V, T = 150°C  
250  
100  
GS  
C
=
20 V  
I
Gate to Source Leakage Current  
GSS  
ON STATE SPECIFICATIONS  
V
= V , I = 250 mA (Figure 10)  
DS D  
V
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
2
4
V
GS  
GS(TH)  
DS(ON)  
mW  
r
I
D
= 75 A, V = 10 V (Figure 9)  
0.013 0.016  
GS  
THERMAL SPECIFICATIONS  
°C/W  
°C/W  
R
R
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
TO247  
0.30  
30  
θ
JC  
JA  
θ
SWITCHING SPECIFICATIONS (V = 10 V)  
GS  
t
TurnOn Time  
TurnOn Delay Time  
Rise Time  
22  
151  
82  
107  
260  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
V
= 75 V, I 75 A, V = 10 V,  
D GS  
DD  
GS  
R
= 2.0 W  
t
td  
t
d(ON)  
(Figures 18, 19)  
t
r
TurnOff Delay Time  
Fall Time  
(OFF)  
t
f
TurnOff Time  
285  
OFF  
GATE CHARGE SPECIFICATIONS  
V
= 75 V, I = 75 A,  
D
= 1.0 mA  
Q
Total Gate Charge  
V
GS  
V
GS  
V
GS  
= 0 V to 20 V  
= 0 V to 10 V  
= 0 V to 2 V  
400  
215  
15  
480  
260  
17.5  
nC  
nC  
nC  
nC  
nC  
DD  
g(TOT)  
I
g(REF)  
Q
Gate Charge at 10 V  
g(10)  
(Figures 13, 16, 17)  
Q
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
g(TH)  
Q
Q
25  
gs  
66  
gd  
CAPACITANCE SPECIFICATIONS  
C
Input Capacitance  
V
= 25 V, V = 0 V,  
7690  
1650  
535  
pF  
pF  
pF  
ISS  
DS  
GS  
f = 1 MHz  
(Figure 12)  
C
Output Capacitance  
OSS  
RSS  
C
Reverse Transfer Capacitance  
SOURCE TO DRAIN DIODE SPECIFICATIONS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
SD  
Source to Drain Diode Voltage  
I
I
I
I
= 75 A  
1.25  
1.00  
260  
183  
V
V
SD  
= 35 A  
SD  
SD  
SD  
= 75 A, dI /dt = 100 A/ms  
t
rr  
Reverse Recovery Time  
ns  
SD  
= 75 A, dI /dt = 100 A/ms  
Q
Reverse Recovered Charge  
nC  
SD  
RR  
www.onsemi.com  
3
HUF75852G3  
TYPICAL PERFORMANCE CURVES  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
60  
40  
20  
0
V
= 10V  
GS  
0
25  
50  
75  
100  
125  
150  
175  
25  
50  
75  
100  
125  
150  
175  
TC, CASE TEMPERATURE (5C)  
TC, CASE TEMPERATURE (5C)  
Figure 1. NORMALIZED POWER DISSIPATION vs  
CASE TEMPERATURE  
Figure 2. MAXIMUM CONTINUOUS DRAIN  
CURRENT vs CASE TEMPERATURE  
2
DUTY CYCLE DESCENDING ORDER  
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.1  
P
DM  
NOTES:  
DUTY FACTOR: D = t /t  
t
1
SINGLE PULSE  
1
2
t
2
PEAK T = P  
y Z  
y R  
+ T  
JC C  
q
JC  
q
J
DM  
0.01  
5  
4  
3  
10  
2  
10  
1  
0
1
10  
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
2000  
1000  
TC = 255C  
FOR TEMPERATURES  
ABOVE 255C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 T  
C
I = I  
25  
V
= 10V  
150  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
50  
5  
10  
4  
10  
3  
10  
2  
10  
1  
10  
0
1
10  
10  
t, PULSE WIDTH (s)  
Figure 4. PEAK CURRENT CAPABILITY  
www.onsemi.com  
4
HUF75852G3  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
1000  
100  
1000  
If R = 0  
tAV = (L)(IAS)/(1.3yRATED BVDSS VDD)  
If R p 0  
tAV = (L/R)ln[(IASyR)/(1.3yRATED BVDSS VDD) +1]  
100 ms  
100  
o
STARTING T = 25 C  
J
1ms  
OPERATION IN THIS  
AREA MAY BE  
10  
1
o
STARTING T = 150 C  
J
LIMITED BY r  
DS(ON)  
10ms  
SINGLE PULSE  
T
T
= MAX RATED  
J
o
= 25 C  
C
10  
0.01  
1
10  
100  
500  
0.1  
10  
1
t
, TIME IN AVALANCHE (ms)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
AV  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
Figure 5. FORWARD BIAS SAFE OPERATING AREA  
