KAI-50140-AXA-JD-AE [ONSEMI]

10440 (H) x 4800 (V) Interline CCD Image Sensor;
KAI-50140-AXA-JD-AE
型号: KAI-50140-AXA-JD-AE
厂家: ONSEMI    ONSEMI
描述:

10440 (H) x 4800 (V) Interline CCD Image Sensor

CD
文件: 总27页 (文件大小:370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KAI-50140  
10440 (H) x 4800 (V)  
Interline CCD Image Sensor  
Description  
The KAI50140 image sensor is a 50 megapixel Interline Transfer  
CCD in a 2.18 to 1 aspect ratio, making it well suited to inspect  
displays commonly found on modern smartphones. Leveraging  
a 4.5 mm pixel design that provides a 70% resolution increase  
compared to the KAI29050 and KAI29052 devices, the KAI50140  
provides excellent image uniformity and broad dynamic range.  
A flexible output architecture supports 1, 2, or 4 outputs for full  
resolution readout of up to 4 frames per second, and a true electronic  
shutter enables image capture without motion artifacts across a broad  
range of exposure times.  
www.onsemi.com  
Table 1. GENERAL SPECIFICATIONS  
Parameter  
Architecture  
Typical Value  
Interline CCD, Progressive Scan  
10560 (H) × 4920 (V)  
Total Number of Pixels  
Number of Effective Pixels  
Number of Active Pixels  
Pixel Size  
10480 (H) × 4840 (V)  
Figure 1. KAI50140 CCD Image Sensor  
10440 (H) × 4800 (V)  
4.5 mm (H) × 4.5 mm (V)  
Features  
Active Image Size  
46.98 mm (H) × 21.60 mm (V)  
51.71 mm (Diag.)  
True Electronic Shutter with Broad  
Exposure Latitude  
Low Noise Architecture  
Excellent Smear Performance  
Monochrome and Bayer Color CFA  
Configurations  
645 1.3× Optical Format  
Aspect Ratio  
2.175:1  
Number of Outputs  
Charge Capacity  
Output Sensitivity  
1, 2 or 4  
13,000 electrons  
42 mV/e  
Quantum Efficiency  
Pan (AXA, QXA)  
R, G, B (FXA, QXA)  
45%  
27%, 34%, 37%  
Applications  
Industrial Imaging and Inspection  
Security and Surveillance  
Read Noise (f = 40 MHz)  
13 electrons rms  
Dark Current  
Photodiode  
VCCD  
7 electrons/s  
50 electrons/s  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
Dynamic Range  
60 dB  
Charge Transfer Efficiency  
Blooming Suppression  
Smear  
0.999999  
> 300 X  
98 dB  
Image Lag  
< 10 electrons  
60 MHz  
Maximum Pixel Clock Speed  
Maximum Frame Rates  
Quad Output  
3.9 fps  
2.0 fps  
1.1 fps  
Dual Output  
Single Output  
Package  
72 pin PGA  
Cover Glass  
AR coated, 2 Sides, Sealed  
Clear Glass, Taped  
NOTE: All parameters are specified at T = 40°C unless otherwise noted.  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
March, 2019 Rev. 0  
KAI50140/D  
KAI50140  
ORDERING INFORMATION  
Table 2. ORDERING INFORMATION  
Part Number  
Description  
Marking Code  
KAI50140AXAJDB1  
KAI50140AXAJDB2  
KAI50140AXAJDAE  
KAI50140AXAJPB1  
KAI50140AXAJPB2  
KAI50140AXAJPAE  
KAI50140FXAJDB1  
KAI50140FXAJDB2  
KAI50140FXAJDAE  
Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR  
coating (both sides), Grade 1  
KAI50140AXA  
Serial Number  
Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR  
coating (both sides), Grade 2  
Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR  
coating (both sides), Engineering Grade  
Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass  
(no coatings), Grade 1  
KAI50140AXA  
Serial Number  
Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass  
(no coatings), Grade 2  
Monochrome, Special Microlens, PGA Package, Taped Clear Cover Glass  
(no coatings), Engineering Grade  
Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover  
Glass with AR coating (both sides), Grade 1  
KAI50140FXA  
Serial Number  
Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover  
Glass with AR coating (both sides), Grade 2  
Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover  
Glass with AR coating (both sides), Grade 2  
See the ON Semiconductor Device Nomenclature document (TND310/D) for a full description of the naming convention  
used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at  
www.onsemi.com.  
www.onsemi.com  
2
KAI50140  
DEVICE DESCRIPTION  
Architecture  
RDcd  
Rc  
RDcd  
Rd  
VDDc  
VOUTc  
VDDd  
VOUTd  
1
11 40  
8
12  
5220  
5220  
12  
8
40 11  
1
FLD  
GND  
OGc  
GND  
OGd  
H2SLd  
40  
H2SLc  
8
12  
V4T  
V3T  
V2T  
V4T  
V3T  
V2T  
V1BT  
V1BT  
DevID  
10440H x 4800V  
4.5 mm x 4.5 mm Pixels  
ESD  
40  
8
12  
12  
8
40  
ESD  
V1BT  
V2B  
V3B  
V4B  
V1BT  
V2B  
V3B  
V4B  
12 Inner Buffer  
8 Outer Buffer  
RDab  
Ra  
RDab  
Rb  
40 Dark  
FLD  
VDDa  
VDDb  
1
11 40  
8
12  
5220  
5220  
12  
8
40 11  
1
VOUTa  
VOUTb  
GND  
OGa  
GND  
OGb  
H2SLa  
H2SLb  
Figure 2. Block Diagram  
Dark Reference Pixels  
sensitive than the inner buffer pixels. The inner buffer pixels  
have the same sensitivity as the 10440 by 4800 active pixels.  
There are 40 dark reference rows at the top and 40 dark  
rows at the bottom of the image sensor. The dark rows are not  
entirely dark and so should not be used for a dark reference  
level. Use the 40 dark columns on the left or right side of the  
image sensor as a dark reference. Under normal  
circumstances use only the center 38 columns of the 40  
column dark reference due to potential light leakage.  
Image Acquisition  
An electronic representation of an image is formed when  
incident photons falling on the sensor plane create  
electron*hole pairs within the individual silicon  
photodiodes. These photoelectrons are collected locally by  
the formation of potential wells at each photosite. Below  
photodiode saturation, the number of photoelectrons  
collected at each pixel is linearly dependent upon light level  
and exposure time and non*linearly dependent on  
wavelength. When the photodiodes charge capacity is  
reached, excess electrons are discharged into the substrate to  
prevent blooming.  
Dummy Pixels  
Within each horizontal shift register there are 12 leading  
additional shift phases. These pixels are designated as  
dummy pixels and should not be used to determine a dark  
reference level. In addition, there is one dummy row of  
pixels at the top and bottom of the image.  
Active Buffer Pixels  
ESD Protection  
20 unshielded pixels adjacent to any leading or trailing  
dark reference regions are classified as active buffer pixels.  
These pixels are light sensitive but are not tested for defects  
and non*uniformities. The 8 outer buffer pixels are less  
Adherence to the power*up and power*down sequence  
is critical. Failure to follow the proper power*up and  
power*down sequences may cause damage to the sensor.  
See Power*Up and Power*Down Sequence section.  
www.onsemi.com  
3
KAI50140  
Bayer Color Filter  
RDcd  
Rc  
RDcd  
Rd  
VDDc  
VOUTc  
VDDd  
VOUTd  
1
11 40  
8
12  
5220  
5220  
12  
8
40 11  
1
FLD  
GND  
OGc  
GND  
OGd  
H2SLd  
40  
H2SLc  
8
