LMV321SQ3T2G [ONSEMI]

Single, Dual, Quad Low-Voltage, Rail-to-Rail Operational Amplifiers; 单,双,四通道低电压轨至轨运算放大器
LMV321SQ3T2G
型号: LMV321SQ3T2G
厂家: ONSEMI    ONSEMI
描述:

Single, Dual, Quad Low-Voltage, Rail-to-Rail Operational Amplifiers
单,双,四通道低电压轨至轨运算放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMV321, LMV358, LMV324  
Single, Dual, Quad  
Low-Voltage, Rail-to-Rail  
Operational Amplifiers  
The LMV321, LMV358, and LMV324 are CMOS single, dual, and  
quad low voltage operational amplifiers with railtorail output  
swing. These amplifiers are a costeffective solution for applications  
where low power consumption and space saving packages are critical.  
Specification tables are provided for operation from power supply  
voltages at 2.7 V and 5 V. RailtoRail operation provides improved  
signaltonoisepreformance. Ultra low quiescent current makes this  
series of amplifiers ideal for portable, battery operated equipment. The  
common mode input range includes ground making the device useful  
for lowside currentshunt measurements. The ultra small packages  
allow for placement on the PCB in close proximity to the signal source  
thereby reducing noise pickup.  
http://onsemi.com  
5
1
1
SC70  
TSOP5  
CASE 419A  
CASE 483  
1
Micro8]  
CASE 846A  
Features  
8
8
Operation from 2.7 V to 5.0 V SingleSided Power Supply  
LMV321 Single Available in Ultra Small 5 Pin SC70 Package  
No Output Crossover Distortion  
Industrial temperature Range: 40°C to +85°C  
RailtoRail Output  
1
1
UDFN8  
CASE 517AJ  
SOIC8  
CASE 751  
Low Quiescent Current: LMV358 Dual 220 mA, Max per Channel  
No Output PhaseReversal from Overdriven Input  
These are PbFree Devices  
1
1
SOIC14  
CASE 751A  
TSSOP14  
CASE 948G  
Typical Applications  
Notebook Computers and PDA’s  
Portable BatteryOperated Instruments  
Active Filters  
ORDERING AND MARKING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 12 of this data sheet.  
120  
100  
80  
80  
70  
60  
50  
40  
30  
V
S
= 5 V  
60  
40  
20  
Over 40°C to +85°C  
Same Gain $1.8 dB (Typ)  
0
20  
1  
0
1
2
3
4
5
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT COMMON MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 1. Open Loop Frequency Response  
Figure 2. CMRR vs. Input Common Mode  
Voltage  
(RL = 2 kW, TA = 255C, VS = 5 V)  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
August, 2009 Rev. 8  
LMV321/D  
LMV321, LMV358, LMV324  
MARKING DIAGRAMS  
SC70  
TSOP5  
Micro8  
8
1
5
V358  
AYWG  
G
3ACAYWG  
AAC MG  
G
G
1
AAC  
M
= Specific Device Code  
= Date Code  
= PbFree Package  
3AC = Specific Device Code  
V358  
= Specific Device Code  
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
A
Y
W
G
G
(Note: Microdot may be in either location)  
= PbFree Package  
(Note: Microdot may be in either location)  
(Note: Microdot may be in either location)  
SOIC8  
UDFN8  
8
V358  
ALYWX  
AC M  
G
G
1
V358 = Specific Device Code  
AC = Specific Device Code  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
M
G
= Date Code  
= PbFree Package  
SOIC14  
TSSOP14  
14  
14  
LMV  
324  
ALYW  
LMV324  
AWLYWWG  
1
1
LMV324 = Specific Device Code  
LMV324 = Specific Device Code  
A
WL  
Y
WW  
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
PIN CONNECTIONS  
SC705/TSOP5  
UDFN8/Micro8/SOIC8  
SOIC14  
TSSOP14  
OUT A  
IN A−  
IN A+  
V+  
1
2
3
4
5
6
7
14 OUT D OUT A  
1
2
3
4
5
6
7
14 OUT D  
OUT A  
V+  
1
2
3
5
1
8
A
D
A
D
13 IN D−  
13 IN D−  
IN A−  
IN A+  
V+  
+
+  
+
+  
+ −  
V
+IN  
A
12  
11  
10  
9
12  
11  
10  
9
IN D+  
V−  
IN D+  
V−  
+  
IN A−  
OUT B  
2
3
7
6
+
V
IN A+  
IN B−  
4
IN C+  
IN C−  
OUT C  
IN C+  
IN C−  
OUT C  
IN B+  
IN B−  
OUT B  
IN B+  
IN B−  
OUT B  
B
IN  
OUTPUT  
+
+  
+
+
+
V−  
IN B+  
4
5
B
C
B
C
8
8
(Top View)  
(Top View)  
(Top View)  
(Top View)  
http://onsemi.com  
2
LMV321, LMV358, LMV324  
MAXIMUM RATINGS  
Symbol  
Rating  
Value  
5.5  
Unit  
V
V
S
Supply Voltage (Operating Range V = 2.7 V to 5.5 V)  
S
V
IDR  
V
ICR  
Input Differential Voltage  
$Supply Voltage  
0.5 to (V+) + 0.5  
10  
V
Input Common Mode Voltage Range  
V
Maximum Input Current  
mA  
t
Output Short Circuit (Note 1)  
Continuous  
150  
So  
T
Maximum Junction Temperature (Operating Range 40°C to 85°C)  
°C  
J
q
Thermal Resistance:  
°C/W  
JA  
SC70  
280  
238  
Micro8  
TSOP5  
333  
UDFN8 (1.2 mm x 1.8 mm x 0.5 mm)  
350  
SOIC8  
212  
SOIC14  
156  
TSSOP14  
190  
T
Storage Temperature  
65 to 150  
235  
°C  
°C  
V
stg  
Mounting Temperature (Infrared or Convection 20 sec)  
V
ESD  
ESD Tolerance  
LMV321  
Machine Model  
Human Body Model  
LMV358/324  
100  
1000  
Machine Model  
Human Body Mode  
100  
2000  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may  
affect device reliability.  
1. Continuous shortcircuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction  
temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V+  
or Vwill adversely affect reliability.  
http://onsemi.com  
3
 