Figure 6. UNCLAMPED INDUCTIVE SWITCHING  
CAPABILITY  
200  
200  
PULSE DURATION = 80 ms  
V
= 10V  
= 7V  
= 6V  
V
= 20V  
GS  
GS  
DUTY CYCLE = 0.5% MAX  
V
GS  
V
= 15V  
DD  
V
GS  
150  
100  
150  
100  
50  
V
=5V  
GS  
o
T
= 175 C  
J
o
T
= 25 C  
J
50  
0
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
o
T
= 25 C  
o
C
T
= 55 C  
J
0
0
1
2
3
4
5
6
2
3
4
5
6
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
DS  
Figure 7. TRANSFER CHARACTERISTICS  
Figure 8. SATURATION CHARACTERISTICS  
2.8  
2.2  
1.2  
1.0  
0.8  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
VGS = VDS, ID = 250 mA  
1.6  
0.6  
0.4  
1.0  
0.4  
V
GS  
= 10V, I = 75A  
D
80  
40  
0
40  
80  
120  
160  
200  
80  
40  
0
40  
80  
120  
160 200  
TJ, JUNCTION TEMPERATURE (5C)  
TJ, JUNCTION TEMPERATURE (5C)  
Figure 9. NORMALIZED DRAIN TO SOURCE ON Figure 10. NORMALIZED GATE THRESHOLD VOLTAGE  
RESISTANCE vs JUNCTION TEMPERATU vs JUNCTION TEMPERATURE  
www.onsemi.com  
5
HUF75852G3  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
1.2  
1.1  
20000  
10000  
ID = 250 mA  
C
C  
+ C  
GS GD  
ISS  
C
C  
GD  
RSS  
1000  
100  
COSS ^ CDS + CGD  
1.0  
0.9  
V
= 0V, f = 1MHz  
1.0  
GS  
80  
40  
0
40  
80  
120  
160 200  
0.1  
10  
100  
TJ, JUNCTION TEMPERATURE (5C)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
Figure 11. NORMALIZED DRAIN TO SOURCE  
BREAKDOWN VOLTAGE vs JUNCTION  
TEMPERATURE  
Figure 12. CAPACITANCE vs DRAIN TO SOURCE  
VOLTAGE  
10  
V
= 75V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 75A  
= 30A  
D
D
0
50  
100  
150  
200  
25 0  
Q , GATE CHARGE (nC)  
g
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
Figure 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
www.onsemi.com  
6
HUF75852G3  
TEST CIRCUITS AND WAVEFORMS  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
AS  
G
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01 W  
t
AV  
Figure 14. UNCLAMPED ENERGY TEST CIRCUIT  
Figure 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
L
g(TOT)  
V
DS  
V
= 20V  
GS  
V
GS  
Q
g(10)  
+
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
G(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 17. GATE CHARGE WAVEFORM  
Figure 16. GATE CHARGE TEST CIRCUIT  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 18. SWITCHING TIME TEST CIRCUIT  
Figure 19. SWITCHING TIME WAVEFORM  
www.onsemi.com  
7
HUF75852G3  
PSPICE Electrical Model  
.SUBCKT HUF75852 2 1 3 ;  
rev 26 Oct 1999  
CA 12 8 12.0e9  
CB 15 14 12.0e9  
CIN 6 8 7.15e9  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
LDRAIN  
DPLCAP  
10  
DRAIN  
2
5
RLDRAIN  
RSLC1  
51  
EBREAK 11 7 17 18 159.2  
EDS 14 8 5 8 1  
DBREAK  
+
RSLC2  
EGS 13 8 6 8 1  
ESLC  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
11  
+
50  
17  
18  
DBODY  
RDRAIN  
6
ESG  
8
EBREAK  
IT 8 17 1  
EVTHRES  
+
16  
21  
+
19  
8
MWEAK  
LDRAIN 2 5 1.0e9  
LGATE 1 9 7.46e9  
LSOURCE 3 7 3.87e9  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 9.50e3  
RGATE 9 20 0.80  
RLDRAIN 2 5 10  
RLGATE 1 9 74.6  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RLSOURCE 3 7 38.7  
RSLC1 5 51 RSLCMOD 1e6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 2.37e3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
8
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
22  
