LM321SN3T1G [ONSEMI]

Operation Amplifier, Single-Channel;
LM321SN3T1G
型号: LM321SN3T1G
厂家: ONSEMI    ONSEMI
描述:

Operation Amplifier, Single-Channel

文件: 总11页 (文件大小:620K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Channel Operational  
Amplifier  
LM321  
LM321 is a general purpose, single channel op amp with internal  
compensation and a true differential input stage. This op amp features  
a wide supply voltage ranging from 3 V to 32 V for single supplies and  
1.5 to 16 V for split supplies, suiting a variety of applications.  
LM321 is unity gain stable even with large capacitive loads up to  
1.5 nF. LM321 is available in a space-saving TSOP5/SOT235  
package.  
www.onsemi.com  
5
1
Features  
TSOP5  
CASE 483  
Wide Supply Voltage Range: 3 V to 32 V  
Short Circuit Protected Outputs  
True Differential Input Stage  
Low Input Bias Currents  
PIN CONNECTION  
Internally Compensated  
IN+  
VEE  
IN  
1
2
3
5
4
VCC  
OUT  
Single and Split Supply Operation  
Unity Gain Stable with 1.5 nF Capacitive Load  
This Device is Pb-Free, Halogen Free/BFR Free and is RoHS  
Compliant  
Typical Applications  
Gain Stage  
MARKING DIAGRAM  
Active Filter  
5
Signal Processing  
ADYAYWG  
G
1
ADY = Specific Device Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
= Pb-Free Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
Device  
Package  
Shipping  
3000 / Tape & Reel  
LM321SN3T1G  
TSOP5  
(PbFree)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
October, 2019 Rev. 4  
LM321/D  
LM321  
Table 1. ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature, unless otherwise stated)  
Parameter  
Rating  
Unit  
Supply Voltage  
36  
V
INPUT AND OUTPUT PINS  
Input Voltage  
V
EE  
– 0.3 to 32  
10  
V
Input Current  
mA  
Output Short Circuit Duration (Note 1)  
TEMPERATURE  
Continuous  
Operating Temperature  
Storage Temperature  
Junction Temperature  
ESD RATINGS (Note 2)  
Human Body Model (HBM)  
Charged Device Model (CDM)  
Machine Model (MM)  
OTHER RATINGS  
–40 to +125  
–65 to +150  
–65 to +150  
°C  
°C  
°C  
200  
800  
100  
V
V
V
Latch-Up Current (Note 3)  
MSL  
100  
mA  
Level 1  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Short circuits can cause excessive heating and eventual destruction.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per JEDEC standard: JESD22A114  
ESD Machine Model tested per JEDEC standard: JESD22A115  
3. Latch-up Current tested per JEDEC standard: JESD78  
Table 2. THERMAL INFORMATION (Note 4)  
Parameter  
Junction to Ambient  
Symbol  
Package  
Value  
Unit  
q
TSOP5/SOT235  
235  
°C/W  
JA  
2
4. As mounted on an 80 × 80 × 1.5 mm FR4 PCB with 650 mm and 2 oz (0.034 mm) thick copper heat spreader. Following JEDEC  
JESD/EIA 51.1, 51.2, 51.3 test guidelines.  
Table 3. RECOMMENDED OPERATING CONDITIONS  
Parameter  
Supply Voltage (V V  
Symbol  
Range  
3 to 32  
Unit  
V
)
V
S
CC  
EE  
Specified Operating Range  
Common Mode Input Voltage Range  
T
40 to 85  
°C  
V
A
V
CM  
V
to V 1.7  
EE CC  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
2
 