LMV321, LMV358, LMV324  
+
2.7 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 2.7 V,  
A
R = 1 MW, V = 0 V, V = V+/2)  
L
O
Parameter  
Symbol  
Condition  
Min  
Typ  
1.7  
5
Max  
Unit  
mV  
mV/°C  
nA  
Input Offset Voltage  
V
IO  
T = 40°C to +85°C  
9
A
Input Offset Voltage Average Drift  
Input Bias Current  
ICV  
T = 40°C to +85°C  
OS  
A
I
B
T = 40°C to +85°C  
<1  
<1  
63  
60  
A
Input Offset Current  
I
IO  
T = 40°C to +85°C  
nA  
A
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
CMRR  
PSRR  
0 V v V  
v 1.7 V  
50  
50  
dB  
CM  
2.7 V v V+ v 5 V,  
= 1 V  
dB  
V
O
Input CommonMode Voltage Range  
V
V
For CMRR w 50 dB  
R = 10 kW to 1.35 V  
0 to 1.7  
0.2 to 1.9  
V
CM  
Output Swing  
V
CC  
100  
V 10  
CC  
mV  
mV  
mA  
OH  
L
V
R = 10 kW to 1.35 V (Note 2)  
60  
180  
OL  
CC  
L
Supply Current  
LMV321  
I
80  
140  
260  
185  
340  
680  
LMV358 (Both Amplifiers)  
LMV324 (4 Amplifiers)  
+
2.7 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 2.7 V,  
A
R = 1 MW, V = 0 V, V = V+/2)  
L
O
Parameter  
Symbol  
Condition  
Min  
Typ  
1
Max  
Unit  
MHz  
°
Gain Bandwidth Product  
Phase Margin  
GBWP  
C = 200 pF  
L
Q
m
G
m
e
n
60  
10  
50  
Gain Margin  
dB  
InputReferred Voltage Noise  
f = 50 kHz  
nV/Hz  
2. Guaranteed by design and/or characterization.  
http://onsemi.com  
4
 
