LM340AT-5.0 [ONSEMI]

THREE TERMINAL POSITIVE FIXED VOLTAGE REGULATORS; 三端固定正稳压器
LM340AT-5.0
型号: LM340AT-5.0
厂家: ONSEMI    ONSEMI
描述:

THREE TERMINAL POSITIVE FIXED VOLTAGE REGULATORS
三端固定正稳压器

线性稳压器IC 电源电路
文件: 总20页 (文件大小:209K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by LM340/D  
THREE–TERMINAL  
POSITIVE FIXED  
VOLTAGE REGULATORS  
This family of fixed voltage regulators are monolithic integrated circuits  
capable of driving loads in excess of 1.0 A. These three–terminal regulators  
employ internal current limiting, thermal shutdown, and safe–area  
compensation. Devices are available with improved specifications, including  
a 2% output voltage tolerance, on A–suffix 5.0, 12 and 15 V device types.  
Although designed primarily as a fixed voltage regulator, these devices  
can be used with external components to obtain adjustable voltages and  
currents. This series of devices can be used with a series–pass transistor to  
boost output current capability at the nominal output voltage.  
SEMICONDUCTOR  
TECHNICAL DATA  
Output Current in Excess of 1.0 A  
No External Components Required  
Output Voltage Offered in 2% and 4% Tolerance*  
Internal Thermal Overload Protection  
Internal Short Circuit Current Limiting  
Output Transistor Safe–Area Compensation  
T SUFFIX  
PLASTIC PACKAGE  
CASE 221A  
Pin 1. Input  
1
2. Ground  
3. Output  
2
3
Heatsink surface is connected to Pin 2.  
Simplified Application  
LM340–XX  
Input  
Output  
**  
ORDERING INFORMATION  
C
*
in  
C
O
0.33µF  
Output Voltage  
and Tolerance  
Operating  
Temperature Range  
Device  
Package  
LM340T–5.0  
LM340AT–5.0  
LM340T–6.0  
LM340T–8.0  
LM340T–12  
LM340AT–12  
LM340T–15  
LM340AT–15  
LM340T–18  
LM340T–24  
5.0 V ± 4%  
5.0 V ± 2%  
6.0 V ± 4%  
8.0 V ± 4%  
12 V ± 4%  
12 V ± 2%  
15 V ± 4%  
15 V ± 2%  
18 V ± 4%  
24 V ± 4%  
Acommongroundisrequiredbetweentheinputand  
the output voltages. The input voltage must remain  
typically 1.7 V above the output voltage even during  
the low point on the input ripple voltage.  
T = 0° to +125°C  
J
Plastic Power  
XX these two digits of the type number indicate  
voltage.  
* C is required if regulator is located an  
in  
appreciable distance from power supply filter.  
** C is not needed for stability; however, it does  
O
improve transient response. If needed, use a  
0.1 µF ceramic disc.  
* 2% regulators are available in 5, 12 and 15 V devices.  
Motorola, Inc. 1996  
Rev 1  
LM340, A Series  
MAXIMUM RATINGS (T = +25°C unless otherwise noted.)  
A
Rating  
Symbol  
Value  
Unit  
Input Voltage (5.0 V – 18 V)  
Input Voltage (24 V)  
V
in  
35  
40  
Vdc  
Power Dissipation and Thermal Characteristics  
Plastic Package  
T
= +25°C  
P
1/  
θJA  
θ
JA  
Internally Limited  
W
mW/°C  
°C/W  
A
D
Derate above T = +25°C  
Thermal Resistance, Junction–to–Air  
15.4  
65  
A
T = +25°C  
Derate above T = +75°C (See Figure 1)  
Thermal Resistance, Junction–to–Case  
P
Internally Limited  
W
mW/°C  
°C/W  
C
D
1/  
θJA  
JC  
200  
5.0  
C
θ
Storage Temperature Range  
T
–65 to +150  
0 to +150  
°C  
°C  
stg  
Operating Junction Temperature Range  
T
J
Representative Schematic Diagram  
Input  
1.0k  
1.0k  
210  
6.7V  
16k  
100  
1.0k  
3.0k  
200  
300  
3.6k  
10pF  
5.6k  
300  
6.4k  
13  
0.12  
200  
50  
Output  
520  
40  
pF  
2.6k  
3.9k  
6.0k  
2.0k  
6.0k  
2.8k  
Gnd  
2
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340–5.0  
ELECTRICAL CHARACTERISTICS (V = 10 V, I = 500 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
4.8  
5.0  
5.2  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation (Note 2)  
8.0 Vdc to 20 Vdc  
Reg  
mV  
mV  
line  
50  
50  
25  
50  
7.0 Vdc to 25 Vdc (T = +25°C)  
