LM324AM [ONSEMI]

运算放大器,单电源,四路;
LM324AM
型号: LM324AM
厂家: ONSEMI    ONSEMI
描述:

运算放大器,单电源,四路

放大器 光电二极管 运算放大器
文件: 总12页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM324, LM324A, LM224,  
LM2902, LM2902V, NCV2902  
Single Supply Quad  
Operational Amplifiers  
The LM324 series are low–cost, quad operational amplifiers with  
true differential inputs. They have several distinct advantages over  
standard operational amplifier types in single supply applications. The  
quad amplifier can operate at supply voltages as low as 3.0 V or as  
high as 32 V with quiescent currents about one–fifth of those  
associated with the MC1741 (on a per amplifier basis). The common  
mode input range includes the negative supply, thereby eliminating the  
necessity for external biasing components in many applications. The  
output voltage range also includes the negative power supply voltage.  
http://onsemi.com  
PDIP–14  
N SUFFIX  
CASE 646  
14  
1
Short Circuited Protected Outputs  
True Differential Input Stage  
SO–14  
Single Supply Operation: 3.0 V to 32 V (LM224, LM324, LM324A)  
Low Input Bias Currents: 100 nA Maximum (LM324A)  
Four Amplifiers Per Package  
D SUFFIX  
CASE 751A  
14  
1
Internally Compensated  
Common Mode Range Extends to Negative Supply  
Industry Standard Pinouts  
TSSOP–14  
DTB SUFFIX  
CASE 948G  
14  
ESD Clamps on the Inputs Increase Ruggedness without Affecting  
Device Operation  
1
MAXIMUM RATINGS (T = +25°C, unless otherwise noted.)  
A
LM224  
LM2902,  
LM2902V  
LM324,  
LM324A  
PIN CONNECTIONS  
Rating  
Symbol  
Unit  
Power Supply Voltages  
Single Supply  
Split Supplies  
Vdc  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Out 1  
Out 4  
Inputs 4  
, Gnd  
V
32  
±16  
26  
±13  
CC  
, V  
V
*
*
)
CC  
EE  
Inputs 1  
V
1
4
3
)
Input Differential Voltage  
Range (Note 1)  
V
±32  
±26  
Vdc  
Vdc  
IDR  
ICR  
SC  
V
EE  
CC  
Input Common Mode  
Voltage Range  
V
–0.3 to 32  
–0.3 to 26  
)
)
*
2
Inputs 2  
Out 2  
Inputs 3  
Out 3  
*
Output Short Circuit  
Duration  
t
Continuous  
8
Junction Temperature  
T
150  
°C  
°C  
(Top View)  
J
Storage Temperature  
Range  
T
stg  
–65 to +150  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
Operating Ambient  
Temperature Range  
T
A
°C  
LM224  
LM324, 324A  
LM2902  
–25 to +85  
0 to +70  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 10 of this data sheet.  
–40 to +105  
–40 to +125  
LM2902V, NCV2902  
1. Split Power Supplies.  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
May, 2002 – Rev. 8  
LM324/D  
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V = Gnd, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
LM224  
LM324A  
LM324  
LM2902  
LM2902V/NCV2902  
Characteristics  
Symbol Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max  
Unit  
Input Offset Voltage  
V
IO  
mV  
V
CC  
= 5.0 V to 30 V  
(26 V for LM2902, V),  
V
V
V
= 0 V to  
–1.7 V,  