12  
V4T  
V3T  
V2T  
V4T  
V3T  
V2T  
V1BT  
B G  
B G  
R
R
G
G
V1BT  
DevID  
10440H x 4800V  
4.5 mm x 4.5 mm Pixels  
ESD  
40  
8
12  
12  
8
40  
ESD  
V1BT  
V2B  
V3B  
V4B  
V1BT  
V2B  
V3B  
V4B  
B G  
B G  
R
G
R
G
12 Inner Buffer  
8 Outer Buffer  
RDab  
Ra  
RDab  
Rb  
40 Dark  
FLD  
VDDa  
VDDb  
1
11 40  
8
12  
5220  
5220  
12  
8
40 11  
1
VOUTa  
VOUTb  
GND  
OGa  
GND  
OGb  
H2SLa  
H2SLb  
Figure 3. Bayer Color Filter Pattern  
www.onsemi.com  
4
KAI50140  
PHYSICAL DESCRIPTION  
Pin Description and Device Orientation  
71 69 67 65 63 61 59 57 55 53 51 49 47 45 43 41 39 37  
72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38  
Pixel  
(1,1)  
4
3
6
5
8
7
10 12 14 16 18 20 22 24 26 28 30 32 34 36  
9 11 13 15 17 19 21 23 25 27 29 31 33 35  
1
Figure 4. Package Pin Description Top View  
www.onsemi.com  
5
KAI50140  
Table 3. PIN DESCRIPTION  
Pin  
Name  
Description  
Pin  
72  
Name  
ESD  
V3T  
Description  
ESD Protection Disable  
1
V3B  
Vertical CCD Clock, Phase 3, Bottom  
71  
Vertical CCD Clock, Phase 3, Top  
Vertical CCD Clock, Phase 4, Top  
3
4
V1BT  
V4B  
Vertical CCD Clock, Phase 1, Bottom and Top  
Vertical CCD Clock, Phase 4, Bottom  
70  
69  
V4T  
V1BT  
Vertical CCD Clock, Phase 1, Bottom and  
Top  
5
6
VDDa  
V2B  
Output Amplifier Supply, Quadrant a  
Vertical CCD Clock, Phase 2, Bottom  
Ground  
68  
67  
66  
65  
64  
63  
62  
V2T  
VDDc  
VOUTc  
GND  
RDcd  
Rc  
Vertical CCD Clock, Phase 2, Top  
Output Amplifier Supply, Quadrant c  
Video Output, Quadrant c  
Ground  
7
GND  
8
VOUTa  
Ra  
Video Output, Quadrant a  
Reset Gate, Quadrant a  
9
Reset Drain, Quadrants c and d  
Reset Gate, Quadrant c  
Output Gate, Quadrant c  
10  
11  
RDab  
H2SLa  
Reset Drain, Quadrants a and b  
Horizontal CCD Clock, Phase 2, Storage, Last  
Phase, Quadrant a  
OGc  
12  
13  
14  
15  
16  
OGa  
H1Ba  
H2Ba  
H2Sa  
H1Sa  
Output Gate, Quadrant a  
61  
60  
59  
58  
57  
H2SLc  
H2Bc  
H1Bc  
H1Sc  
H2Sc  
Horizontal CCD Clock, Phase 2, Storage,  
Last Phase, Quadrant c  
Horizontal CCD Clock, Phase 1, Barrier,  
Quadrant a  
Horizontal CCD Clock, Phase 2, Barrier,  
Quadrant c  
Horizontal CCD Clock, Phase 2, Barrier,  
Quadrant a  
Horizontal CCD Clock, Phase 1, Barrier,  
Quadrant c  
Horizontal CCD Clock, Phase 2, Storage,  
Quadrant a  
Horizontal CCD Clock, Phase 1, Storage,  
Quadrant c  
Horizontal CCD Clock, Phase 1, Storage,  
Quadrant a  
Horizontal CCD Clock, Phase 2, Storage,  
Quadrant c  
17  
18  
19  
20  
21  
SUB  
FDGab  
N/C  
Substrate  
56  
55  
54  
53  
52  
FDGcd  
N/C  
Fast Line Dump Gate, Top  
No Connect  
Fast Line Dump Gate, Bottom  
No Connect  
FDGcd  
SUB  
Fast Line Dump Gate, Top  
Substrate  
FDGab  
H2Sb  
Fast Line Dump Gate, Bottom  
Horizontal CCD Clock, Phase 2, Storage,  
Quadrant b  
H1Sd  
Horizontal CCD Clock, Phase 1, Storage,  
Quadrant d  
22  
23  
24  
25  
26  
H1Sb  
H1Bb  
H2Bb  
H2SLb  
OGb  
Horizontal CCD Clock, Phase 1, Storage,  
Quadrant b  
51  
50  
49  
48  
47  
H2Sd  
H2Bd  
H1Bd  
OGd  
Horizontal CCD Clock, Phase 2, Storage,  
Quadrant d  
Horizontal CCD Clock, Phase 1, Barrier,  
Quadrant b  
Horizontal CCD Clock, Phase 2, Barrier,  
Quadrant d  
Horizontal CCD Clock, Phase 2, Barrier,  
Quadrant b  
Horizontal CCD Clock, Phase 1, Barrier,  
Quadrant d  
Horizontal CCD Clock, Phase 2, Storage, Last  
Phase, Quadrant b  
Output Gate, Quadrant b  
Output Gate, Quadrant b  
H2SLd  
Horizontal CCD Clock, Phase 2, Storage, Last  
Phase, Quadrant d  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Rb  
RDab  
GND  
VOUTb  
VDDb  
V2B  
Reset Gate, Quadrant b  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
RDcd  
Rd  
Reset Drain, Quadrants c and d  
Reset Gate, Quadrant d  
Reset Drain, Quadrants a and b  
Ground  
VOUTd  
GND  
V2T  
Video Output, Quadrant d  
Video Output, Quadrant b  
Ground  
Output Amplifier Supply, Quadrant b  
Vertical CCD Clock, Phase 2, Bottom  
Vertical CCD Clock, Phase 1, Bottom and Top  
Vertical CCD Clock, Phase 4, Bottom  
Vertical CCD Clock, Phase 3, Bottom  
ESD Protection Disable  
Vertical CCD Clock, Phase 2, Top  
Output Amplifier Supply, Quadrant d  
Vertical CCD Clock, Phase 4, Top  
Vertical CCD Clock, Phase 1, Bottom and Top  
Device Identification  
VDDd  
V4T  
V1BT  
V4B  
V1BT  
DevID  
V3T  
V3B  
ESD  
Vertical CCD Clock, Phase 3, Top  
1. Like named pins are internally connected and should have a common drive signal.  
2. N/C pins (19, 55) should be left floating.  
www.onsemi.com  
6
KAI50140  
IMAGING PERFORMANCE  
Table 4. TYPICAL OPERATION CONDITIONS  
Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions.  
Description  
Light Source  
Operation  
Condition  
Notes  
Continuous Red, Green and Blue LED Illumination  
Nominal operating voltages and timing  
For monochrome sensor, only green LED used  
Table 5. PERFORMANCE PARAMETERS  
Performance parameters are by design  
Description  
Maximum Photoresponse Nonlinearity  
Horizontal CCD Charge Capacity  
Vertical CCD Charge Capacity  
Photodiode Charge Capacity  
Image Lag  
Symbol  
NL  
Nom.  
2
Units  
Notes  
%
2
HNe  
VNe  
PNe  
Lag  
40  
ke  
16  
ke  
13  
ke  
3
< 10  
> 300X  
98  
13  
e
Antiblooming Factor  
Xab  
Vertical Smear  
Smr  
dB  
7
4
Read Noise  
n
eT  
e rms  
Dynamic Range  
DR  
60  
dB  
V
4, 5  
Output Amplifier DC Offset  
Output Amplifier Bandwidth  
Output Amplifier Impedance  
Output Amplifier Sensitivity  
Vodc  
8
f
398  
80  
MHz  
W
6
3db  
Rout  
DV/DN  
QEmax  
42  
mV/e  
Peak Quantum Efficiency  
45  
%
(KAI*50140*AXA and KAI*50140*QXA Configurations)  
Peak Quantum Efficiency  
Blue  
Green  
Red  
QEmax  
37  
34  
27  
%
(KAI*50140*AXA and KAI*50140*QXA Configurations)  
Table 6. PERFORMANCE SPECIFICATIONS  
Temperature  
Tested At  
(5C)  
Description  
Dark Field Global NonUniformity  
Bright Field Global NonUniformity  
Bright Field Global Peak to Peak NonUniformity  
Maximum Gain Difference Between Outputs  
Horizontal CCD Charge Transfer Efficiency  
Vertical CCD Charge Transfer Efficiency  
Photodiode Dark Current  
Symbol  
DSNU  
BSNU  
PRNU  
DG  
Min.  
Nom.  
Max.  
Units  
mVpp  
%rms  
%pp  
%
Notes  
5
5
40  
20, 40  
20, 40  
20, 40  
20, 40  
20, 40  
20, 40  
20, 40  
1
1
2
30  
10  
0.999999  
0.999999  
7
HCTE  
VCTE  
Ipd  
0.999995  
0.999995  
50  
200  
e/p/s  
e/p/s  
Vertical CCD Dark Current  
Ivd  
50  
1. Per color.  
2. Value is over the range of 10% to 90% of photodiode saturation.  
3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such  
that the photodiode charge capacity is 546 mV.  
4. At 60 MHz.  
5. Uses 20 × LOG (PNe/ n ).  
eT  
C  
6. f−  
= 1 / (2p R  
) where C  
= 5 pF.  
3dB  
OUT  
LOAD  
LOAD  
7. Green LED illumination.  
www.onsemi.com  
7
 