J
8.0 Vdc to 12 Vdc, I = 1.0 A  
O
7.3 Vdc to 20 Vdc, I = 1.0 A (T = +25°C)  
O
J
Load Regulation (Note 2)  
Reg  
load  
5.0 mA I 1.0 A  
50  
50  
25  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
4.75  
5.25  
Vdc  
mA  
O
7.0 V 20 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
I
B
I
= 1.0 A  
4.0  
8.5  
8.0  
O
J
T = +25°C  
Quiescent Current Change  
I  
B
mA  
7.0 V 25 Vdc, I = 500 mA  
1.0  
0.5  
1.0  
in  
O
5.0 mA I 1.0 A, V = 10 V  
O
in  
7.5 V 20 Vdc, I = 1.0 A  
in  
O
Ripple Rejection  
RR  
62  
80  
dB  
I
O
= 1.0 A (T = +25°C)  
J
Dropout Voltage  
V – V  
1.7  
2.0  
2.0  
40  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
SC  
J
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
= 5.0 mA  
TCV  
±0.6  
mV/°C  
O
I
O
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
7.3  
Vdc  
J
I
O
= 1.0 A  
NOTES: 1. T  
low  
to T = 0° to +125°C  
high  
2. Load and line regulation are specified at constant junction temperature. Changes in V due to heating effects must be taken into account separately.  
O
Pulse testing with low duty cycle is used.  
DEFINITIONS  
Line Regulation – The change in output voltage for a  
change in the input voltage. The measurement is made  
under conditions of low dissipation or by using pulse  
techniques such that the average chip temperature is not  
significantly affected.  
Maximum Power Dissipation – The maximum total device  
dissipation for which the regulator will operate within  
specifications.  
Quiescent Current – That part of the input current that is not  
delivered to the load.  
Load Regulation – The change in output voltage for a  
change in load current at constant chip temperature.  
Output Noise Voltage – The rms AC voltage at the output,  
with constant load and no input ripple, measured over a  
specified frequency range.  
3
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340A–5.0  
ELECTRICAL CHARACTERISTICS (V = 10 V, I = 1.0 A, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
4.9  
5.0  
5.1  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation  
7.5 Vdc to 20 Vdc, I = 500 mA  
Reg  
mV  
mV  
line  
3.0  
10  
10  
12  
4.0  
O
7.3 Vdc to 25 Vdc (T = +25°C)  
J
8.0 Vdc to 12 Vdc  
8.0 Vdc to 12 Vdc (T = +25°C)  
J
Load Regulation  
Reg  
load  
5.0 mA I 1.0 A  
25  
25  
15  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
4.8  
5.2  
Vdc  
mA  
mA  
O
7.5 V 20 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
T = +25°C  
J
I
B
3.5  
6.5  
6.0  
Quiescent Current Change  
I  
B
5.0 mA I 1.0 A, V = 10 V  
0.5  
0.8  
0.8  
O
in  
8.0 V 25 Vdc, I = 500 mA  
in  
O
O
7.5 V 20 Vdc, I = 1.0 A (T = +25°C)  
in  
J
Ripple Rejection  
RR  
dB  
8.0 V 18 Vdc, f = 120 Hz  
in  
= 500 mA  
= 1.0 A (T = +25°C)  
I
O
I
O
68  
68  
80  
J
Dropout Voltage  
V – V  
1.7  
2.0  
2.0  
40  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
SC  
J
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
TCV  
±0.6  
mV/°C  
O
I
O
= 5.0 mA  
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
7.3  
Vdc  
J
I
O
= 1.0 A  
NOTE: 1. T  
to T = 0° to +125°C  
high  
low  
4
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340–6.0  
ELECTRICAL CHARACTERISTICS (V = 11 V, I = 500 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
5.75  
6.0  
6.25  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation  
9.0 Vdc to 21 Vdc  
8.0 Vdc to 25 Vdc (T = +25°C)  
9.0 Vdc to 13 Vdc, I = 1.0 A  
Reg  
mV  
mV  
line  
60  
60  
30  
60  
J
O
O
8.3 Vdc to 21 Vdc, I = 1.0 A (T = +25°C)  
J
Load Regulation  
5.0 mA I 1.0 A  
Reg  
load  
60  
60  
30  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
5.7  
6.3  
Vdc  
mA  
O
8.0 V 21 Vdc, 6.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