LM321  
Table 4. ELECTRICAL CHARACTERISTICS VS = 5 V  
(At T = +25°C, R = 10 kW connected to mid-supply, V  
= V  
= mid-supply, unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified temperature range, T = –40°C to 85°C, guaranteed by characterization and/or design.)  
A
Parameter  
INPUT CHARACTERISTICS  
Offset Voltage  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OS  
V = 5 V, V  
= V to V – 1.7 V  
mV  
S
CM  
T = 25°C  
EE  
CC  
0.3  
7
9
A
A
T = –40°C to 85°C  
Offset Voltage Drift vs Temp  
Input Bias Current  
DV /DT  
T = –40°C to 85°C  
7
mV/°C  
OS  
A
I
IB  
T = 25°C  
10  
500  
nA  
A
T = –40°C to 85°C  
A
Input Offset Current  
I
T = 25°C  
A
1
150  
nA  
OS  
A
T = –40°C to 85°C  
Common Mode Rejection Ratio  
Input Resistance  
CMRR  
V
= V to V – 1.7 V  
65  
85  
dB  
CM  
EE  
CC  
R
Differential  
Common Mode  
85  
300  
GW  
IN  
Input Capacitance  
C
Differential  
Common Mode  
0.6  
1.6  
pF  
IN  
OUTPUT CHARACTERISTICS  
Open Loop Voltage Gain  
Open Loop Output Impedance  
Output Voltage High  
A
100  
dB  
W
VOL  
Z
f = UGBW, I = 0 mA  
1,200  
OUT_OL  
O
V
R = 2 kW to V  
V
V
–1.8  
V
V
1.4  
1.4  
V
OH  
L
EE  
CC  
CC  
CC  
CC  
1.8  
R = 10 kW to V  
L
EE  
Output Voltage Low  
V
OL  
R = 10 kW to V  
V
EE  
+0.8  
V +1.0  
EE  
V
L
CC  
Output Current Capability  
I
O
Sinking Current  
mA  
V
S
V
S
= 5 V  
10  
10  
20  
20  
= 15 V  
Output Current Capability  
I
O
Sourcing Current  
mA  
V
S
V
S
= 5 V  
20  
20  
40  
40  
= 15 V  
Capacitive Load Drive  
NOISE PERFORMANCE  
Voltage Noise Density  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Gain Margin  
C
Phase Margin = 15°  
1,500  
pF  
L
e
N
f
IN  
= 1 kHz  
40  
nV/Hz  
GBWP  
C = 25 pF, R to V  
750  
14  
kHz  
dB  
L
L
CC  
CC  
CC  
A
C = 25 pF, R to V  
L L  
M
M
Phase Margin  
a
C = 25 pF, R to V  
60  
°
L
L
Slew Rate  
SR  
C = 25 pF, R = ∞  
0.3  
V/ms  
L
L
POWER SUPPLY  
Power Supply Rejection Ratio  
Quiescent Current  
PSRR  
V
= 5 V to 32 V  
62  
100  
dB  
S
I
Q
No Load  
0.25  
0.5  
mA  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
3
LM321  
Table 5. ELECTRICAL CHARACTERISTICS VS = 32 V  
(At T = +25°C, R = 10 kW connected to mid-supply, V  
= V  
= mid-supply, unless otherwise noted.  
A
L
CM  
OUT  
Boldface limits apply over the specified temperature range, T = –40°C to 85°C, guaranteed by characterization and/or design.)  
A
Parameter  
INPUT CHARACTERISTICS  
Offset Voltage  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
V
OS  
V = 32 V, V = V to V – 1.7 V  
mV  
S
CM  
EE  
CC  
T = 25°C  
0.3  
7
9
A
A
T = –40°C to 85°C  
Offset Voltage Drift vs Temp  
Common Mode Rejection Ratio  
OUTPUT CHARACTERISTICS  
Open Loop Voltage Gain  
DV /DT  
T = –40°C to 85°C  
7
mV/°C  
OS  
A
CMRR  
V
CM  
= V to V – 1.7 V  
100  
dB  
EE  
CC  
A
VOL  
T = 25°C  
84  
100  
dB  
A
T = –40°C to 85°C  
A
Open Loop Output Impedance  
Output Voltage High  
Z
f = UGBW, I = 0 mA  
2,000  
W
OUT_OL  
O
V
OH  
R = 2 kW to V  
V
V
2.5  
V
CC  
V
CC  
2.0  
1.5  
V
L
EE  
CC  
CC  
2.5  
R = 10 kW to V  
L
EE  
Output Voltage Low  
V
OL  
R = 10 kW to V  
V
EE  
+1.0  
V +1.5  
EE  
V
L
CC  
Capacitive Load Drive  
NOISE PERFORMANCE  
Voltage Noise Density  
C
Phase Margin = 15°  
1,500  
pF  
L
e
N
f
IN  
= 1 kHz  
40  
nV/Hz  
Total Harmonic Distortion +  
Noise  
THD+N  
V = 30 V, f = 1 kHz, R to V  
CC  
0.02  
%
S
IN  
L
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Gain Margin  
GBWP  
C = 25 pF, R to V  
900  
18  
kHz  
dB  
L
L
CC  
CC  
CC  
A
M
C = 25 pF, R to V  
L L  
Phase Margin  
a
C = 25 pF, R to V  
66  
°
M
L
L
Slew Rate  
SR  
C = 25 pF, R = ∞  
0.4  
V/ms  
L
L
POWER SUPPLY  
Power Supply Rejection Ratio  
Quiescent Current  
PSRR  
V
= 5 V to 32 V  
62  
100  
0.3  
dB  
S
I
Q
No Load, V = 32 V  
1.2  
mA  
S
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
4
LM321  
TYPICAL CHARACTERISTICS  
120  
100  
80  
270  
240  
210  
180  
110  
V
V
V
V
V
V
= 3 V, Gain  
= 5 V, Gain  
= 32 V, Gain  
= 3 V, Phase  
= 5 V, Phase  
= 32 V, Phase  
S
S
S
S
S
S
V
V
V
= 3 V  
= 5 V  
= 32 V  
S
S
S
100  
90  
80  
70  
60  
50  
40  
30  
60  
40  
20  
150  
120  
0
90  
60  
PHASE MARGIN  
20  
20  
10  
R
C
= 10 kW  
L
L
40  
60  
30  
0
= 25 pF  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
Figure 1. Open Loop Gain and Phase Margin vs. Frequency  
Figure 2. CMRR vs. Frequency  
4
0.1  
0.08  
0.06  
0.04  
0.02  
0.0  
V
= 10 V  
V
= 5.0 V  
= 10 kW  
= 15 pF  
S
S
Input  
Output  
Input  
Output  
R
C
= 10 kW  
= 15 pF  
3
R
C
L
L
L
L
2
1
0
0.02  
0.04  
1  
2  
0.06  
0.08  
0.1  
3  
4  
10  
0
10 20 30 40 50 60 70 80 90 100  
2  
0
2
4
6
8
10  
12  
14  
Time (ms)  
Time (ms)  
Figure 3. Inverting Large Signal Step Response  
Figure 4. Inverting Small Signal Step Response  
1000  
60  
V
V
V
= 3 V  
= 5 V  
= 32 V  
A = 11 V/V  
V
S
S
S
V
V
V
= 3 V  
= 5 V  
= 32 V  
S
S
S
R
= 10 kW  
L
50  
40  
100  
30  
20  
10  
0
10  
1
10  
100  
1k  
10k  
100k  
100  
200  
300  
500  
1000  
1500  
Frequency (Hz)  
Load Capacitance (pF)  
Figure 5. Phase Margin vs. Load Capacitance  
Figure 6. Voltage Noise Density vs. Frequency  
www.onsemi.com  
5
LM321  
TYPICAL CHARACTERISTICS  
1000  
100  
10  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
V
V
V
= 3 V  
= 5 V  
= 32 V  
S
S
S
10  
100  
1k  
10k  
100k  
40  
20  
0
20  
40  
60  
80  
100  
Frequency (Hz)  