KAI50140  
TYPICAL PERFORMANCE CURVES  
Quantum Efficiency  
Monochrome with Microlens  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Measured with AR  
coated cover glass  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000 1050 1100  
Wavelength (nm)  
Figure 5. Monochrome with Microlens Quantum Efficiency  
Gen2 Color (Bayer RGB) with Microlens  
0.50  
Measured with AR  
coated cover glass  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000 1050 1100  
Wavelength (nm)  
Red  
Green  
Blue  
Figure 6. Gen2 Color (Bayer RGB) with Microlens Quantum Efficiency  
www.onsemi.com  
8
KAI50140  
Angular Quantum Efficiency  
For the curves marked “Horizontal”, the incident light angle is varied in a plane parallel to the HCCD.  
For the curves marked “Vertical”, the incident light angle is varied in a plane parallel to the VCCD.  
Monochrome with Microlens  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5  
0
5
10  
15  
20  
25  
Angle (degrees)  
Horizontal QE: KAI43140AXA  
Vertical QE: KAI43140AXA  
Figure 7. Monochrome with Microlens Angular Quantum Efficiency  
Dark Current versus Temperature  
10000  
1000  
100  
10  
1
0.1  
1000/T (K)  
2.9  
3.0  
60  
3.1  
50  
3.2  
40  
3.3  
30  
3.4  
20  
T (°C)  
72  
Photodiode  
VCCD  
Figure 8. Dark Current vs. Temperature  
www.onsemi.com  
9
KAI50140  
Power-Estimated  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
HCCD Frequency (MHz)  
Single  
Dual (Left/Right)  
Quad  
Figure 9. Power  
Frame Rates  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
HCCD Frequency (MHz)  
Single  
Dual (Left/Right)  
Quad  
Figure 10. Frame Rates  
www.onsemi.com  
10  
KAI50140  
DEFECT DEFINITIONS  
Table 7. OPERATING CONDITIONS  
Description  
Condition  
Notes  
Light Source  
Continuous Red, Green, Blue, and/or Blue LED Illumination  
For the monochrome sensor, only the  
green LED is used  
Operation  
Nominal Operating Voltages and Timing  
Table 8. OPERATING PARAMETERS  
Description  
1 Output  
20 MHz  
10560  
4 Outputs  
20 MHz  
5280  
HCCD Clock Frequency  
Pixels Per Line  
Lines Per Frame  
4920  
2460  
Line Time  
549.6 ms  
2704.1 ms  
285.6 ms  
702.7 ms  
Frame Time  
Table 9. TIMING MODES  
Timing Modes  
Conditions  
Mode A  
Mode B  
1 Output, no electronic shutter used. Photodiode integration time is equal to the Frame Time  
4 Outputs, no electronic shutter used. Photodiode integration time is equal to the Frame time  
Table 10. DEFECT DEFINITIONS  
Description  
Grade 1 Grade 2 Grade 2  
(mono)  
(color)  
Definition  
Column  
Defect  
A group of more than 10 contiguous pixels along a single column that deviate  
from the neighboring columns by:  
more than 97 mV in the dark field using Timing Mode A at 40°C  
more than 97 mV in the dark field using Timing Mode A at 20°C  
more than 12% or +16% in the bright field using Timing Mode A at 20°C or 40°C  
0
7
2
Cluster  
Defect  
A group of 2 to N contiguous defective pixels, but no more than W adjacent defects  
horizontally, that deviate from the neighboring pixels by:  
more than 570 mV in the dark field using Timing Mode A at 40°C  
more than 268 mV in the dark field using Timing Mode A at 20°C  
more than 12% or +16% in the bright field using Timing Mode A at 20°C or 40°C  
30  
W = 4  
N19  
70  
W = 5  
N38  
70  
W = 5  
N38  
Major Point  
Defect  
A single defective pixel that deviates from the neighboring pixels by:  
more than 570 mV in the dark field using Timing Mode A at 40°C  
more than 268 mV in the dark field using Timing Mode A at 20°C  
more than 12% or +16% in the bright field using Timing Mode A at 20°C or 40°C  
400  
800  
800  
Minor Point  
Defect  
A single defective pixel that deviates from the neighboring pixels by:  
more than 285 mV in the dark field using Timing Mode A at 40°C  
4000  
8000  
8000  
1. Bright field is define as where the average signal level of the sensor is 382 mV, with the substrate voltage set to the recommend VAB setting  
such that the capacity of the photodiodes is 546 mV (13,000 electrons).  
2. For the color devices (KAI50140FXA or KAI50140QXA), a bright field defective pixel is with respect to pixels of the same color.  
3. Column and cluster defects are separated by no less than two (2) nondefective pixels in any direction (excluding single pixel defects).  
www.onsemi.com  
11  
KAI50140  
Defect Map  
The defect map supplied with each sensor is based upon  
testing at an ambient (27°C) temperature. Minor point  
defects are not included in the defect map. All defective  
pixels are reference to pixel 1, 1 in the defect maps.  
VOUTa  
VOUTb  
40 dark rows  
20 buffer rows  
1, 1  
Pixel  
21 ,  
21  
Pixel  
10440 x 4800  
Active Pixels  
20 buffer rows  
40 dark rows  
VOUTc  
VOUTd  
Figure 11. Pixel 1, 1 Location  
OPERATION  
Absolute Maximum Ratings  
Absolute maximum rating is defined as a level or  
condition that should not be exceeded at any time per the  
description. If the level or the condition is exceeded, the  
device will be degraded and may be damaged. Operation at  
these values will reduce MTTF.  
and may allow moisture ingress over time, depending on the  
storage environment. As a result, care must be taken to avoid  
cooling the device below the dew point inside the package  
cavity, since this may result in condensation on the sensor.  
For all KAI50140 configurations, no warranty, expressed  
or implied, covers condensation.  
The KAI50140 image sensors have configurations with  
epoxy sealed cover glass. The seal formed is nonhermetic,  
Table 11. ABSOLUTE MAXIMUM RATINGS  
Description  
Operating Temperature  
Symbol  
Top  
Minimum  
Maximum  
+60  
Units  
°C  
Notes  
50  
+20  
1
2
3
Parameter Specification Temperature Range  
Output Bias Current, Total for Each Output  
TPSR  
Iout  
+40  
°C  
15  
mA  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Device degradation is not evaluated outside of these temperature ranges.  
2. The device will operate effectively within a specified temperature range. Performance may not be guaranteed per the PERFORMANCE  
SPECIFICATION table for temperatures that are different than those specified within. Noise performance may degrade beyond the  
specification at die temperatures higher than specified here. Additionally, charge transfer may degrade beyond the specification at  
temperatures lower than specified here.  
3. Avoid shorting output pins to ground or any low impedance source during operation. Irreparable damage will occur and is not covered by  
warranty. Amplifier bandwidth increases at higher current and lower load capacitance at the expense of reduced gain (sensitivity).  
www.onsemi.com  
12  
 