I
B
I
= 1.0 A  
4.0  
8.5  
8.0  
O
J
T = +25°C  
Quiescent Current Change  
I  
B
mA  
8.0 V 25 Vdc, I = 500 mA  
1.0  
0.5  
1.0  
in  
O
5.0 mA I 1.0 A, V = 11 V  
O
in  
8.6 V 21 Vdc, I = 1.0 A  
in  
O
Ripple Rejection  
RR  
59  
78  
dB  
I
O
= 1.0 A (T = +25°C)  
J
Dropout Voltage  
V – V  
1.7  
2.0  
1.9  
45  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
SC  
J
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
= 5.0 mA  
TCV  
±0.7  
mV/°C  
O
I
O
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
8.3  
Vdc  
J
I
O
= 1.0 A  
NOTE: 1. T  
low  
to T = 0° to +125°C  
high  
5
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340–8.0  
ELECTRICAL CHARACTERISTICS (V = 14 V, I = 500 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
7.7  
8.0  
8.3  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation  
11 Vdc to 23 Vdc  
10.5 Vdc to 25 Vdc (T = +25°C)  
11 Vdc to 17 Vdc, I = 1.0 A  
10.5 Vdc to 23 Vdc, I = 1.0 A (T = +25°C)  
Reg  
mV  
mV  
line  
80  
80  
40  
80  
J
O
O
J
Load Regulation  
5.0 mA I 1.0 A  
Reg  
load  
80  
80  
40  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
7.6  
8.4  
Vdc  
mA  
O
10.5 V 23 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
I
B
I
= 1.0 A  
4.0  
8.5  
8.0  
O
J
T = +25°C  
Quiescent Current Change  
I  
B
mA  
10.5 V 25 Vdc, I = 500 mA  
1.0  
0.5  
1.0  
in  
O
in  
O
5.0 mA I 1.0 A, V = 14 V  
O
10.6 V 23 Vdc, I = 1.0 A  
in  
Ripple Rejection  
RR  
56  
76  
dB  
I
O
= 1.0 A (T = +25°C)  
J
Dropout Voltage  
V – V  
1.7  
2.0  
1.5  
52  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
SC  
J
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
= 5.0 mA  
TCV  
±1.0  
mV/°C  
O
I
O
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
10.5  
Vdc  
J
I
O
= 1.0 A  
NOTE: 1. T  
to T = 0° to +125°C  
high  
low  
6
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340–12  
ELECTRICAL CHARACTERISTICS (V = 19 V, I = 500 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
11.5  
12  
12.5  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation (Note 2)  
15 Vdc to 27 Vdc  
Reg  
mV  
mV  
line  
120  
120  
60  
14.6 Vdc to 30 Vdc (T = +25°C)  
J
16 Vdc to 22 Vdc, I = 1.0 A  
O
14.6 Vdc to 27 Vdc, I = 1.0 A (T = +25°C)  
120  
O
J
Load Regulation (Note 2)  
Reg  
load  
5.0 mA I 1.0 A  
120  
120  
60  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
11.4  
12.6  
Vdc  
mA  
O
14.5 V 27 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
I
B
I
= 1.0 A  
4.0  
8.5  
8.0  
O
J
T = +25°C  
Quiescent Current Change  
I  
B
mA  
14.5 V 30 Vdc, I = 500 mA  
1.0  
0.5  
1.0  
in  
O
in  
O
5.0 mA I 1.0 A, V = 19 V  
O
14.8 V 27 Vdc, I = 1.0 A  
in  
Ripple Rejection  
RR  
55  
72  
dB  
I
O
= 1.0 A (T = +25°C)  
J
Dropout Voltage  
V – V  
1.7  
2.0  
1.1  
75  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
SC  
J
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
= 5.0 mA  
TCV  
±1.5  
mV/°C  
O
I
O
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
14.6  
Vdc  
J
I
O
= 1.0 A  
NOTES: 1. T  
low  
to T = 0° to +125°C  
high  
2. Load and line regulation are specified at constant junction temperature. Changes in V due to heating effects must be taken into account separately.  
O
Pulse testing with low duty cycle is used.  
7
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340A–12  
ELECTRICAL CHARACTERISTICS (V = 19 V, I = 1.0 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
11.75  
12  
12.25  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation  
14.8 Vdc to 27 Vdc, I = 500 mA  
Reg  
mV  
mV  
line  
4.0  
18  
18  
30  
9.0  
O
14.5 Vdc to 30 Vdc (T = +25°C)  
J
16 Vdc to 22 Vdc  
16 Vdc to 22 Vdc (T = +25°C)  
J