ICR  
CC  
= 1.4 V, R = 0 Ω  
O
S
2.0  
5.0  
7.0  
7.0  
2.0  
3.0  
5.0  
5.0  
2.0  
7.0  
9.0  
9.0  
2.0  
7.0  
10  
10  
2.0  
7.0  
13  
10  
T
= 25°C  
A
T
A
= T  
(Note 2)  
high  
T
A
= T (Note 2)  
low  
Average Temperature  
Coefficient of Input  
Offset Voltage  
V /T  
IO  
7.0  
7.0  
30  
7.0  
7.0  
7.0  
µV/°C  
T
A
= T to T  
high low  
(Notes 2 and 4)  
Input Offset Current  
I
IO  
3.0  
30  
5.0  
30  
75  
5.0  
50  
5.0  
50  
5.0  
50  
nA  
100  
150  
200  
200  
T
= T to T  
high low  
A
(Note 2)  
Average Temperature  
Coefficient of Input  
Offset Current  
I /T  
IO  
10  
10  
300  
10  
10  
10  
pA/°C  
T
A
= T to T  
high low  
(Notes 2 and 4)  
Input Bias Current  
I
–90  
–150  
–300  
–45  
–100  
–200  
–90  
–250  
–500  
–90  
–250  
–500  
–90  
–250  
–500  
nA  
V
IB  
T
A
= T to T  
high low  
(Note 2)  
Input Common Mode  
Voltage Range  
(Note 3)  
V
ICR  
V
CC  
= 30 V  
(26 V for LM2902, V)  
= +25°C  
0
0
28.3  
28  
0
0
28.3  
28  
0
0
28.3  
28  
0
0
24.3  
24  
0
0
24.3  
24  
T
A
T
= T to T  
high low  
A
(Note 2)  
Differential Input  
Voltage Range  
V
IDR  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
Large Signal Open  
Loop Voltage Gain  
A
VOL  
V/mV  
50  
100  
25  
100  
25  
100  
25  
100  
25  
100  
R
L
= 2.0 k,  
V
CC  
= 15 V,  
for Large V Swing  
O
25  
15  
15  
15  
15  
T
= T  
to T  
A
high low  
(Note 2)  
Channel Separation  
10 kHz f 20 kHz,  
Input Referenced  
CS  
–120  
–120  
–120  
–120  
–120  
dB  
dB  
dB  
Common Mode  
Rejection,  
R
CMR  
PSR  
70  
85  
65  
65  
70  
65  
65  
70  
50  
50  
70  
50  
50  
70  
10 kΩ  
S
Power Supply  
Rejection  
65  
100  
100  
100  
100  
100  
2. LM224: T = –25°C, T  
= +85°C  
low  
high  
LM324/LM324A: T  
= 0°C, T  
= +70°C  
low  
high  
LM2902: T  
= –40°C, T  
= +105°C  
low  
high  
LM2902V & NCV2902: T = –40°C, T  
= +125°C  
low  
high  
NCV2902 is qualified for automotive use.  
3. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of  
the common mode voltage range is V –1.7 V.  
CC  
4. Guaranteed by design.  
http://onsemi.com  
2
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V = Gnd, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
LM224  
LM324A  
LM324  
LM2902  
LM2902V/NCV2902  
Characteristics  
Symbol Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max  
Unit  
Output Voltage–  
High Limit  
V
OH  
V
(T = T  
T
)
A
high to low  
(Note 5)  
3.3  
26  
3.5  
3.3  
26  
3.5  
3.3  
26  
3.5  
3.3  
22  
3.5  
3.3  
22  
3.5  
V
= 5.0 V, R  
=
L
CC  
2.0 k, T = 25°C  
A
V
CC  
= 30 V  
(26 V for LM2902, V),  
R
L
= 2.0 kΩ  
27  
28  
27  
28  
27  
28  
23  
24  
23  
24  
V
= 30 V  
CC  
(26 V for LM2902, V),  
= 10 kΩ  
R
L
Output Voltage –  
Low Limit,  
V
R
T
V
5.0  
20  
5.0  
20  
5.0  
20  
5.0  
100  
5.0  
100  
mV  
mA  
OL  
= 5.0 V,  
CC  
= 10 k,  
L
= T  
to T  
A
high low  
(Note 5)  