KAI50140  
Table 12. ABSOLUTE MAXIMUM VOLTAGE RATINGS BETWEEN PINS AND GROUND  
Description  
Minimum  
0.4  
Maximum  
+17.5  
Units  
V
Notes  
VDDa, VOUTa  
RDa  
1
1
0.4  
+15.5  
V
V1TB  
ESD 0.4  
ESD 0.4  
ESD 0.4  
ESD 0.4  
ESD 0.4  
10.0  
ESD + 24.0  
ESD + 14.0  
ESD + 15.0  
ESD + 14.0  
ESD + 20.0  
0.0  
V
V2B, V2T, V3B, V3T, V3B, V3T  
V
FDGab, FDGcd  
V
H1a, H2a, H2La  
V
1
1
Ra  
V
ESD  
V
SUB  
0.4  
40.0  
V
2
1. a refers to a, b, c, or d.  
2. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.  
Power-Up and Power-Down Sequence  
Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down  
sequences may cause damage to the sensor.  
Do Not Pulse the Electronic Shutter  
until ESD is Stable  
V+  
VDD  
SUB  
HCCD  
High  
Time  
VCCD  
Low  
ESD  
V−  
Activate All Other Biases when  
ESD is Stable and Sub is above 3 V  
NOTES:  
1. Activate all other biases when ESD is stable and SUB is above 3 V.  
2. Do not pulse the electronic shutter until ESD is stable.  
3. VDD cannot be +15 V when SUB is 0 V.  
4. The VCCD clock waveform must not have a negative overshoot more than 0.4 V below the ESD voltage. See Figure 13.  
5. The image sensor can be protected from an accidental improper ESD voltage by current limiting the SUB current to less than 10 mA. SUB  
and VDD must always be greater than GND. ESD must always be less than GND. Placing diodes between SUB, VDD, ESD and ground  
will protect the sensor from accidental overshoots of SUB, VDD and ESD during power on and power off. See Figure 14.  
Figure 12. Power-Up and Power-Down Sequence  
www.onsemi.com  
13  
 