RVTHRES  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51) /ABS(V(5,51)))*(PWR(V(5,51)/(1e6*245),2.5))}  
.MODEL DBODYMOD D (IS = 6.03e12 RS = 2.17e3 TRS1 = 1.97e3 TRS2 = 1.03e6 CJO = 7.91e9 TT = 1.69e7 M = 0.60)  
.MODEL DBREAKMOD D (RS = 3.53e1TRS1 = 0TRS2 = 0)  
.MODEL DPLCAPMOD D (CJO = 9.52e9IS = 1e3 0N = 1 M = 0.88)  
.MODEL MMEDMOD NMOS (VTO = 3.05 KP = 8.50 IS = 1e30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.80)  
.MODEL MSTROMOD NMOS (VTO = 3.53 KP = 215 IS = 1e30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 2.63 KP = 0.075 IS = 1e30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.0 )  
.MODEL RBREAKMOD RES (TC1 = 1.12e3TC2 = 1.00e7)  
.MODEL RDRAINMOD RES (TC1 = 1.03e2 TC2 = 3.04e5)  
.MODEL RSLCMOD RES (TC1 = 2.52e3 TC2 = 0)  
.MODEL RSOURCEMOD RES (TC1 = 1.01e3 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = 3.65e3 TC2 = 1.55e5)  
.MODEL RVTEMPMOD RES (TC1 = 2.85e3TC2 = 0)  
.MODEL S1AMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 3.5 VOFF= 3.0)  
.MODEL S1BMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 3.0 VOFF= 3.5)  
.MODEL S2AMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 2.5 VOFF= 0.5)  
.MODEL S2BMOD VSWITCH (RON = 1e5 ROFF = 0.1 VON = 0.5 VOFF= 2.5)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE SubCircuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics SpecialisCtonference Records, 1991, written by William J. Hepp and C. Frank W heatley.  
www.onsemi.com  
8
HUF75852G3  
SABER Electrical Model  
REV 26 Oct 1999  
template huf75852 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
d..model dbodymod = (is = 6.03e12, cjo = 7.91e9, tt = 1.69e7, m = 0.60)  
d..model dbreakmod = ()  
d..model dplcapmod = (cjo = 9.52e9, is = 1e30, n=1, m = 0.88 )  
m..model mmedmod = (type=_n, vto = 3.05, kp = 8.50, is = 1e30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.53, kp = 215, is = 1e30, tox = 1)  
m..model mweakmod = (type=_n, vto = 2.63, kp = 0.075, is = 1e30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e5, roff = 0.1, von = 3.5, voff = 3)  
sw_vcsp..model s1bmod = (ron =1e5, roff = 0.1, von = 3, voff = 3.5)  
sw_vcsp..model s2amod = (ron = 1e5, roff = 0.1, von = 2.5, voff = 0.5)  
sw_vcsp..model s2bmod = (ron = 1e5, roff = 0.1, von = 0.5, voff = 2.5)  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
5
DRAIN  
10  
RSLC1  
51  
RDBREAK  
72  
RSLC2  
c.ca n12 n8 = 12.0e9  
c.cb n15 n14 = 12.0e9  
c.cin n6 n8 = 7.15e9  
ISCL  
DBREAK  
50  
71  
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
RDRAIN  
6
11  
ESG  
8
EVTHRES  
+
16  
21  
+
19  
8
MWEAK  
LGATE  
EVTEMP  
DBODY  
i.it n8 n17 = 1  
RGATE  
GATE  
1
+
6
18  
22  
EBREAK  
+
MMED  
9
20  
l.ldrain n2 n5 = 1.0e9  
l.lgate n1 n9 = 7.46e9  
l.lsource n3 n7 = 3.87e9  
MSTRO  
17  
RLGATE  
18  
LSOURCE  
CIN  
SOURCE  
8
7
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RSOURCE  
RLSOURCE  
S1A  
12  
S2A  
14  
13  
RBREAK  
15  
13  
17  
18  
res.rbreak n17 n18 = 1, tc1 = 1.12e3, tc2 = 1.00e7  
res.rdbody n71 n5 = 2.17e3, tc1 = 1.97e3, tc2 = 1.03e6  
res.rdbreak n72 n5 = 3.53e1, tc1 = 0, tc2 = 0  
res.rdrain n50 n16 = 9.50e3, tc1 = 1.03e2, tc2 = 3.04e5  
res.rgate n9 n20 = 0.80  
res.rldrain n2 n5 = 10  
res.rlgate n1 n9 = 74.6  
res.rlsource n3 n7 = 38.7  
res.rslc1 n5 n51 = 1e6, tc1 = 2.52e4, tc2 = 0  
res.rslc2 n5 n50 = 1e3  
8
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