Output Source Current  
I
O +  
(V = +1.0 V,  
ID  
V
CC  
= 15 V)  
20  
10  
40  
20  
20  
10  
40  
20  
20  
10  
40  
20  
20  
10  
40  
20  
20  
10  
40  
20  
T
= 25°C  
A
T
A
= T  
to T  
high low  
(Note 5)  
Output Sink Current  
(V = –1.0 V,  
I
mA  
O –  
10  
20  
10  
20  
10  
20  
10  
20  
10  
20  
ID  
V
CC  
= 15 V)  
T
A
= 25°C  
5.0  
12  
8.0  
50  
5.0  
12  
8.0  
50  
5.0  
12  
8.0  
50  
5.0  
8.0  
5.0  
8.0  
T
= T  
to T  
A
high low  
(Note 5)  
(V = –1.0 V,  
µA  
ID  
V
O
= 200 mV,  
T
A
= 25°C)  
Output Short Circuit  
to Ground  
(Note 6)  
I
40  
60  
40  
60  
40  
60  
40  
60  
40  
60  
mA  
mA  
SC  
Power Supply Current  
I
CC  
(T = T  
to T  
)
A
high  
low  
(Note 5)  
3.0  
1.2  
1.4  
0.7  
3.0  
1.2  
3.0  
1.2  
3.0  
1.2  
3.0  
1.2  
V
CC  
= 30 V  
(26 V for LM2902, V),  
V
O
= 0 V, R = ∞  
L
V
CC  
= 5.0 V,  
V
O
= 0 V, R = ∞  
L
5. LM224: T = –25°C, T  
= +85°C  
low  
high  
LM324/LM324A: T  
= 0°C, T  
= +70°C  
low  
high  
LM2902: T  
= –40°C, T  
= +105°C  
low  
high  
LM2902V & NCV2902: T = –40°C, T  
= +125°C  
low  
high  
NCV2902 is qualified for automotive use.  
6. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of  
the common mode voltage range is V –1.7 V.  
CC  
http://onsemi.com  
3
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
Bias Circuitry  
Common to Four  
Amplifiers  
Output  
V
CC  
Q15  
Q22  
Q16  
Q14  
Q13  
40 k  
Q19  
5.0 pF  
Q12  
Q24  
Q23  
25  
+
Q20  
Q21  
Q18  
Inputs  
-
Q11  
Q9  
Q17  
Q25  
Q6 Q7  
Q26  
Q2  
Q5  
Q1  
2.4 k  
Q8  
Q10  
Q3  
Q4  
2.0 k  
V
EE  
/Gnd  
Figure 1. Representative Circuit Diagram  
(One–Fourth of Circuit Shown)  
http://onsemi.com  
4
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
CIRCUIT DESCRIPTION  
The LM324 series is made using four internally  
V
CC  
= 15 Vdc  
R = 2.0 kΩ  
T = 25°C  
A
compensated, two–stage operational amplifiers. The first  
stage of each consists of differential input devices Q20 and  
Q18 with input buffer transistors Q21 and Q17 and the  
differential to single ended converter Q3 and Q4. The first  
stage performs not only the first stage gain function but also  
performs the level shifting and transconductance reduction  
functions. By reducing the transconductance, a smaller  
compensation capacitor (only 5.0 pF) can be employed, thus  
saving chip area. The transconductance reduction is  
accomplished by splitting the collectors of Q20 and Q18.  
Another feature of this input stage is that the input common  
mode range can include the negative supply or ground, in  
single supply operation, without saturating either the input  
devices or the differential to single–ended converter. The  
second stage consists of a standard current source load  
amplifier stage.  
L
5.0 µs/DIV  
Figure 2. Large Signal Voltage Follower Response  
Each amplifier is biased from an internal–voltage  