LMV321, LMV358, LMV324  
+
5.0 V DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 5.0 V,  
A
R = 1 MW, V = 0 V, V = V+/2)  
L
O
Parameter  
Symbol  
Condition  
Min  
Typ  
1.7  
5
Max  
Unit  
mV  
Input Offset Voltage  
V
IO  
T = 40°C to +85°C  
9
A
Input Offset Voltage Average Drift  
Input Bias Current (Note 3)  
T V  
T = 40°C to +85°C  
mV/°C  
nA  
C
IO  
A
I
B
< 1  
T = 40°C to +85°C  
A
Input Offset Current (Note 3)  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
I
T = 40°C to +85°C  
< 1  
65  
60  
nA  
dB  
dB  
IO  
A
CMRR  
PSRR  
0 V v V  
v 4 V  
50  
50  
CM  
2.7 V v V+ v 5 V,  
= 1 V, V = 1 V  
V
O
CM  
Input CommonMode Voltage Range  
V
For CMRR w 50 dB  
0 to 4  
15  
0.2 to 4.2  
V
CM  
Large Signal Voltage Gain (Note 3)  
A
100  
V/mV  
R = 2 kW  
L
V
T = 40°C to +85°C  
A
10  
Output Swing  
V
OH  
V
CC  
V
CC  
300  
400  
V 40  
CC  
V
R = 2 kW to 2.5 V  
A
L
T = 40°C to +85°C  
V
R = 2 kW to 2.5 V (Note 3)  
120  
300  
400  
mV  
V
OL  
L
T = 40°C to +85°C  
A
V
OH  
R = 10 kW to 2.5 V (Note 3)  
V
CC  
V
CC  
100  
200  
L
T = 40°C to +85°C  
A
V
I
R = 10 kW to 2.5 V  
A
65  
180  
280  
mV  
mA  
mA  
OL  
O
L
T = 40°C to +85°C  
Output Short Circuit Current  
Supply Current  
Sourcing = V = 0 V (Note 3)  
10  
10  
60  
160  
O
Sinking = V = 5 V (Note 3)  
O
I
LMV321  
130  
210  
410  
250  
350  
CC  
T = 40°C to +85°C  
A
LMV358 Both Amplifiers  
440  
615  
T = 40°C to +85°C  
A
LMV324 All Four Amplifiers  
830  
1160  
T = 40°C to +85°C  
A
+
5.0 V AC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, all limits are guaranteed for T = 25°C, V = 5.0 V,  
A
R = 1 MW, V = 0 V, V = V+/2)  
L
O
Parameter  
Symbol  
Condition  
Min  
Typ  
1
Max  
Unit  
V/ms  
MHz  
°
Slew Rate  
S
R
Gain Bandwidth Product  
Phase Margin  
GBWP  
C = 200 pF  
L
1
Q
m
G
m
e
n
60  
10  
50  
Gain Margin  
dB  
InputReferred Voltage Noise  
f = 50 kHz  
nV/Hz  
3. Guaranteed by design and/or characterization.  
http://onsemi.com  
5
 