Temperature (5C)  
Figure 7. THD+N vs. Frequency  
Figure 8. Quiescent Current vs. Temperature  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
0.2  
0.0  
0.2  
0.0  
V
= 3 V  
V
= 5 V  
S
S
0.2  
0.4  
0.6  
0.2  
0.4  
0.6  
T= 40°C  
T= 25°C  
T= 85°C  
T= 40°C  
T= 25°C  
T= 85°C  
0
0.1 0.2 0.25 0.5 0.7  
1
1.25 1.3 1.4 1.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Common Mode Voltage (V)  
Common Mode Voltage (V)  
Figure 9. Input Offset Voltage vs. Common  
Mode Voltage at 3 V Supply  
Figure 10. Input Offset Voltage vs. Common  
Mode Voltage at 5 V Supply  
10  
8
0.8  
0.6  
0.4  
V
= V /2  
S
CM  
I
I
I
IB  
IB+  
OS  
6
4
2
0.2  
0.0  
0
2  
4  
6  
8  
10  
V
= 32 V  
S
0.2  
0.4  
0.6  
T= 40°C  
T= 25°C  
T= 85°C  
0
5
10  
15  
20  
25  
30  
40  
20  
0
20  
40  
60  
80  
100  
Common Mode Voltage (V)  
Temperature (5C)  
Figure 11. Input Offset Voltage vs. Common  
Mode Voltage at 32 V Supply  
Figure 12. Input Bias and Offset Current vs.  
Temperature  
www.onsemi.com  
6
LM321  
TYPICAL CHARACTERISTICS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1400  
1200  
1000  
800  
600  
400  
V
= 3 V  
V
= 3 V  
S
S
T= 40°C  
T= 25°C  
T= 85°C  
T= 40°C  
T= 25°C  
T= 85°C  
200  
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
Output Source Current (mA)  
Output Sink Current (mA)  
Figure 13. High Level Output Voltage Swing vs.  
Output Current at 3 V Supply  
Figure 14. Low Level Output Voltage Swing vs.  
Output Current at 3 V Supply  
1800  
1600  
1400  
1200  
1000  
800  
5.0  
V
= 5 V  
S
4.5  
4.0  
3.5  
3.0  
T= 40°C  
T= 25°C  
T= 85°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0
600  
V
= 5 V  
S
400  
T= 40°C  
T= 25°C  
T= 85°C  
200  
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
Output Source Current (mA)  
Output Sink Current (mA)  
Figure 15. High Level Output Voltage Swing vs.  
Output Current at 5 V Supply  
Figure 16. Low Level Output Voltage Swing vs.  
Output Current at 5 V Supply  
8
5.0  
V
= 32 V  
V
= 32 V  
S
S
4.5  
4.0  
3.5  
3.0  
7
6
5
4
3
2
1
0
T= 40°C  
T= 25°C  
T= 85°C  
T= 40°C  
T= 25°C  
T= 85°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
5
10  
15  
20  
25  
30  
0
3
6
9
12 15 18  
21 24 27 30  
Output Source Current (mA)  
Output Sink Current (mA)  
Figure 17. High Level Output Voltage Swing vs.  
Output Current at 32 V Supply  
Figure 18. Low Level Output Voltage Swing vs.  
Output Current at 32 V Supply  
www.onsemi.com  
7
LM321  
APPLICATION INFORMATION  
CIRCUIT DESCRIPTION  
splitting the collectors of Q20 and Q18. Another feature of  
this input stage is that the input common mode range can  
include the negative supply or ground, in single supply  
operation, without saturating either the input devices or the  
differential to singleended converter. The second stage  
consists of a standard current source load amplifier stage.  
Each amplifier is biased from an internalvoltage  
regulator which has a low temperature coefficient thus  
giving each amplifier good temperature characteristics as  
well as excellent power supply rejection.  
The LM321 is made using two internally compensated,  
twostage operational amplifiers. The first stage of each  
consists of differential input devices Q20 and Q18 with input  
buffer transistors Q21 and Q17 and the differential to single  
ended converter Q3 and Q4. The first stage performs not  
only the first stage gain function but also performs the level  
shifting and transconductance reduction functions. By  
reducing the transconductance, a smaller compensation  
capacitor (only 5.0 pF) can be employed, thus saving chip  
area. The transconductance reduction is accomplished by  
Output  
Bias Circuitry  
V
CC  
Q15  
Q22  
Q16  
Q14  
Q13  
40 k  
Q19  
5.0 pF  
Q12  
Q24  
25  
Q23  
Q20  
Q21  
Q18  
Q17  
Inputs  
Q11  
Q9  
Q25  
Q6 Q7  
Q26  
Q2  
Q5  
Q1  
2.0 k  
2.4 k  
Q8  
Q10  
Q3  
Q4  
V
EE  
/Gnd  
Figure 19. LM321 Representative Schematic Diagram  
www.onsemi.com  
8
LM321  
VCC  
LM321 has a class B output stage, which is comprised of  
pushpull transistors. This type of output is inherently  
subject to crossover distortion near midrail where neither  
push or pull transistors are conducting. Several techniques  
can be used to minimize crossover distortion. Connecting  
the output load to either the positive or negative supply rail  
instead of midrail can reduce the crossover distortion.  
Additionally, increasing the load resistance relatively  
decreases the amount of crossover distortion.  
OUT  
VEE  
Figure 20. Simplified Class B Output  
Figure 21. Sine wave with crossover distortion  
www.onsemi.com  
9
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSOP5  
CASE 483  
ISSUE N  
5
1
DATE 12 AUG 2020  
SCALE 2:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
10  
3.00  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
_
_
SIDE VIEW  
2.50  
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
1.9  
5
1
5
0.074  
0.95  
XXXAYWG  
XXX MG  
0.037  
G
G
1
Analog  
Discrete/Logic  
2.4  
0.094  
XXX = Specific Device Code XXX = Specific Device Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
M
G
= Date Code  
= PbFree Package  
1.0  
0.039  
= PbFree Package  
(Note: Microdot may be in either location)  
0.7  
0.028  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ARB18753C  
TSOP5  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