Load Regulation  
Reg  
load  
5.0 mA I 1.0 A  
60  
32  
19  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
11.5  
12.5  
Vdc  
mA  
mA  
O
14.8 V 27 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
T = +25°C  
J
I
B
3.5  
6.5  
6.0  
Quiescent Current Change  
I  
B
5.0 mA I 1.0 A, V = 19 V  
0.5  
0.8  
0.8  
O
in  
15 V 30 Vdc, I = 500 mA  
in  
O
14.8 V 27 Vdc, I = 1.0 A(T = +25°C)  
in  
O
J
Ripple Rejection  
RR  
dB  
15 V 25 Vdc, f = 120 Hz  
in  
= 500 mA  
= 1.0 A (T = +25°C)  
I
O
I
O
61  
61  
72  
J
Dropout Voltage  
V – V  
1.7  
2.0  
1.1  
75  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
SC  
J
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
TCV  
±1.5  
mV/°C  
O
I
O
= 5.0 mA  
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
14.5  
Vdc  
J
NOTE: 1. T  
to T = 0° to +125°C  
high  
low  
8
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340–15  
ELECTRICAL CHARACTERISTICS (V = 23 V, I = 500 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
14.4  
15  
15.6  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation (Note 2)  
18.5 Vdc to 30 Vdc  
Reg  
mV  
mV  
line  
150  
150  
75  
17.5 Vdc to 30 Vdc (T = +25°C)  
J
20 Vdc to 26 Vdc, I = 1.0 A  
O
17.7 Vdc to 30 Vdc, I = 1.0 A (T = +25°C)  
150  
O
J
Load Regulation (Note 2)  
Reg  
load  
5.0 mA I 1.0 A  
150  
150  
75  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
14.25  
15.75  
Vdc  
mA  
O
17.5 V 30 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
I
B
I
= 1.0 A  
4.0  
8.5  
8.0  
O
J
T = +25°C  
Quiescent Current Change  
I  
B
mA  
17.5 V 30 Vdc, I = 500 mA  
1.0  
0.5  
1.0  
in  
O
in  
O
5.0 mA I 1.0 A, V = 23 V  
O
17.9 V 30 Vdc, I = 1.0 A  
in  
Ripple Rejection  
RR  
54  
70  
dB  
I
O
= 1.0 mA (T = +25°C)  
J
Dropout Voltage  
V – V  
1.7  
2.0  
800  
90  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
SC  
J
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
= 5.0 mA  
TCV  
±1.8  
mV/°C  
O
I
O
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
17.7  
Vdc  
J
I
O
= 1.0 A  
NOTES: 1. T  
low  
to T = 0° to +125°C  
high  
2. Load and line regulation are specified at constant junction temperature. Changes in V due to heating effects must be taken into account separately.  
O
Pulse testing with low duty cycle is used.  
9
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340A–15  
ELECTRICAL CHARACTERISTICS (V = 23 V, I = 1.0 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
14.7  
15  
15.3  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation  
17.9 Vdc to 30 Vdc, I = 500 mA  
Reg  
mV  
mV  
line  
4.0  
22  
22  
30  
10  
O
17.5 Vdc to 30 Vdc (T = +25°C)  
J
20 Vdc to 26 Vdc, I = 1.0 A  
O
20 Vdc to 26 Vdc, I = 1.0 A (T = +25°C)  
O
J
Load Regulation  
5.0 mA I 1.0 A  
Reg  
load  
12  
75  
35  
21  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
14.4  
15.6  
Vdc  
mA  
mA  
O
17.9 V 30 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
T = +25°C  
J
I
B
3.5  
6.5  
6.0  
Quiescent Current Change  
I  
B
5.0 mA I 1.0 A, V = 23 V  
0.5  
0.8  
0.8  
O
in  
O
O
17.9 V 30 Vdc, I = 500 mA  
in  
17.9 V 30 Vdc, I = 1.0 A (T = +25°C)  
in  
J
Ripple Rejection  
RR  
dB  
18.5 V 28.5 Vdc, f = 120 Hz  
in  
= 500 mA  
= 1.0 A (T = +25°C)  
I
O
I
O
60  
60  
70  
J
Dropout Voltage  
V – V  
1.7  
2.0  
800  
90  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
SC  
J
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
TCV  
±1.8  
mV/°C  
O
I
O
= 5.0 mA  
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
17.5  
Vdc  
J
NOTE: 1. T  
to T = 0° to +125°C  
high  
low  
10  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340–18  
ELECTRICAL CHARACTERISTICS (V = 27 V, I = 500 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
17.3  
18  
18.7  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation  
21.5 Vdc to 33 Vdc  
21 Vdc to 33 Vdc (T = +25°C)  
24 Vdc to 30 Vdc, I = 1.0 A  
Reg  
mV  
mV  
line  
180  
180  
90  
J
O
O
21 Vdc to 33 Vdc, I = 1.0 A (T = +25°C)  
180  
J
Load Regulation  
5.0 mA I 1.0 A  
Reg  
load  
180  
180  
90  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
17.1  
18.9  
Vdc  
mA  
O
21 V 33 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
I
B
I
= 1.0 A  
4.0  
8.5  
8.0  
O
J
T = +25°C  
Quiescent Current Change  
I  
B
mA  
21 V 33 Vdc, I = 500 mA  
1.0  
0.5  
1.0  
in  
O
5.0 mA I 1.0 A, V = 27 V  
O
in  
21 V 33 Vdc, I = 1.0 A  
in  
O
Ripple Rejection  
RR  
53  
69  
dB  
I
O
= 1.0 mA (T = +25°C)  
J
Dropout Voltage  
V – V  
1.7  
2.0  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
500  
110  
J
SC  
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
= 5.0 mA  
TCV  
±2.3  
mV/°C  
O
I
O
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
21  
Vdc  
J
I
O
= 1.0 A  
NOTE: 1. T  
low  
to T = 0° to +125°C  
high  
11  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
LM340–24  
ELECTRICAL CHARACTERISTICS (V = 33 V, I = 500 mA, T = T  
to T  
[Note 1], unless otherwise noted.)  
high  
in  
O
J
low  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (T = +25°C)  
V
O
23  
24  
25  
Vdc  
J
I
O
= 5.0 mA to 1.0 A  
Line Regulation  
28 Vdc to 38 Vdc  
27 Vdc to 38 Vdc (T = +25°C)  
30 Vdc to 36 Vdc, I = 1.0 A  
27.1 Vdc to 38 Vdc, I = 1.0 A (T = +25°C)  
Reg  
mV  
mV  
line  
240  
240  
120  
240  
J
O
O
J
Load Regulation  
5.0 mA I 1.0 A  
Reg  
load  
240  
240  
120  
O
5.0 mA I 1.5 A (T = +25°C)  
O
J
250 mA I 750 mA (T = +25°C)  
O
J
Output Voltage  
V
22.8  
25.2  
Vdc  
mA  
O
27 V 38 Vdc, 5.0 mA I 1.0 A, P 15 W  
in  
O
D
Quiescent Current  
I
B
I
= 1.0 A  
4.0  
8.5  
8.0  
O
J
T = +25°C  
Quiescent Current Change  
I  
B
mA  
27 V 38 Vdc, I = 500 mA  
1.0  
0.5  
1.0  
in  
O
5.0 mA I 1.0 A, V = 33 V  
O
in  
27.3 V 38 Vdc, I = 1.0 A  
in  
O
Ripple Rejection  
RR  
50  
66  
dB  
I
O
= 1.0 mA (T = +25°C)  
J
Dropout Voltage  
V – V  
1.7  
2.0  
Vdc  
mΩ  
A
I
O
Output Resistance (f = 1.0 kHz)  
r
O
Short Circuit Current Limit (T = +25°C)  
I
200  
170  
J
SC  
Output Noise Voltage (T = +25°C)  
10 Hz f 100 kHz  
V
n
µV  
A
Average Temperature Coefficient of Output Voltage  
= 5.0 m  
TCV  
±3.0  
mV/°C  
O
I
O
A
Peak Output Current (T = +25°C)  
I
O
2.4  
A
J
Input Voltage to Maintain Line Regulation (T = +25°C)  
27.1  
Vdc  
J
I
O
= 1.0 A  
NOTE: 1. T  
to T = 0° to +125°C  
high  
low  
12  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
VOLTAGE REGULATOR PERFORMANCE  
The performance of a voltage regulator is specified by its  
be caused by a change in either input voltage or the load  
current. Thermal regulation is a function of IC layout and die  
attach techniques, and usually occurs within 10 ms of a  
change in power dissipation. After 10 ms, additional changes  
in the output voltage are due to the temperature coefficient of  
the device.  
Figure 1 shows the line and thermal regulation response of  
a typical LM340AT–5.0 to a 10 W input pulse. The variation of  
the output voltage due to line regulation is labeled À and the  
thermal regulation component is labeled Á. Figure 2 shows  
the load and thermal regulation response of a typical  
LM340AT–5.0 to a 15 W load pulse. The output voltage  
variation due to load regulation is labeled À and the thermal  
regulation component is labeled Á.  
immunity to changes in load, input voltage, power dissipation,  
and temperature. Line and load regulation are tested with a  