LMV321, LMV358, LMV324  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
120  
100  
80  
170  
150  
130  
110  
90  
60  
40  
70  
20  
50  
Over 40°C to +85°C  
Same Gain $1.8 dB (Typ)  
0
30  
20  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 4. Open Loop Phase Margin  
Figure 3. Open Loop Frequency Response  
(RL = 2 kW, TA = 255C, VS = 5 V)  
(RL = 2 kW, TA = 255C, VS = 5 V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
V
S
= 2.7 V  
f = 10 kHz  
10  
100  
1k  
10k  
100k  
0.5  
0
0.5  
1
1.5  
2
2.5  
3
FREQUENCY (Hz)  
INPUT COMMON MODE VOLTAGE (V)  
Figure 5. CMRR vs. Frequency  
Figure 6. CMRR vs. Input Common Mode  
Voltage  
(RL = 5 kW, VS = 5 V)  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5 V  
S
f = 10 kHz  
1k  
10k  
100k  
1M  
10M  
1  
0
1
2
3
4
5
INPUT COMMON MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 8. PSRR vs. Frequency  
(RL = 5 kW, VS = 2.7 V, +PSRR)  
Figure 7. CMRR vs. Input Common Mode  
Voltage  
http://onsemi.com  
6
LMV321, LMV358, LMV324  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 9. PSRR vs. Frequency  
(RL = 5 kW, VS = 2.7 V, PSRR)  
Figure 10. PSRR vs. Frequency  
(RL = 5 kW, VS = 5 V, +PSRR)  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
V
S
= 2.7 V  
0.5  
0
0
0.5  
1
1.5  
(V)  
2
2.5  
3
1k  
10k  
100k  
1M  
10M  
V
CM  
FREQUENCY (Hz)  
Figure 11. PSRR vs. Frequency  
Figure 12. VOS vs CMR  
(RL = 5 kW, VS = 5 V, PSRR)  
5
4.5  
4
200  
180  
160  
140  
120  
100  
80  
3.5  
3
2.5  
2
1.5  
1
60  
40  
V
S
= 5.0 V  
0.5  
0
20  
0
0
0
0.5  
1
1.5  
2
2.5  
(V)  
3
3.5  
4
4.5  
5
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
V
SUPPLY VOLTAGE (V)  
CM  
Figure 13. VOS vs CMR  
Figure 14. Supply Current vs. Supply Voltage  
http://onsemi.com  
7
LMV321, LMV358, LMV324  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
1
0.1  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0.08  
0.09  
0.1  
R = 10 kW  
L
V
out  
= 1 V  
Positive Swing  
PP  
Av = +1  
0.01  
0.001  
10  
100  
1k  
10k  
100k  
2.5  
3
3.5  
4
4.5  
5
(Hz)  
SUPPLY VOLTAGE (V)  
Figure 15. THD+N vs Frequency  
Figure 16. Output Voltage Swing vs Supply  
Voltage (RL = 10k)  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
Negative Swing  
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
SUPPLY VOLTAGE (V)  
V
OUT  
REFERENCED TO V(V)  
Figure 17. Output Voltage Swing vs Supply  
Voltage (RL = 10k)  
Figure 18. Sink Current vs. Output Voltage  
VS = 2.7 V  
0
20  
120  
100  
80  
60  
40  
20  
0
40  
60  
80  
100  
120  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
OUT  
REFERENCED TO V(V)  
V
OUT  
REFERENCED TO V+ (V)  
Figure 19. Sink Current vs. Output Voltage  
VS = 5.0 V  
Figure 20. Source Current vs. Output Voltage  
VS = 2.7 V  
http://onsemi.com  
8
LMV321, LMV358, LMV324  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
= 2 kW  
L
AV = 1  
50 mV/div  
2 ms/div  
0
1
2
3
4
5
V
OUT  
REFERENCED TO V+ (V)  
Figure 21. Source Current vs. Output Voltage  
VS = 5.0 V  
Figure 22. Settling Time vs. Capacitive Load  
R
= 1 MW  
50 mV/div  
L
AV = 1  
2 ms/div  
50 mV/div  
2 ms/div  
NonInverting (G = +1)  
Input  
Output  
Figure 23. Settling Time vs. Capacitive Load  
Figure 24. Step Response Small Signal  
50 mV/div  
2 ms/div  
1 V/div  
2 ms/div  
NonInverting (G = +1)  
Inverting (G = 1)  
Input  
Input  
Output  
Output  
Figure 26. Step Response Large Signal  
Figure 25. Step Response Small Signal  
http://onsemi.com  
9
LMV321, LMV358, LMV324  
TYPICAL CHARACTERISTICS  
(T = 25°C and V = 5 V unless otherwise specified)  
A
S
1 V/div  
2 ms/div  
Inverting (G = 1)  