LM321X

Single Rail-to-Rail Output Operational Amplifier
SGMICRO

LM321_17

LOW POWER SINGLE OP AMP
UTC

LM322

Precision Timers
NSC

LM322-100.000M

Oscillator
CONNOR-WINFIE

LM322-100.00M

LVDS Output Clock Oscillator, 100MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC PACKAGE-6
CONNOR-WINFIE

LM322-155.52M

5.0x7.0mm Surface Mount LVDS Clock Oscillator Series
CONNOR-WINFIE

LM322-670.000M

Oscillator
CONNOR-WINFIE

LM3224

615kHz/1.25MHz Step-up PWM DC/DC Converter
NSC

LM3224

615kHz/1.25MHz 升压 PWM 直流/直流转换器
TI

LM3224MM-ADJ

615kHz/1.25MHz Step-up PWM DC/DC Converter
NSC

LM3224MM-ADJ/NOPB

IC 2.8 A SWITCHING REGULATOR, 1500 kHz SWITCHING FREQ-MAX, PDSO8, ROHS COMPLIANT, PLASTIC, MSOP-8, Switching Regulator or Controller
NSC

LM3224MM-ADJ/NOPB

615kHz/1.25MHz 升压 PWM 直流/直流转换器 | DGK | 8 | -40 to 125
TI