regulator which has a low temperature coefficient thus  
giving each amplifier good temperature characteristics as  
well as excellent power supply rejection.  
3.0 V to V  
CC(max)  
V
CC  
V
CC  
1
2
3
1.5 V to V  
1.5 V to V  
CC(max)  
EE(max)  
1
2
3
4
4
V
EE  
V
EE  
/Gnd  
Single Supply  
Split Supplies  
Figure 3.  
http://onsemi.com  
5
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
20  
18  
16  
14  
12  
10  
8.0  
120  
V
V
= 15 V  
= Gnd  
CC  
100  
80  
EE  
T = 25°C  
A
60  
Negative  
40  
20  
Positive  
6.0  
4.0  
2.0  
0
0
-20  
0
2.0 4.0 6.0 8.0  
10  
12  
14 16  
18  
20  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
± V /V POWER SUPPLY VOLTAGES (V)  
CC EE,  
f, FREQUENCY (Hz)  
Figure 5. Open Loop Frequency  
Figure 4. Input Voltage Range  
14  
12  
550  
500  
R = 2.0 kΩ  
L
V
= 15 V  
= Gnd  
CC  
Input  
V
EE  
Gain = -100  
450  
400  
350  
300  
250  
200  
10  
Output  
R = 1.0 kΩ  
I
8.0  
R = 100 kΩ  
F
6.0  
4.0  
V
CC  
V
EE  
= 30 V  
= Gnd  
2.0  
0
T = 25°C  
A
C = 50 pF  
L
0
1.0  
10  
100  
1000  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
f, FREQUENCY (kHz)  
t, TIME (µs)  
Figure 6. Large–Signal Frequency Response  
Figure 7. Small–Signal Voltage Follower  
Pulse Response (Noninverting)  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
T = 25°C  
L
A
R = R  
90  
80  
70  
0.3  
0
0
5.0  
10  
15  
20  
25  
30  
35  
0
2.0 4.0 6.0 8.0  
10  
12  
14 16  
18  
20  
V
CC  
, POWER SUPPLY VOLTAGE (V)  
V
CC  
, POWER SUPPLY VOLTAGE (V)  
Figure 8. Power Supply Current versus  
Power Supply Voltage  
Figure 9. Input Bias Current versus  
Power Supply Voltage  
http://onsemi.com  
6
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
50 k  
R1  
5.0 k  
V
CC  
10 k  
V
CC  
V
CC  
R2  
-
V
ref  
-
1/4  
LM324  
V
O
1/4  
LM324  
V
O
+
1
MC1403  
+
f =  
o
1
2
2 π RC  
2.5 V  
V
ref  
=
V
CC  
For:  
f
o
= 1.0 kHz  
R = 16 kΩ  
C = 0.01 µF  
R
C
R
R1  
R2  
C
V
O
= 2.5 V ă1 +  
Figure 10. Voltage Reference  
Figure 11. Wien Bridge Oscillator  
R2  
1
C
+
R
e
1
R
Hysteresis  
1/4  
LM324  
V
OH  
-
R1  
V
O
+
V
ref  
-
1/4  
LM324  
a R1  
b R1  
1/4  
LM324  
R1  
e
o
V
V
O
in  
-
V
OL  
+
V
inL  
V
inH  
1
C
R1  
R1 + R2  
-
V
ref  
R
(V - V ) + V  
ref  
V
=
OL  
ref  
inL  
1/4  
LM324  
R1  
R1 + R2  
+
e
2
(V - V ) + V  
ref  
V
inH  
=
R
OH  
ref  
R1  
R1 + R2  
H =  
(V - V )  
OH OL  
e = C (1 + a + b) (e - e )  
1
o
2
Figure 12. High Impedance Differential Amplifier  
Figure 13. Comparator with Hysteresis  
R
1
f =  
o
2 π RC  
R
100 k  
R1 = QR  
1
2
C1  
V
ref  
=
V
CC  
R1  
V
in  
R2  
C
C
R2 =  
-
T
R
BP  
1/4  
LM324  
-
100 k  
R3 = T  
N R2  
1/4  
LM324  
-
+
1/4  
LM324  
C1 = 10C  
+
+
For:ąf ă=ă1.0 kHz  
Vref  
o
For:ąQă= 10  
For:ąT ă= 1  
V
ref  
Bandpass  
Output  
R3  
V
ref  
BP  
For:ąT ă= 1  
N
R1  
R2  
-
C1  
1/4  
LM324  
R
= 160 kΩ  
Notch Output  
C
= 0.001 µF  
+
R1 = 1.6 MΩ  
R2 = 1.6 MΩ  