Input  
Output  
Figure 27. Step Response Large Signal  
http://onsemi.com  
10  
LMV321, LMV358, LMV324  
APPLICATIONS  
50 k  
R1  
5.0 k  
V
CC  
10 k  
V
CC  
V
CC  
R2  
V
ref  
V
O
LMV321  
V
O
LMV321  
+
1
f
+
MC1403  
+
O
1
2
2pRC  
V
+
V
2.5 V  
ref  
CC  
For: f = 1.0 kHz  
o
R = 16 kW  
C = 0.01 mF  
R
R1  
R2  
C
R
V
+ 2.5 V(1 )  
)
C
O
Figure 28. Voltage Reference  
Figure 29. Wien Bridge Oscillator  
V
CC  
R3  
C
C
R1  
C
V
in  
O
R2  
V
LMV321  
O
Hysteresis  
+
CO = 10 C  
R2  
V
OH  
R1  
V
ref  
V
O
+
V
ref  
LMV321  
Given: f = center frequency  
o
V
O
V
in  
V
OL  
A(f ) = gain at center frequency  
o
V
inL  
V
inH  
Choose value f , C  
V
o
ref  
Q
R1  
Then : R3 +  
V L +  
(V * V  
) V  
) V  
in  
OL  
ref)  
ref)  
ref  
ref  
pf  
C
R1 ) R2  
R1  
O
R3  
2 A(f )  
V H +  
(V  
(V  
* V  
* V  
R1 +  
R2 +  
in  
OH  
R1 ) R2  
O
R1  
R1 R3  
H +  
)
OH  
OL  
R1 ) R2  
2
4Q R1 * R3  
Figure 30. Comparator with Hysteresis  
For less than 10% error from operational amplifier,  
((Q f )/BW) < 0.1 where f and BW are expressed in Hz.  
O
O
o
If source impedance varies, filter may be preceded with  
voltage follower buffer to stabilize filter parameters.  
Figure 31. Multiple Feedback Bandpass Filter  
http://onsemi.com  
11  
LMV321, LMV358, LMV324  
ORDERING INFORMATION  
Number  
of  
Channels  
Order Number  
Specific Device Marking  
Package Type  
Shipping  
LMV321SQ3T2G  
Single  
AAC  
SC70  
3000 / Tape & Reel  
3000 / Tape & Reel  
4000 / Tape & Reel  
3000 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
(PbFree)  
LMV321SN3T1G*  
LMV358DMR2G  
LMV358MUTAG  
LMV358DR2G  
Single  
Dual  
3AC  
TSOP5  
(PbFree)  
V358  
AC  
Micro8  
(PbFree)  
Dual  
UDFN8  
(PbFree)  
Dual  
V358  
LMV324  
SOIC8  
(PbFree)  
LMV324DR2G  
Quad  
Quad  
SOIC14  
(PbFree)  
LMV324DTBR2G  
LMV  
324  
TSSOP14  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*Contact factory.  
http://onsemi.com  
12  
LMV321, LMV358, LMV324  
PACKAGE DIMENSIONS  
SC88A, SOT353, SC70  
CASE 419A02  
ISSUE J  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
G
2. CONTROLLING DIMENSION: INCH.  
3. 419A01 OBSOLETE. NEW STANDARD  
419A02.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
http://onsemi.com  
13  
LMV321, LMV358, LMV324  
PACKAGE DIMENSIONS  
TSOP5  
CASE 48302  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5. OPTIONAL CONSTRUCTION: AN  
ADDITIONAL TRIMMED LEAD IS ALLOWED  
IN THIS LOCATION. TRIMMED LEAD NOT TO  
EXTEND MORE THAN 0.2 FROM BODY.  
NOTE 5  
5X  
D
0.20 C A B  
2X  
2X  
0.10  
T
T
M
5
4
3
0.20  
B
S
1
2
K
L
DETAIL Z  
G
A
MILLIMETERS  
DIM  
A
B
C
D
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
J
0.90  
1.10  
0.50  
C
0.25  
SEATING  
PLANE  
0.05  
G
H
J
K
L
M
S
0.95 BSC  
H
0.01  
0.10  
0.20  
1.25  
0
0.10  
0.26  
0.60  
1.55  
10  
3.00  
T
_
_
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
14  
LMV321, LMV358, LMV324  
PACKAGE DIMENSIONS  
Micro8  
CASE 846A02  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
D
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
MIN  
−−  
0.05  
0.25  
0.13  
2.90  
2.90  
NOM  
−−  
MAX  
MIN  
−−  
0.002  
0.010  
0.005  
0.114  
0.114  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
e
0.08  
b 8 PL  
0.33  
M
S
S
0.08 (0.003)  
T B  
A
0.18  
3.00  
E
3.00  
0.118  
e
L
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
SEATING  
PLANE  
H
T−  
E
A
0.038 (0.0015)  
L
A1  
c
SOLDERING FOOTPRINT*  
1.04  
0.38  
8X  
8X 0.041  
0.015  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.65  
6X0.0256  
SCALE 8:1  
mm  
inches  
ǒ
Ǔ