pulse of short duration (< 100 µs) and are strictly a function of  
electrical gain. However, pulse widths of longer duration  
(> 1.0 ms) are sufficient to affect temperature gradients  
across the die. These temperature gradients can cause a  
change in the output voltage, in addition to changes caused  
by line and load regulation. Longer pulse widths and thermal  
gradients make it desirable to specify thermal regulation.  
Thermal regulation is defined as the change in output  
voltage caused by a change in dissipated power for a  
specified time, and is expressed as a percentage output  
voltage change per watt. The change in dissipated power can  
Figure 1. Line and Thermal Regulation  
Figure 2. Load and Thermal Regulation  
2
2
2
1
1
2
18 V  
2.0  
8.0 V  
0
t, TIME (2.0 ms/DIV)  
LM340AT–5.0  
t, TIME (2.0 ms/DIV)  
LM340AT–5.0  
V
= 5.0 V  
V
= 5.0 V  
= 15 V  
in  
out  
out  
1
2
1
2
= Reg  
= 4.4 mV  
= Reg  
= Reg  
= 2.4 mV  
line  
line  
V
I
= 8.0 V  
18 V  
8.0 V  
V
I
in  
out  
= 1.0 A  
= 0 A  
1.5 A 0 A  
= 0.0030% V /W  
= Reg  
= 0.0020% V /W  
out  
therm  
O
therm  
O
Figure 3. Temperature Stability  
Figure 4. Output Impedance  
0
10  
1.02  
1.01  
1.00  
0.99  
0.98  
V
I
– V  
= 5.0 V  
= 100 mA  
–1  
in  
out  
10  
10  
out  
V
V
= 5.0 V  
out  
in  
= 7.5 V  
= 1.0 A  
= 0  
I
C
–2  
out  
O
J
T
= 25  
°C  
–3  
10  
10  
–4  
–90  
–50  
–10  
30  
70  
110  
C)  
150  
190  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M 10 M 100 M  
T , JUNCTION TEMPERATURE (  
°
f, FREQUENCY (Hz)  
J
13  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
Figure 5. Ripple Rejection versus Frequency  
Figure 6. Ripple Rejection versus Output Current  
100  
100  
I
= 50 mA  
out  
80  
60  
40  
20  
80  
60  
I
V
V
C
T
= 1.5 A  
= 5.0 V  
= 10 V  
= 0  
out  
out  
in  
O
V
V
V
C
= 5.0 V  
= 10 V  
= 10 V  
= 0  
out  
in  
in  
O
= 25°C  
J
f = 120 Hz  
= 25  
T
°C  
J
40  
30  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M 10 M 100 M  
0.01  
0.1  
1.0  
10  
f, FREQUENCY (Hz)  
I
, OUTPUT CURRENT (A)  
out  
Figure 7. Quiescent Current versus  
Input Voltage  
Figure 8. Quiescent Current versus  
Output Current  
4.0  
3.0  
2.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
T
J
in  
= 25  
– V  
°C  
T
= 25  
= 5.0 V  
= 1.0 A  
°
C
J
V
= 5.0 V  
V
I
out  
out  
out  
1.0  
0
0
10  
20  
, INPUT VOLTAGE (Vdc)  
30  
40  
0.01  
0.1  
I , OUTPUT CURRENT (A)  
out  
1.0  
10  
V
in  
Figure 9. Dropout Voltage  
Figure 10. Peak Output Current  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
V
= 100 mV  
out  
I
= 1.0 A  
O
3.0  
2.0  
1.0  
I
= 500 mA  
O
I
= 10 mA  
O
T
= 25°C  
J
0
0
10  
V –V , INPUT–OUTPUT VOLTAGE DIFFERENTIAL (V)  
in out  
20  
30  
40  
–75  
–50  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
A
14  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
Figure 11. Line Transient Response  
Figure 12. Load Transient Response  
0.8  
0.6  
0.4  
0.2  
0
0.3  
0.2  
0.1  
0
V
= 5.0 V  
= 150 mA  
= 0  
out  
I
C
out  
O
T
= 25°C  
J
–0.1  
V
V
C
T
= 5.0 V  
= 10 V  
= 0  
out  
in  
O
J
–0.2  
–0.4  
–0.6  
–0.2  
–0.3  
= 25°C  
1.5  
1.0  
1.0  
0.5  
0
0.5  
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
t, TIME (µs)  
t, TIME (µs)  
Figure 13. Worst Case Power Dissipation  
versus Ambient Temperature (Case 221A)  
20  
16  
12  
θ
θ
T
= 5  
°
C/W  
= 65 C/W  
= 150  
JC  
JA  
°
θ
= 0°C/W  
HS  
°C  
J(max)  
θ
= 5°C/W  
HS  
θ
= 15°C/W  
8.0  
4.0  
HS  
No Heatsink  
0
–50  
–25  
0
25  
50  
75  
100  
125  
150  
T , AMBIENT TEMPERATURE (  
°C)  
A
15  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
APPLICATIONS INFORMATION  
Design Considerations  
regulator is connected to the power supply filter with long wire  
lengths, or if the output load capacitance is large. An input  
bypass capacitor should be selected to provide good  
high–frequency characteristics to insure stable operation  
under all load conditions. A 0.33 µF or larger tantalum, mylar,  
or other capacitor having low internal impedance at high  
frequencies should be chosen. The bypass capacitor should  
be mounted with the shortest possible leads directly across  
the regulators input terminals. Normally good construction  
techniques should be used to minimize ground loops and  
lead resistance drops since the regulator has no external  
sense lead.  
The LM340, A series of fixed voltage regulators are  
designed with Thermal Overload Protection that shuts down  
the circuit when subjected to an excessive power overload  
condition, Internal Short Circuit Protection that limits the  
maximum current the circuit will pass, and Output Transistor  
Safe–Area Compensation that reduces the output short  
circuit current as the voltage across the pass transistor is  
increased.  
In many low current applications, compensation  
capacitors are not required. However, it is recommended that  
the regulator input be bypassed with a capacitor if the  
Figure 14. Current Regulator  
Figure 15. Adjustable Output Regulator  
LM340–5.0  
Output  
Input  
LM340–5.0  
Input  
R
0.33µF  
Constant  
Current to  
Grounded Load  
7
4
I
O
2
3
+
0.33µF  
0.1µF  
6
These regulators can also be used as a current source when  
connected as above. In order to minimize dissipation the LM340–5.0  
is chosen in this application. Resistor R determines the current as  
follows:  
10k  
1k  
MC1741G  
5.0 V  
R
I
=
+ I  
Q
O
V
, 7.0 V to 20 V  
– V 2.0 V  
O
out  
V
in  
I
1.5 mA over line and load changes  
Q
For example, a 1 A current source would require R to be a 5  
10 W resistor and the output voltage compliance would be the input  
voltage less 7.0 V.  
,
Theadditionofanoperationalamplifierallowsadjustmenttohigheror  
intermediate values while retaining regulation characteristics. The  
minimum voltage obtainable with this arrangement is 2.0 V greater  
than the regulator voltage.  
Figure 16. Current Boost Regulator  
Figure 17. Short Circuit Protection  
MJ2955  
or Equiv.  
MJ2955 or Equiv  
Input  
R
SC  
Input  
R
LM340  
Output  
2N6049  
or Equiv.  
R
LM340  
Output  
1.0µF  
0.1µF  
1.0µF  
The LM340, A series can be current boosted with a PNP transistor. The  
The circuit of Figure 17 can be modified to provide supply protection  
MJ2955 provides current to 5.0 A. Resistor R in conjuction with the V  
of the PNP determines when the pass transistor begins conducting; this  
circuit is not short circuit proof. Input–output differential voltage  
against short circuits by adding a short circuit sense resistor, R , and  
BE  
SC  
an additional PNP transistor. The current sensing PNP must be able to  
handle the short circuit current of the three–terminal regulator.  
Therefore, 4.0 A plastic power transistor is specified.  
minimum is increased by V  
of the pass transistor.  
BE  
16  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
OUTLINE DIMENSIONS  
T SUFFIX  
PLASTIC PACKAGE  
CASE 221A–06  
ISSUE Y  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
SEATING  
PLANE  
–T–  
C
S
B
F
T
4
1
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
A
K
Q
Z
2
3
U
H
L
R
J
V
T
U
V
G
D
Z
0.080  
2.04  
N
17  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
NOTES  
18  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
NOTES  
19  
MOTOROLA ANALOG IC DEVICE DATA  
LM340, A Series  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
re registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
LM340/D  

相关型号:

LM340AT-5.0/NOPB

LM340-N/LM78XX Series 3-Terminal Positive Regulators
TI

LM340AT-6.0

Positive Fixed Voltage Regulator
ETC

LM340AT-8.0

Positive Fixed Voltage Regulator
ETC

LM340AT012

IC,VOLT REGULATOR,FIXED,+12V,BIPOLAR,SIP,3PIN,PLASTIC
MOTOROLA

LM340AT015

Regulator, 1 Output, BIPolar,
MOTOROLA

LM340AT12

Regulator, 1 Output, BIPolar,
MOTOROLA

LM340AT5

Regulator, 1 Output, BIPolar,
MOTOROLA

LM340AT5.0

IC,VOLT REGULATOR,FIXED,+5V,BIPOLAR,SIP,3PIN,PLASTIC
MOTOROLA

LM340AT5.0P+

3-Terminal Positive Regulators
NSC

LM340AT6.0

IC,VOLT REGULATOR,FIXED,+6V,BIPOLAR,SIP,3PIN,PLASTIC
TI

LM340AT8.0

IC,VOLT REGULATOR,FIXED,+8V,BIPOLAR,SIP,3PIN,PLASTIC
TI

LM340DA

Fixed Positive Standard Regulator, MBFM2, TO-3, 2 PIN
NXP