KAI50140  
The VCCD clock waveform must not have a negative overshoot more than 0.4 V below the ESD voltage.  
0.0 V  
ESD  
ESD 0.4 V  
All VCCD and FDG Clocks  
absolute maximum overshoot of 0.4 V.  
Figure 13. VCCD Clock Overshoots  
VDDa  
GND  
ESD  
SUB  
Figure 14. External Diode Protection  
Table 13. DC BIAS OPERATING CONDITIONS  
Max. DC  
Current  
Description  
Reset Drain  
Pins  
RDa  
Symbol  
RD  
Minimum  
+12.3  
+2.0  
Nominal  
+12.5  
+2.2  
Maximum  
+12.7  
+2.4  
Units  
V
Notes  
10 mA  
10 mA  
1
1
Output Gate  
OGa  
OG  
V
Output Amplifier Supply  
Ground  
VDDa  
GND  
SUB  
VDD  
GND  
VSUB  
ESD  
Iout  
+14.5  
+0.0  
+15.0  
+0.0  
+15.5  
+0.0  
V
11 mA  
1.0 mA  
50 mA  
1, 2  
V
Substrate  
+5.0  
VAB  
VDD  
V
3, 8  
6, 7  
ESD Protection Disable  
Output Bias Current  
1. a denotes a, b, c, or d.  
ESD  
9.2  
9.0  
8.8  
V
50 mA  
VOUTa  
3.0  
5.0  
10.0  
mA  
1, 4, 5  
2. The maximum DC current is for one output. Idd = Iout + Iss. See Figure 15.  
3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such  
that the photodiode charge capacity is the nominal PNe (see Specifications).  
4. An output load sink must be applied to each VOUT pin to activate each output amplifier.  
5. Nominal value required for 60 MHz operation per output. May be reduced for slower data rates and lower noise.  
6. Adherence to the power-up and power-down sequence is critical. See PowerUp and PowerDown Sequence section.  
7. ESD maximum value must be less than or equal to V1_L 0.4 V and V2_L 0.4 V.  
8. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.  
www.onsemi.com  
14  
 
KAI50140  
I
DD  
HCCD  
Floating  
Diffusion  
I
OUT  
VOUTa  
I
SS  
Source  
Follower  
#1  
Source  
Follower  
#2  
Source  
Follower  
#3  
Figure 15. Output Amplifier  
www.onsemi.com  
15  
KAI50140  
AC Operating Conditions  
Table 14. CLOCK LEVELS  
Pins  
Capacitance  
(Note 1)  
(Note 2)  
Description  
Symbol  
V1_L  
Level  
Low  
Mid  
Minimum  
Nominal  
8.0  
0.0  
Maximum  
7.8  
0.2  
Units  
Vertical CCD Clock, Phase 1  
V1B, V1T  
8.2  
0.2  
+10.3  
8.2  
0.2  
8.2  
0.2  
8.2  
0.2  
0.2  
+4.8  
0.2  
+4.8  
0.2  
+4.8  
0.2  
+4.8  
0.2  
4.8  
V
490 nF  
V1_M  
V1_H  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
+10.5  
8.0  
0.0  
+10.7  
7.8  
+0.2  
7.8  
+0.2  
7.8  
+0.2  
+0.2  
+5.2  
+0.2  
+5.2  
+0.2  
+5.2  
+0.2  
+5.2  
+0.2  
+5.2  
+3.2  
Vertical CCD Clock, Phase 2  
Vertical CCD Clock, Phase 3  
Vertical CCD Clock, Phase 4  
V2B, V2T  
V3B, V3T  
V4B, V4T  
H1Sa  
V2_L  
V
V
V
V
V
V
V
V
V
280 nF  
300 nF  
280 nF  
840 pF  
880 pF  
720 pF  
600 pF  
20 pF  
V2_H  
V3_L  
8.0  
0.0  
V3_H  
V4_L  
8.0  
0.0  
V4_H  
Horizontal CCD Clock,  
Phase 1 Storage  
H1S_L  
H1S_H  
H1B_L  
H1B_H  
H2S_L  
H2S_H  
H2B_L  
H2B_H  
H2SL_L  
H2LS_A  
0.0  
+5.0  
0.0  
Horizontal CCD Clock,  
Phase 1 Barrier  
H1Ba  
+5.0  
0.0  
Horizontal CCD Clock,  
Phase 2 Storage  
H2Sa  
+5.0  
0.0  
Horizontal CCD Clock,  
Phase 2 Barrier  
H2Ba  
+5.0  
0.0  
Horizontal CCD Clock,  
Last Phase (Note 3)  
H2SLa  
Ra  
+5.0  
+.3.0  
Reset Gate  
R_L  
(Note 4)  
+2.0  
20 pF  
R_H  
VES  
High  
High  
+6.8  
+7.0  
+7.2  
+40  
Electronic Shutter (Note 5, 8)  
SUB  
V
V
14 nF  
VES_  
Offset  
Offset  
VAB+24  
VAB+25  
Fast Line Dump Gate  
FDGab,  
FDGcd  
FDG_L  
FDG_H  
Low  
8.2  
8.0  
7.8  
V
260 pF  
High  
+4.5  
+5.0  
+5.5  
1. a denotes a, b, c, or d.  
2. Capacitance is total for all like named pins.  
3. Use separate clock driver for improved speed performance.  
4. Reset low should be set to +2.0 volts for signal levels greater than 26,000 electrons.  
5. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.  
6. Capacitance values are estimated.  
7. If the minimum horizontal clock low level is used (–0.2 V), then the maximum horizontal clock amplitude should be used (5 V amplitude) to  
create a –2.0 V to 4.8 V clock.  
8. Figure 16 shows the DC bias (VSUB) and AC clock (VES) applied to the SUB pin. Both the DC bias and AC clock are referenced to ground.  
The VES_Offset is referenced to VSUB.  
VES  
VES_Offset  
VSUB  
GND  
GND  
Figure 16. VSUB and VES Reference  
www.onsemi.com  
16  
 
KAI50140  
Device Identification  
The device identification pin (DevID) may be used to  
determine which ON Semiconductor 4.5 micron pixel  
interline CCD sensor is being used.  
Table 15. DEVICE IDENTIFICATION  
Max. DC  
Current  
Description  
Pins  
Symbol  
Minimum  
Nominal  
Maximum  
Units  
Notes  
Device Identification  
DevID  
DevID  
4,000  
5,000  
6,000  
W
50 mA  
1, 2, 3  
1. Nominal value subject to verification and/or change during release of preliminary specifications.  
2. If the Device Identification is not used, it may be left disconnected.  
3. After Device Identification resistance has been read during camera initialization, it is recommended that the circuit be disabled to prevent  
localized heating of the sensor due to current flow through the R_DeviceID resistor.  
Recommended Circuit  
Note that V1 must be a different value than V2.  
V1  
V2  
R_external  
DevID  
ADC  
R_DeviceID  
GND  
KAI50140  
Figure 17. Device Identification Recommended Circuit  
www.onsemi.com  
17  
 
KAI50140  
TIMING  
Table 16. REQUIREMENTS AND CHARACTERISTICS  
Description  
Photodiode Transfer  
Symbol  
Minimum  
Nominal  
Maximum  
Units  
ms  
ms  
ms  
ms  
ms  
%
Notes  
T
PD  
6
16  
VCCD Leading Pedestal  
VCCD Trailing Pedestal  
VCCD Transfer Delay  
VCCD Transfer  
T
3P  
T
3D  
16  
T
4
D
V
T
10  
VCCD Clock Cross-Over  
VCCD Rise, Fall Time  
FDG Delay  
V
VCR  
75  
100  
10  
1
T , T  
VR VF  
5
%
1, 2  
T
FDG  
5
ms  
ms  
ns  
ms  
ms  
ns  
ns  
ns  
ms  
HCCD Delay  
T
HS  
1
HCCD Transfer  
T
E
16.66  
1
Shutter Transfer  
Shutter Delay  
T
SUB  
T
HD  
1
Reset Pulse  
T
R
2.5  
Reset Video Delay  
H2SL Video Delay  
Line Time  
T
2.2  
3.1  
RV  
HV  
T
T
LINE  
104.2  
192.2  
256.4  
512.7  
945.7  
Dual/Quad HCCD Readout  
Single HCCD Readout  
Quad HCCD Readout  
Dual HCCD Readout  
Single HCCD Readout  
Frame Time  
T
ms  
FRAME  
1. Refer to Figure 22: VCCD Clock Rise Time, Fall Time and Edge Alignment.  
2. Relative to the pulse width.  
www.onsemi.com  
18  
 
KAI50140  
Timing Flow Charts  
The timing sequence for the clocked device pins may be represented as one of seven patterns (P1*P7) as shown in the table  
below. The patterns are defined in Figure 18 and Figure 19. Contact ON Semiconductor Application Engineering for other  
readout modes.  
Table 17. TIMING SEQUENCES  
Dual Readout  
VOUTa, VOUTb  
Dual Readout  
VOUTa, VOUTc  
Single Readout  
VOUTa  
Device Pin  
V1BT  
Quad Readout  
P1BT  
P2T  
P3T  
P4T  
P1BT  
P4B  
P3B  
P2B  
P1BT  
P2T  
P3T  
P4T  
P1BT  
P4B  
P3B  
P2B  
V2T  
V3T  
V4T  
V1BT  
P1BT  
P2B  
P3B  
P4B  
P5  
V2B  
V3B  
V4B  
H1Sa  
H1Ba  
H2Sa (Note 2)  
H2Ba  
P6  
P7  
Ra  
H1Sb  
P5  
P6  
P7  
P5  
P6  
P6  
P5  
H1Bb  
H2Sb (Note 2)  
H2Bb  
Rb  
P7 (Note 1) or Off (Note 3) P7 (Note 1) or Off (Note 3)  
H1Sc  
P5  
P6  
P5 (Note 1) or Off (Note 3)  
P5  
P5 (Note 1) or Off (Note 3)  
P6 (Note 1) or Off (Note 3)  
H1Bc  
H2Sc (Note 2)  
H2Bc  
P6 (Note 1) or Off (Note 3)  
P6  
Rc  
P7  
P5  
P7 (Note 1) or Off (Note 3)  
P5 (Note 1) or Off (Note 3)  
P7  
P5  
P6  
P6  
P5  
P7 (Note 1) or Off (Note 3)  
P5 (Note 1) or Off (Note 3)  
H1Sd  
H1Bd  
H2Sd (Note 2)  
H2Bd  
P6  
P6 (Note 1) or Off (Note 3)  
P6 (Note 1) or Off (Note 3)  
Rd  
P7  
P7 (Note 1) or Off (Note 3) P7 (Note 1) or Off (Note 3) P7 (Note 1) or Off (Note 3)  
# Lines/Frame  
(Minimum)  
2460  
4920 2460 4920  
# Pixels/Line  
(Minimum)  
5292  
10572  
1. For optimal performance of the sensor. May be clocked at a lower frequency. If clocked at a lower frequency, the frequency selected should  
be a multiple of the frequency used on the a and b register.  
2. H2SLx follows the same pattern as H2Sx For optimal speed performance, use a separate clock driver.  
3. Off = R_H for the Reset Gate and H_H for the Horizontal CCD gates. Note that there may be operating conditions (high temperature and/or  
very bright light sources) that will cause blooming from the unused c/d register into the image area.  
www.onsemi.com  
19  
 
KAI50140  
Photodiode Transfer Timing  
A row of charge is transferred to the HCCD on the falling  
edge of V1 as indicated in the P1 pattern below. Using this  
timing sequence, the leading dummy row or line is  
combined with the first dark row in the HCCD. The “Last  
Line” is dependent on readout mode – either 5292 or 10572  
minimum counts required. It is important to note that, in  
general, the rising edge of a vertical clock (patterns P1*P4)  
should be coincident or slightly leading a falling edge at the  
same time interval. This is particularly true at the point  
rd  
where P1 returns from the high (3 level) state to the  
mid*state when P4 transitions from the low state to the high  
state.  
Pattern  
td  
t3p  
tpd  
t 3d  
td  
tv  
tv  
P1BT  
tv /2  
tv /2  
P2T  
P3T  
P4T  
tv /2  
tv /2  
tv  
tv  
P1BT  
P2B  
P3B  
P4B  
tv /2  
tv /2  
ths  
ths  
L2  
Last Line  
L1 + Dummy Line  
P5  
P6  
P7  
Figure 18. Photodiode Transfer Timing  
Line and Pixel Timing  
Each row of charge is transferred to the output, as  
illustrated below, on the falling edge of H2SL (indicated as  
P6 pattern). The number of pixels in a row is dependent on  
readout mode – either 5292 or 10572 minimum counts  
required.  
Pattern  
tline  
P1BT  
P2T  
P3T  
P4T  
P1BT  
P2B  
tv  
P3B  
tv  
P4B  
te/2  
ths  
te/2  
ths  
P5  
P6  
te  
tr  
P7  
VOUT  
Pixel  
1
Pixel  
53  
Pixel  
n
Figure 19. Line and Pixel Timing  
www.onsemi.com  
20  
KAI50140  
Pixel Timing Detail  
P5  
P6  
P7  
VOUT  
trv  
thv  
Figure 20. Pixel Timing Detail  
Frame/Electronic Shutter Timing  
The SUB pin may be optionally clocked to provide  
electronic shuttering capability as shown below. The  
resulting photodiode integration time is defined from the  
falling edge of SUB to the falling edge of V1 (P1 pattern).  
tframe  
Pattern  
P1T/B  
thd  
tint  
tsub  
SUB  
thd  
P6  
Figure 21. Electronic Shutter Timing  
VCCD Clock Edge Alignment  
VVCR  
90%  
10%  
tVF  
tVR  
tV  
tVR  
tVF  
Figure 22. VCCD Clock Rise Time, Fall Time and Edge Alignment  
www.onsemi.com  
21  
KAI50140  
Line and Pixel Timing Vertical Binning by 2  
tv  
tv  
tv  
P1BT  
P2T  
P3T  
P4T  
P1BT  
P2B  
P3B  
P4B  
t /2  
e
ths  
P5  
P6  
P7  
Figure 23. Line and Pixel Timing Vertical Binning by 2  
Fast Line Dump Timing  
The FDG pins may be optionally clocked to efficiently  
remove unwanted lines in the image resulting for increased  
frame rates at the expense of resolution. Below is an example  
of a 2 line dump sequence followed by a normal readout line.  
tv  
tv  
tv  
tv  
tv  
P1BT  
P2T  
P3T  
P4T  
TFDG  
TFDG  
FDGcd  
P1BT  
P2B  
P3B  
P4B  
FDGab  
P5  
t /2  
e
t hs  
P6  
P7  
Figure 24. Fast Line Dump Timing  
www.onsemi.com  
22  
KAI50140  
STORAGE AND HANDLING DETAILS  
For information on ESD and cover glass care and  
cleanliness, please download the Image Sensor Handling  
and Best Practices Application Note (AN52561/D) from  
www.onsemi.com. Please note that CCD products are not  
shipped or stored in Moisture Barrier Bags (MBB) and  
Moisture Sensitivity Level (MSL) ratings are not specified.  
For quality and reliability information, please download  
the Quality & Reliability Handbook (HBD851/D) from  
www.onsemi.com.  
For information on device numbering and ordering codes,  
please download the Device Nomenclature technical note  
(TND310/D) from www.onsemi.com.  
For information on soldering recommendations, please  
download the Soldering and Mounting Techniques  
For information on Standard terms and Conditions of  
Sale, please download Terms and Conditions from  
www.onsemi.com.  
Reference  
Manual  
(SOLDERRM/D)  
from  
www.onsemi.com.  
For information on charge binning, please download the  
KAE08151 Charge Binning Application Note  
(AND9569/D) from www.onsemi.com.  
www.onsemi.com  
23  
KAI50140  
MECHANICAL INFORMATION  
Cover Glass Transmission  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0.0  
200  
300  
400  
500  
600  
700  
800  
900  
Wavelength (nm)  
MAR  
Clear  
Figure 29. Cover Glass Transmission  
www.onsemi.com  
24  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
CPGA71, 60.60x45.34  
CASE 107FJ  
ISSUE O  
DATE 25 JUN 2018  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON84713G  
CPGA71, 60.60x45.34  
PAGE 1 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
CPGA71, 60.60x45.34  
CASE 107FJ  
ISSUE O  
DATE 25 JUN 2018  
4X (C2.50)  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON84713G  
CPGA71, 60.60x45.34  
PAGE 2 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
www.onsemi.com  
2
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

KAI-50140-AXA-JD-B1

10440 (H) x 4800 (V) Interline CCD Image Sensor
ONSEMI

KAI-50140-AXA-JD-B2

10440 (H) x 4800 (V) Interline CCD Image Sensor
ONSEMI

KAI-50140-AXA-JP-AE

10440 (H) x 4800 (V) Interline CCD Image Sensor
ONSEMI

KAI-50140-AXA-JP-B1

10440 (H) x 4800 (V) Interline CCD Image Sensor
ONSEMI

KAI-50140-AXA-JP-B2

10440 (H) x 4800 (V) Interline CCD Image Sensor
ONSEMI

KAI-50140-FXA-JD-AE

10440 (H) x 4800 (V) Interline CCD Image Sensor
ONSEMI

KAI-50140-FXA-JD-B1

10440 (H) x 4800 (V) Interline CCD Image Sensor
ONSEMI

KAI-50140-FXA-JD-B2

10440 (H) x 4800 (V) Interline CCD Image Sensor
ONSEMI

KAJ000A30M-FLLL

Memory Circuit, PSRAM+SRAM, 4MX16, CMOS, PBGA111, 10 X 11 MM, 0.80 MM PITCH, FBGA-111
SAMSUNG

KAJ01SGGT

Slide Dip Switch, 1 Switches, SPST, Latched, 0.025A, 24VDC, Solder Terminal, Surface Mount-straight, ROHS COMPLIANT
E-SWITCH

KAJ02LGGT

Slide Dip Switch, 2 Switches, DPST, Latched, 0.025A, 24VDC, Solder Terminal, Surface Mount-straight,
E-SWITCH

KAJ04LGGT

Slide Dip Switch, 4 Switches, 4PST, Latched, 0.025A, 24VDC, Solder Terminal, Surface Mount-straight,
E-SWITCH