R3 = 1.6 MΩ  
V
ref  
Where:ąT ă=ăCenter Frequency Gain  
BP  
Where:ąT ă=ăPassband Notch Gain  
N
Figure 14. Bi–Quad Filter  
http://onsemi.com  
7
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
1
2
Triangle Wave  
Output  
V
=
V
CC  
R2  
ref  
300 k  
V
+
ref  
R3  
75 k  
R1  
100 k  
V
CC  
1/4  
LM324  
+
1/4  
LM324  
R3  
C
-
C
R1  
Square  
Wave  
Output  
-
C
-
V
in  
O
1/4  
LM324  
V
V
ref  
O
C
+
CO = 10 C  
R2  
R
f
R1 + R  
V
ref  
R2 R1  
C
1
2
f =  
if R3 =  
V
ref  
=
V
CC  
4 CR R1  
f
R2 + R1  
Figure 15. Function Generator  
Figure 16. Multiple Feedback Bandpass Filter  
Given:ąf ă=ăcenter frequency  
o
A(f )ă=ăgain at center frequency  
o
Choose value f , C  
o
Q
R3 =  
R1 =  
Then:  
π f C  
o
R3  
2 A(f )  
o
R1 R3  
R2 =  
2
4Q R1 - R3  
Q f  
o
o
< 0.1  
For less than 10% error from operational amplifier,  
BW  
where f and BW are expressed in Hz.  
o
If source impedance varies, filter may be preceded with  
voltage follower buffer to stabilize filter parameters.  
http://onsemi.com  
8
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
ORDERING INFORMATION  
Device  
Package  
SO–14  
Operating Temperature Range  
Shipping  
55 Units/Rail  
LM224D  
LM224DR2  
LM224DTB  
LM224DTBR2  
LM224N  
SO–14  
2500 Tape & Reel  
96 Units/Rail  
TSSOP–14  
TSSOP–14  
PDIP–14  
SO–14  
–25° to +85°C  
2500 Tape & Reel  
25 Units/Rail  
LM324D  
55 Units/Rail  
LM324DR2  
LM324DTB  
LM324DTBR2  
LM324N  
SO–14  
2500 Tape & Reel  
96 Units/Rail  
TSSOP–14  
TSSOP–14  
PDIP–14  
SO–14  
2500 Tape & Reel  
25 Units/Rail  
0° to +70°C  
LM324AD  
55 Units/Rail  
LM324ADR2  
LM324ADTB  
SO–14  
2500 Tape & Reel  
96 Units/Rail  
TSSOP–14  
TSSOP–14  
PDIP–14  
SO–14  
LM324ADTBR2  
LM324AN  
2500 Tape & Reel  
25 Units/Rail  
LM2902D  
55 Units/Rail  
LM2902DR2  
LM2902DTB  
LM2902DTBR2  
LM2902N  
SO–14  
2500 Tape & Reel  
96 Units/Rail  
TSSOP–14  
TSSOP–14  
PDIP–14  
SO–14  
–40° to +105°C  
–40° to +125°C  
2500 Tape & Reel  
25 Units/Rail  
LM2902VD  
55 Units/Rail  
LM2902VDR2  
LM2902VDTB  
LM2902VDTBR2  
LM2902VN  
SO–14  
2500 Tape & Reel  
96 Units/Rail  
TSSOP–14  
TSSOP–14  
PDIP–14  
SO–14  
2500 Tape & Reel  
25 Units/Rail  
NCV2902DR2  
2500 Tape & Reel  
http://onsemi.com  
9
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
MARKING DIAGRAMS  
PDIP–14  
N SUFFIX  
CASE 646  
14  
1
14  
1
14  
14  
1
LM324AN  
AWLYYWW  
LMx24N  
AWLYYWW  
LM2902N  
AWLYYWW  
LM2902VN  
AWLYYWW  
1
SO–14  
D SUFFIX  
CASE 751A  
14  
14  
14  
14  
1
*
LM324AD  
AWLYWW  
LMx24D  
AWLYWW  
LM2902D  
AWLYWW  
LM2902VD  
AWLYWW  
1
1
1
TSSOP–14  
DTB SUFFIX  
CASE 948G  
14  
14  
14  
14  
x24  
324A  
2902  
AWYW  
2902  
V
AWYW  
AWYW  
AWYW  
1
1
1
1
x
= 2 or 3  
A
WL  
= Assembly Location  
= Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
*This marking diagram also applies to NCV2902.  
http://onsemi.com  
10  
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
PACKAGE DIMENSIONS  
PDIP–14  
N SUFFIX  
CASE 646–06  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
14  
1
8
7
B
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
MILLIMETERS  
A
F
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
18.80  
6.60  
4.69  
0.53  
1.78  
A
B
C
D
F
0.715  
0.240  
0.145  
0.015  
0.040  
0.770  
0.260  
0.185  
0.021  
0.070  
L
N
C
G
H
J
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.290  
---  
0.095  
0.015  
0.135  
0.310  
10  
1.32  
0.20  
2.92  
7.37  
---  
2.41  
0.38  
3.43  
7.87  
10  
–T–  
SEATING  
PLANE  
K
L
J
K
M
N
_
_
0.015  
0.039  
0.38  
1.01  
D 14 PL  
H
G
M
M
0.13 (0.005)  
SO–14  
D SUFFIX  
CASE 751A–03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
G
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
–T–  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
0.244  
0.019  
M
S
S
A
0.25 (0.010)  
T
B
K
M
P
R
7
0
_
_
_
_
5.80  
0.25  
6.20 0.228  
0.50 0.010  
http://onsemi.com  
11  
LM324, LM324A, LM224, LM2902, LM2902V, NCV2902  
PACKAGE DIMENSIONS  
TSSOP–14  
DTB SUFFIX  
CASE 948G–01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
14X K REF  
M
S
S
0.10 (0.004)  
T
U
V
S
0.15 (0.006) T  
U
N
0.25 (0.010)  
14  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
8
2X L/2  
M
0.25 (0.010) PER SIDE.  
B
–U–  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
L
N
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE -W-.  
S
K
0.15 (0.006) T  
U
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
K1  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
–V–  
A
B
4.90  
4.30  
---  
5.10 0.193  
4.50 0.169  
1.20  
J J1  
C
---  
D
0.05  
0.50  
0.15 0.002  
0.75 0.020  
F
SECTION N–N  
G
H
0.65 BSC  
0.026 BSC  
0.50  
0.09  
0.09  
0.19  
0.19  
0.60 0.020  
0.20 0.004  
0.16 0.004  
0.30 0.007  
0.25 0.007  
0.024  
0.008  
0.006  
0.012  
0.010  
J
J1  
K
–W–  
C
K1  
L
6.40 BSC  
_
0.252 BSC  
0
0.10 (0.004)  
M
0
8
8
_
_
_
SEATING  
PLANE  
–T–  
H
G
DETAIL E  
D
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make  
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
LM324/D  

相关型号:

LM324AM/NOPB

LM124-N/LM224-N/LM324-N/LM2902-N Low Power Quad Operational Amplifiers
TI

LM324AMX

运算放大器,单电源,四路
ONSEMI

LM324AMX

Low Power Quad Operational Amplifiers
NSC

LM324AMX

LM124-N/LM224-N/LM324-N/LM2902-N Low Power Quad Operational Amplifiers
TI

LM324AMX

Operational Amplifier, 4 Func, 5000uV Offset-Max, BIPolar, PDSO14, SOP-14
FAIRCHILD

LM324AMX/NOPB

LM124-N/LM224-N/LM324-N/LM2902-N Low Power Quad Operational Amplifiers
TI

LM324AN

Low Power Quad Operational Amplifiers
STMICROELECTR

LM324AN

Low power quad op amps
NXP

LM324AN

Quad Operational Amplifier
FAIRCHILD

LM324AN

Low Power Quad Operational Amplifiers
NSC

LM324AN

QUAD DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

LM324AN

Single Supply Quad Operational Amplifiers
ONSEMI