8
22  
RVTHRES  
res.rsource n8 n7 = 2.37e3, tc1 = 1.01e3, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = 2.85e3, tc2 = 0  
res.rvthres n22 n8 = 1, tc1 = 3.65e3, tc2 = 1.55e5  
spe.ebreak n11 n7 n17 n18 = 159.2  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51>n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/245))** 2.5))  
}
}
www.onsemi.com  
9
HUF75852G3  
SPICE Thermal Model  
JUNCTION  
th  
REV 19 Oct 1999  
HUF75852T  
CTHERM1 th 6 9.75e3  
CTHERM2 6 5 3.90e2  
CTHERM3 5 4 2.50e2  
CTHERM4 4 3 2.95e2  
CTHERM5 3 2 6.55e2  
CTHERM6 2 tl 12.55  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 th 6 1.96e3  
RTHERM2 6 5 4.89e3  
RTHERM3 5 4 1.38e2  
RTHERM4 4 3 7.73e2  
RTHERM5 3 2 1.17e1  
RTHERM6 2 tl 1.55e2  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model HUF75852T  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 9.75e3  
ctherm.ctherm2 6 5 = 3.90e2  
ctherm.ctherm3 5 4 = 2.50e2  
ctherm.ctherm4 4 3 = 2.95e2  
ctherm.ctherm5 3 2 = 6.55e2  
ctherm.ctherm6 2 tl = 12.55  
4
3
2
rtherm.rtherm1 th 6 = 1.96e3  
rtherm.rtherm2 6 5 = 4.89e3  
rtherm.rtherm3 5 4 = 1.38e2  
rtherm.rtherm4 4 3 = 7.73e2  
rtherm.rtherm5 3 2 = 1.17e1  
rtherm.rtherm6 2 tl = 1.55e2  
}
tl  
CASE  
PSPICE is a trademark of MicroSim Corporation.  
Saber is a registered trademark of Sabremark Limited Partnership.  
www.onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO2473LD SHORT LEAD  
CASE 340CK  
ISSUE A  
DATE 31 JAN 2019  
P1  
D2  
A
E
P
A
A2  
Q
E2  
S
D1  
D
E1  
B
2
2
1
3
L1  
A1  
b4  
L
c
(3X) b  
(2X) b2  
M
M
B A  
0.25  
MILLIMETERS  
MIN NOM MAX  
4.58 4.70 4.82  
2.20 2.40 2.60  
1.40 1.50 1.60  
1.17 1.26 1.35  
1.53 1.65 1.77  
2.42 2.54 2.66  
0.51 0.61 0.71  
20.32 20.57 20.82  
(2X) e  
DIM  
A
A1  
A2  
b
b2  
b4  
c
GENERIC  
D
MARKING DIAGRAM*  
D1 13.08  
~
~
D2  
E
0.51 0.93 1.35  
15.37 15.62 15.87  
AYWWZZ  
XXXXXXX  
XXXXXXX  
E1 12.81  
~
~
E2  
e
L
4.96 5.08 5.20  
5.56  
15.75 16.00 16.25  
3.69 3.81 3.93  
3.51 3.58 3.65  
XXXX = Specific Device Code  
~
~
A
Y
= Assembly Location  
= Year  
WW = Work Week  
ZZ = Assembly Lot Code  
L1  
P
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
P1 6.60 6.80 7.00  
Q
S
5.34 5.46 5.58  
5.34 5.46 5.58  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13851G  
TO2473LD SHORT LEAD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

HUF75925D3ST

11A, 200V, 0.275 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUF75925P3

11A, 200V, 0.275 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUF75939P3

22A, 200V, 0.125 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUF75939S3ST

22A, 200V, 0.125 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUF75945G3

38A, 200V, 0.071 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUF75945P3

38A, 200V, 0.071 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUF75945S3ST

38A, 200V, 0.071 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUF76009D3S

20A, 20V, 0.027 Ohm, N-Channel, Logic Level Power MOSFETs
FAIRCHILD

HUF76009D3S

20A, 20V, 0.027 Ohm, N-Channel, Logic Level Power MOSFETs
INTERSIL

HUF76009D3ST

TRANSISTOR | MOSFET | N-CHANNEL | 20V V(BR)DSS | 20A I(D) | TO-252AA
FAIRCHILD

HUF76009P3

20A, 20V, 0.027 Ohm, N-Channel, Logic Level Power MOSFETs
FAIRCHILD

HUF76009P3

20A, 20V, 0.027 Ohm, N-Channel, Logic Level Power MOSFETs
INTERSIL