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
15  
LMV321, LMV358, LMV324  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
16  
LMV321, LMV358, LMV324  
PACKAGE DIMENSIONS  
UDFN8 1.8x1.2, 0.4P  
CASE 517AJ01  
ISSUE O  
NOTES:  
A B  
E
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
0.10  
C
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30 mm FROM TERMINAL TIP.  
4. MOLD FLASH ALLOWED ON TERMINALS  
ALONG EDGE OF PACKAGE. FLASH MAY  
NOT EXCEED 0.03 ONTO BOTTOM  
SURFACE OF TERMINALS.  
L1  
PIN ONE  
REFERENCE  
DETAIL A  
NOTE 5  
0.10  
C
TOP VIEW  
(A3)  
5. DETAIL A SHOWS OPTIONAL  
CONSTRUCTION FOR TERMINALS.  
MILLIMETERS  
0.05  
C
C
DIM MIN  
0.45  
A1 0.00  
MAX  
0.55  
0.05  
A
A
0.05  
A3  
b
b2  
D
E
e
0.127 REF  
0.15  
0.25  
A1  
SEATING  
C
0.30 REF  
PLANE  
SIDE VIEW  
1.80 BSC  
1.20 BSC  
0.40 BSC  
e/2  
DETAIL A  
8X L  
L
0.45  
0.55  
0.03  
e
L1 0.00  
L2  
(b2)  
0.40 REF  
4
5
1
MOUNTING FOOTPRINT*  
SOLDERMASK DEFINED  
(L2)  
8
8X  
0.66  
8X b  
7X  
0.22  
M
M
C A B  
0.10  
0.05  
BOTTOM VIEW  
NOTE 3  
C
1.50  
1
0.32  
0.40 PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
17  
LMV321, LMV358, LMV324  
PACKAGE DIMENSIONS  
SOIC14  
CASE 751A03  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
14  
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
B−  
P 7 PL  
M
M
B
0.25 (0.010)  
7
1
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
F
R X 45  
_
C
A
B
C
D
F
G
J
K
M
P
R
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337 0.344  
4.00 0.150 0.157  
1.75 0.054 0.068  
0.49 0.014 0.019  
1.25 0.016 0.049  
0.050 BSC  
0.25 0.008 0.009  
0.25 0.004 0.009  
T−  
SEATING  
PLANE  
J
M
K
1.27 BSC  
D 14 PL  
0.19  
0.10  
0
M
S
S
0.25 (0.010)  
T B  
A
7
0
7
_
_
_
_
5.80  
0.25  
6.20 0.228 0.244  
0.50 0.010 0.019  
SOLDERING FOOTPRINT  
7X  
7.04  
14X  
1.52  
1
14X  
0.58  
1.27  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
18  
LMV321, LMV358, LMV324  
PACKAGE DIMENSIONS  
TSSOP14  
CASE 948G01  
ISSUE B  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
L
N
U−  
PIN 1  
IDENT.  
F
7
1
DETAIL E  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
S
K
0.15 (0.006) T U  
A
V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
K1  
A
B
C
D
F
G
H
J
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION NN  
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
J1  
K
W−  
C
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
0
8
0
8
_
_
_
_
SEATING  
PLANE  
T−  
H
G
DETAIL E  
D
SOLDERING FOOTPRINT*  
7.06  
1
0.65  
PITCH  
01.34X6  
14X  
1.26  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
19  
LMV321, LMV358, LMV324  
Micro8 is a trademark of International Rectifier.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
LMV321/D  

相关型号:

LMV321TP

40μA, 1.27MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV321TP-CR

40μA, 1.27MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV321TP-TR

40μA, 1.27MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV321TSG-13

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL
DIODES

LMV321TSG-7

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL
DIODES

LMV321WG-13

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL
DIODES

LMV321WG-7

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
DIODES

LMV321Y-MR

1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter
HMSEMI

LMV321Y-UR

1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter
HMSEMI

LMV321_07

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV321_08

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV321_10

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI