MC100EL1648_06 [ONSEMI]

5 VECL Voltage Controlled Oscillator Amplifier; 5 V ? ECL压控振荡器放大器
MC100EL1648_06
型号: MC100EL1648_06
厂家: ONSEMI    ONSEMI
描述:

5 VECL Voltage Controlled Oscillator Amplifier
5 V ? ECL压控振荡器放大器

振荡器 压控振荡器 放大器
文件: 总16页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC100EL1648  
5 VꢀECL Voltage Controlled  
Oscillator Amplifier  
Description  
The MC100EL1648 is a voltage controlled oscillator amplifier that  
requires an external parallel tank circuit consisting of the inductor (L)  
and capacitor (C). A varactor diode may be incorporated into the tank  
circuit to provide a voltage variable input for the oscillator (VCO).  
This device may also be used in many other applications requiring a  
fixed frequency clock.  
http://onsemi.com  
MARKING  
DIAGRAMS*  
The MC100EL1648 is ideal in applications requiring a local  
oscillator, systems that include electronic test equipment, and digital  
highspeed telecommunications.  
The MC100EL1648 is based on the VCO circuit topology of the  
MC1648. The MC100EL1648 uses advanced bipolar process  
technology which results in a design which can operate at an extended  
frequency range.  
8
SOIC8  
D SUFFIX  
CASE 751  
K1648  
ALYW  
G
8
1
1
8
The ECL output circuitry of the MC100EL1648 is not a traditional  
open emitter output structure and instead has an onchip termination  
TSSOP8  
DT SUFFIX  
CASE 948R  
emitter resistor, R , with a nominal value of 510 W. This facilitates  
1648  
E
8
direct accoupling of the output signal into a transmission line.  
Because of this output configuration, an external pulldown resistor is  
not required to provide the output with a dc current path. This output is  
intended to drive one ECL load (3.0 pF). If the user needs to fanout the  
signal, an ECL buffer such as the EL16 (EL11, EL14) type Line  
Receiver/Driver should be used.  
ALYWG  
1
G
1
14  
SOEIAJ14  
M SUFFIX  
CASE 965  
KEL1648  
ALYWG  
Features  
14  
Typical Operating Frequency Up to 1100 MHz  
LowPower 19 mA at 5.0 Vdc Power Supply  
PECL Mode Operating Range: V = 4.2 V to 5.5 V with V = 0 V  
1
1
CC  
EE  
NECL Mode Operating Range: V = 0 V with V = 4.2 V  
CC  
EE  
DFN8  
MN SUFFIX  
CASE 506AA  
to 5.5 V  
Input Capacitance = 6.0 pF (TYP)  
PbFree Packages are Available  
1
4
NOTE: The MC100EL1648 is NOT useable as a crystal oscillator.  
A
L,  
Y
= Assembly Location  
= Wafer Lot  
= Year  
V
CC  
V
CC  
W
M
= Work Week  
= Date Code  
G or G = PbFree Package  
BIAS POINT  
TANK  
EXTERNAL  
TANK  
CIRCUIT  
(Note: Microdot may be in either location)  
*For additional marking information, refer to  
Application Note AND8002/D.  
OUTPUT  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 12 of this data sheet.  
V
EE  
V
EE  
AGC  
Figure 1. Logic Diagram  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
December, 2006 Rev. 6  
MC100EL1648/D  
MC100EL1648  
BIAS  
8
V
V
AGC  
5
V
NC TANK NC BIAS NC  
13 12 11 10 9  
V
EE  
EE  
EE  
CC  
7
6
14  
8
1
2
3
4
1
2
3
4
5
6
7
TANK  
V
CC  
V
CC  
OUT  
V
CC  
NC OUT NC AGC NC  
V
EE  
8 Lead  
14 Lead  
Warning: All V and V pins must be externally connected  
CC  
EE  
to Power Supply to guarantee proper operation.  
Figure 2. Pinout Assignments  
Table 1. PIN DESCRIPTION  
Pin No.  
8 Lead  
14 Lead  
Symbol  
Description  
1
2, 3  
4
12  
TANK  
OSC Input Voltage  
Positive Supply  
1, 14  
V
CC  
3
OUT  
AGC  
ECL Output  
5
5
Automatic Gain Control Input  
Negative Output  
6, 7  
8
7, 8  
10  
V
EE  
BIAS  
NC  
OSC Input Reference Voltage  
No Connect  
2, 4, 7, 9, 11, 13  
EP  
Exposed pad must be connected to a sufficient thermal conduit. Electrically  
connect to the most negative supply or leave floating open.  
Table 2. ATTRIBUTES  
Characteristic  
Value  
N/A  
Internal Input Pulldown Resistor  
Internal Input Pullup Resistor  
ESD Protection  
N/A  
Human Body Model  
Machine Model  
Charged Device Model  
> 1 kV  
> 100 V  
> 1 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
SOIC8  
Pb Pkg  
PbFree Pkg  
Level 1  
Level 1  
Level 3  
Level 1  
Level 1  
Level 3  
Level 3  
Level 1  
TSSOP8  
SOEIAJ14  
DFN8  
Flammability Rating  
Transistor Count  
Oxygen Index: 23 to 34  
UL 94 V0 @ 0.125 in  
11  
Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test  
1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.  
http://onsemi.com  
2
 
MC100EL1648  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
Condition 2  
Rating  
7 to 0  
Unit  
V
V
CC  
V
EE  
V
I
Power Supply PECL Mode  
Power Supply NECL Mode  
V
V
= 0 V  
= 0 V  
EE  
7 to 0  
V
CC  
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V V  
6 to 0  
6 to 0  
V
V
EE  
I
CC  
V V  
CC  
I
EE  
I
Output Current  
Continuous  
Surge  
50  
100  
mA  
mA  
out  
T
Operating Temperature Range  
Storage Temperature Range  
40 to +85  
°C  
°C  
A
T
65 to +150  
stg  
JA  
q
Thermal Resistance (JunctiontoAmbient) 0 lfpm  
500 lfpm  
SOIC8  
SOIC8  
190  
130  
°C/W  
°C/W  
q
q
Thermal Resistance (JunctiontoCase)  
Standard Board  
Thermal Resistance (JunctiontoAmbient) 0 lfpm  
500 lfpm  
Standard Board  
Thermal Resistance (JunctiontoAmbient) 0 lfpm  
500 lfpm  
Standard Board  
Thermal Resistance (JunctiontoAmbient) 0 lfpm  
SOIC8  
41 to 44  
°C/W  
JC  
JA  
TSSOP8  
TSSOP8  
185  
140  
°C/W  
°C/W  
q
q
Thermal Resistance (JunctiontoCase)  
TSSOP8  
41 to 44  
°C/W  
JC  
JA  
SOIC14  
SOIC14  
150  
110  
°C/W  
°C/W  
q
q
Thermal Resistance (JunctiontoCase)  
SOIC14  
41 to 44  
°C/W  
JC  
JA  
DFN8  
DFN8  
129  
84  
°C/W  
°C/W  
500 lfpm  
T
sol  
Wave Solder  
Pb <2 to 3 sec @ 248°C  
PbFree <2 to 3 sec @ 260°C  
265  
265  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
3
MC100EL1648  
Table 4. PECL DC CHARACTERISTICS V = 5.0 V; V = 0.0 V +0.8 / 0.5 V (Note 2)  
CC  
EE  
40°C  
25°C  
Typ  
85°C  
Typ  
Min  
13  
Typ  
19  
Max  
25  
Min  
13  
Max  
25  
Min  
13  
Max  
25  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
V
I
19  
19  
EE  
V
V
Output HIGH Voltage (Note 3)  
Output LOW Voltage (Note 3)  
Automatic Gain Control Input  
Bias Voltage (Note 4)  
3950  
3040  
1690  
1650  
1.5  
4170  
3410  
4610  
3600  
1980  
1800  
3950  
3040  
1690  
1650  
1.35  
4170  
3410  
4610  
3600  
1980  
1800  
3950  
3040  
1690  
1650  
1.2  
4170  
3410  
4610  
3600  
1980  
1800  
OH  
OL  
AGC  
V
V
V
BIAS  
IL  
2.0  
1.85  
1.7  
V
IH  
I
L
Input Current  
5.0  
5.0  
5.0  
mA  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
2. Output parameters vary 1:1 with V  
.
CC  
3. 1.0 MW impedance.  
4. This measurement guarantees the dc potential at the bias point for purposes of incorporating a varactor tuning diode at this point.  
Table 5. NECL DC CHARACTERISTICS V = 0.0 V; V = 5.0 V +0.8 / 0.5 V (Note 5)  
CC  
EE  
40°C  
25°C  
Typ  
19  
85°C  
Typ  
19  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
25  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
V
I
13  
19  
25  
13  
25  
13  
EE  
V
V
Output HIGH Voltage (Note 6)  
Output LOW Voltage (Note 6)  
Automatic Gain Control Input  
Bias Voltage (Note 7)  
1050 830  
399 1050 830  
399 1050 830  
399  
OH  
1960 1590 1400 1960 1590 1400 1960 1590 1400  
OL  
AGC  
3310  
3350  
3.5  
3020 3310  
3200 3350  
3.65  
3020 3310  
3200 3350  
3.8  
3020  
3200  
V
V
V
BIAS  
IL  
3.0  
3.15  
3.3  
V
IH  
I
L
Input Current  
5.0  
5.0  
5.0  
mA  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
5. Output parameters vary 1:1 with V  
.
CC  
6. 1.0 MW impedance.  
7. This measurement guarantees the dc potential at the bias point for purposes of incorporating a varactor tuning diode at this point.  
http://onsemi.com  
4
 
MC100EL1648  
GENERIC TEST CIRCUITS: Bypass to Supply Opposite GND  
V
CC  
0.1 mF  
0.1 mF  
2 (14)  
3 (1)  
8 (10)  
V
IN  
F
OUT  
4 (3)  
**  
L
C
1 KW  
L = Micro Metal torroid #T2022, 8 turns #30  
Enameled Copper wire (@ 40 nH)  
C = MMBV609  
*
1 (12)  
Tank #1  
6 (7) 7 (8)  
5 (5)  
V
EE  
*
Use high impedance probe (>1.0 MW must be  
used).  
** The 1200 W resistor and the scope termination  
impedance constitute a 25:1 attenuator probe.  
Coax shall be CT07050 or equivalent.  
100 mF 0.01 mF  
0.1 mF 0.1 mF  
8 pin (14 pin) Lead Package  
Tank Circuit Option #1, Varactor Diode  
V
CC  
0.1 mF  
3 (1)  
0.1 mF  
2 (14)  
8 (10)  
L = Micro Metal torroid #T2022, 8 turns #30  
Enameled Copper wire (@ 40 nH)  
C = 3.035pF Variable Capacitance (@ 10 pF)  
4 (3)  
F
OUT  
0.1mF  
L
C
Note 1 Capacitor for tank may be variable type.  
(See Tank Circuit #3.)  
Note 2 Use high impedance probe (> 1 MW ).  
1 (12)  
Test Point  
Tank #2  
6 (7) 7 (8)  
5 (5)  
8 pin (14 pin) Lead Package  
V
EE  
100 mF 0.01 mF  
0.1 mF 0.1 mF  
Tank Circuit Option #2, Fixed LC  
Figure 3. Typical Test Circuit with Alternate Tank Circuits  
50%  
V
P−P  
t
a
PRF = 1.0MHz  
Duty Cycle (Vdc) −  
t
t
a
b
t
b
Figure 4. Output Waveform  
http://onsemi.com  
5
 
MC100EL1648  
OPERATION THEORY  
Figure 5 illustrates the simplified circuit schematic for the  
Q2 and Q3, in conjunction with output transistor Q1,  
provide a highly buffered output that produces a square  
wave. The typical output waveform can be seen in Figure 4.  
The bias drive for the oscillator and output buffer is provided  
by Q9 and Q11 transistors. In order to minimize current, the  
output circuit is realized as an emitterfollower buffer with  
MC100EL1648. The oscillator incorporates positive feedback  
by coupling the base of transistor Q6 to the collector of Q7. An  
automatic gain control (AGC) is incorporated to limit the  
current through the emittercoupled pair of transistors (Q7 and  
Q6) and allow optimum frequency response of the oscillator.  
In order to maintain the high quality factor (Q) on the oscillator,  
and provide high spectral purity at the output, transistor Q4 is  
used to translate the oscillator signal to the output differential  
pair Q2 and Q3. Figure 16 indicates the high spectral purity  
of the oscillator output (pin 4 on 8pin SOIC). Transistors  
an on chip pulldown resistor R .  
E
V
CC  
2 (14)  
V
CC  
3 (1)  
800 W  
1.36 KW  
3.1 KW  
660 W  
167 W  
Q9  
Q1  
Q3  
Q2  
1.6 KW  
OUTPUT  
4 (3)  
Q4  
Q11  
Q10  
Q7 Q6  
D1  
330 W  
Q8  
Q5  
D2  
400 W  
16 KW  
82 W  
400 W  
660 W  
510 W  
V
7 (8)  
BIAS  
8 (10)  
TANK  
1 (12)  
V
6 (7)  
AGC  
5 (5)  
EE  
EE  
8 pin (14 pin) Lead Package  
Figure 5. Circuit Schematic  
http://onsemi.com  
6
 
MC100EL1648  
30  
25  
20  
15  
Measured Frequency (MHz)  
Calculated Frequency (MHz)  
L = Micro Metal torroid #T2022, 8 turns #30  
Enameled Copper wire (@ 40 nH)  
C = 3.035 pF Variable Capacitance (@ 10 pF)  
*
The 1200 W resistor and the scope termination  
10  
5
impedance constitute a 25:1 attenuator probe.  
Coax shall be CT07050 or equivalent.  
8 pin (14 pin) Lead Package  
0
0
300  
500  
1000  
2000  
10000  
0.1mF  
10mF  
CAPACITANCE (pF)  
2 (14)  
3(1)  
8 (10)  
1200*  
L
0.1mF  
C
4 (3)  
SIGNAL  
UNDER  
TEST  
1 (12)  
Tank #3  
6 (7) 7 (8)  
5 (5)  
V
EE  
100 mF 0.01 mF  
0.1 mF 0.1 mF  
Figure 6. Low Frequency Plot  
100  
80  
60  
L = Micro Metal torroid #T2022, 8 turns #30  
Enameled Copper wire (@ 40 nH)  
C = 3.035 pF Variable Capacitance (@ 10 pF)  
40  
20  
*
The 1200 W resistor and the scope termination  
impedance constitute a 25:1 attenuator probe.  
Coax shall be CT07050 or equivalent.  
Measured Frequency (MHz)  
Calculated Frequency (MHz)  
8 pin (14 pin) Lead Package  
0
0
0.2  
0.3  
300  
0.1mF  
10mF  
CAPACITANCE (pF)  
2 (14)  
3(1)  
8 (10)  
1200*  
L
0.1mF  
C
4 (3)  
SIGNAL  
UNDER  
TEST  
1 (12)  
Tank #3  
6 (7) 7 (8)  
5 (5)  
V
EE  
100 mF 0.01 mF  
0.1 mF 0.1 mF  
Figure 7. High Frequency Plot  
http://onsemi.com  
7
 
MC100EL1648  
FIXED FREQUENCY MODE  
The MC100EL1648 external tank circuit components are  
used to determine the desired frequency of operation as  
shown in Figure 8, tank option #2. The tank circuit  
Only high quality surfacemount RF chip capacitors  
should be used in the tank circuit at high frequencies. These  
capacitors should have very low dielectric loss (highQ). At  
a minimum, the capacitors selected should be operating at  
100 MHz below their series resonance point. As the desired  
frequency of operation increases, the values of the tank  
capacitor will decrease since the series resonance point is a  
function of the capacitance value. Typically, the inductor is  
realized as a surfacemount chip or a wound coil. In  
addition, the lead inductance and board inductance and  
capacitance also have an impact on the final operating point.  
The following equation will help to choose the appropriate  
values for your tank circuit design.  
components have direct impact on the tuning sensitivity, I  
,
EE  
and phase noise performance. Fixed frequency of the tank  
circuit is usually realized by an inductor and capacitor (LC  
network) that contains a high Quality factor (Q). The plotted  
curve indicates various fixed frequencies obtained with a  
single inductor and variable capacitor. The Q of the  
components in the tank circuit has a direct impact on the  
resulting phase noise of the oscillator. In general, when the  
Q is high the oscillator will result in lower phase noise.  
570  
1
f
0 +  
Ǹ
2p  
L * C  
T T  
Measured Frequency (MHz)  
Calculated Frequency (MHz)  
470  
370  
270  
170  
Where  
L = Total Inductance  
T
C = Total Capacitance  
T
Figure 9 and Figure 10 represent the ideal curve of  
inductance/capacitance versus frequency with one known  
tank component. This helps the designer of the tank circuit  
to choose desired value of inductor/capacitor component for  
the wanted frequency. The lead inductance and board  
inductance and capacitance will also have an impact on the  
tank component values (inductor and capacitor).  
50  
70  
0
30  
0.3  
300  
500  
1000  
2000  
10000  
45  
CAPACITANCE (pF)  
40  
35  
30  
V
CC  
0.1 mF  
0.1 mF  
2 (14)  
4 (3)  
Inductance vs. Frequency with 5 pF Cap  
25  
3 (1)  
20  
15  
10  
8 (10)  
0.1 mF  
L
C
F
OUT  
5
0
1 (12)  
Test  
Point  
Tank #2  
V
400  
700  
1000  
1300  
160  
6 (7) 7 (8)  
5 (5)  
FREQUENCY (MHz)  
EE  
Figure 9. Capacitor Value Known (5 pF)  
50  
45  
100 mF 0.01 mF  
0.1 mF 0.1 mF  
40  
35  
30  
25  
20  
15  
10  
L = Micro Metal torroid #T2022, 8 turns #30  
Enameled Copper wire (@ 40 nH)  
C = 3.035 pF Variable Capacitance (@ 10 pF)  
Note 1 Capacitor for tank may be variable type.  
(See Tank Circuit #3.)  
Note 2 Use high impedance probe (> 1 MW ).  
Capacitance vs. Frequency with 4 nH Inductance  
8 pin (14 pin) lead package  
Q
100  
L
5
0
Figure 8. Fixed Frequency LC Tank  
400  
700  
1000  
1300  
160  
FREQUENCY (Hz)  
Figure 10. Inductor Value Known (4 nH)  
http://onsemi.com  
8
 
MC100EL1648  
VOLTAGE CONTROLLED MODE  
The tank circuit configuration presented in Figure 11,  
When operating the oscillator in the voltage controlled  
mode with Tank Circuit #1 (Figure 3), it should be noted that  
the cathode of the varactor diode (D), pin 8 (for 8 lead  
package) or pin 10 (for 14 lead package) should be biased at  
Voltage Controlled Varactor Mode, allows the VCO to be  
tuned across the full operating voltage of the power supply.  
Deriving from Figure 6, the tank capacitor, C, is replaced  
with a varactor diode whose capacitance changes with the  
voltage applied, thus changing the resonant frequency at  
which the VCO tank operates as shown in Figure 3, tank  
option #1. The capacitive component in Equation 1 also  
needs to include the input capacitance of the device and  
other circuit and parasitic elements.  
least 1.4 V above V  
.
EE  
Typical transfer characteristics employing the  
capacitance of the varactor diode (plus the input capacitance  
of the device, about 6.0 pF typical) in the voltage controlled  
mode is shown in Plot 1, Dual Varactor MMBV609 V vs.  
in  
Frequency. Figure 6, Figure 7, and Figure 8 show the  
accuracy of the measured frequency with the different  
variable capacitance values. The 1.0 kW resistor in Figure 11  
is used to protect the varactor diode during testing. It is not  
necessary as long as the dc input voltage does not cause the  
diode to become forward biased. The tuning range of the  
oscillator in the voltage controlled mode may be calculated  
as follows:  
190  
170  
150  
130  
110  
90  
Ǹ
Ǹ
C (max) ) C  
f
f
D
S
max  
min  
+
C (min) ) C  
D
S
70  
Where  
Where  
50  
1
0
2
4
6
8
10  
f
+
min  
Ǹ
(
)
2p L(C (max) ) C  
V , INPUT VOLTAGE (V)  
in  
D
S
Figure 12. Plot 1. Dual Varactor MMBV609,  
V
IN vs. Frequency  
C
S
= Shunt Capacitance (input plus external  
capacitance)  
V
CC  
C
= Varactor Capacitance as a function of bias  
voltage  
D
0.1 mF  
0.1 mF  
2 (14)  
3 (1)  
Good RF and lowfrequency bypassing is necessary on  
the device power supply pins. Capacitors on the AGC pin  
and the input varactor trace should be used to bypass the  
AGC point and the VCO input (varactor diode),  
guaranteeing only dc levels at these points. For output  
frequency operation between 1.0 MHz and 50 MHz, a 0.1 mF  
capacitor is sufficient. At higher frequencies, smaller values  
of capacitance should be used; at lower frequencies, larger  
values of capacitance. At high frequencies, the value of  
bypass capacitors depends directly on the physical layout of  
the system. All bypassing should be as close to the package  
pins as possible to minimize unwanted lead inductance.  
Several different capacitors may be needed to bypass  
various frequencies.  
8 (10)  
V
IN  
4 (3)  
L
*
C
1 KW  
1 (12)  
Tank #1  
6 (7) 7 (8)  
5 (5)  
**  
V
EE  
F
0.1 mF 0.1 mF  
OUT  
100 mF 0.01 mF  
*Use high impedance probe (>1.0 MegW must be used).  
**The 1200 W resistor and the scope termination imped-  
ance constitute a 25:1 attenuator probe. Coax shall be  
CT07050 or equivalent.  
L = Micro Metal torroid #T2022, 8 turns #30  
Enameled Copper wire (@ 40 nH)  
C = MMBV609  
8 pin (14 pin) lead package  
Figure 11. Voltage Controlled Varactor Mode  
http://onsemi.com  
9
 
MC100EL1648  
WAVEFORM CONDITIONING SINE OR SQUARE WAVE  
The peaktopeak swing of the tank circuit is set  
Figure 13. At frequencies above 100 MHz typical, it may be  
desirable to increase the tank circuit peaktopeak voltage  
in order to shape the signal into a more square waveform at  
the output of the MC100EL1648. This is accomplished by  
tying a series resistor (1.0 kW minimum) from the AGC to  
the most positive power potential (+5.0 V if a positive volt  
supply is used, ground if a 5.2 V supply is used). Figure 14  
illustrates this principle.  
internally by the AGC pin. Since the voltage swing of the  
tank circuit provides the drive for the output buffer, the AGC  
potential directly affects the output waveform. If it is desired  
to have a sine wave at the output of the MC100EL1648, a  
series resistor is tied from the AGC point to the most  
negative power potential (ground if positive volt supply is  
used, 5.2 V if a negative supply is used) as shown in  
+5.0Vdc  
+5.0Vdc  
1
14  
1
7
14  
10  
12  
10  
12  
3
5
Output  
3
5
Output  
1.0k min  
7
8
8
Figure 13. Method of Obtaining a SineWave Output  
Figure 14. Method of Extending the Useful Range  
of the MC100EL1648 (Square Wave Output)  
http://onsemi.com  
10  
 
MC100EL1648  
SPECTRAL PURITY  
99.8  
99.9  
100.0  
100.1  
100.2  
B.W. = 10 kHz, Center Frequency = 100 MHz  
Scan Width = 50 kHz/div, Vertical Scale = 10 dB/div  
Figure 15. Spectral Purity  
0.1 mF  
10 mF  
2 (14)  
3(1)  
8 (10)  
1200*  
L
0.1 mF  
C
4 (3)  
SIGNAL  
UNDER  
TEST  
L = Micro Metal torroid #T2022, 8 turns #30  
Enameled Copper wire (@ 40 nH)  
C = 3.035 pF Variable Capacitance (@ 10 pF)  
1 (12)  
Tank #3  
6 (7) 7 (8)  
5 (5)  
V
EE  
** The 1200 W resistor and the scope termination  
impedance constitute a 25:1 attenuator probe.  
Coax shall be CT07050 or equivalent.  
100 mF 0.01 mF  
0.1 mF 0.1 mF  
8 pin (14 pin) Lead Package  
Spectral Purity Test Circuit  
Figure 16. Spectral Purity of Signal Output for 200 MHz Testing  
Z = 50 W  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 W  
o
50 W  
50 W  
V
TT  
V
TT  
= V 2.0 V  
CC  
Figure 17. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D Termination of ECL Logic Devices.)  
http://onsemi.com  
11  
MC100EL1648  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC100EL1648D  
SOIC8, Narrow Body  
98 Units / Rail  
98 Units / Rail  
MC100EL1648DG  
SOIC8, Narrow Body  
(PbFree)  
MC100EL1648DR2  
MC100EL1648DR2G  
SOIC8, Narrow Body  
2500 / Tape & Reel  
2500 / Tape & Reel  
SOIC8, Narrow Body  
(PbFree)  
MC100EL1648DT  
MC100EL1648DTG  
TSSOP8  
100 Units / Rail  
100 Units / Rail  
TSSOP8  
(PbFree)  
MC100EL1648DTR2  
MC100EL1648DTR2G  
TSSOP8  
2500 / Tape & Reel  
2500 / Tape & Reel  
TSSOP8  
(PbFree)  
MC100EL1648M  
SOEAIJ14  
50 Units / Rail  
50 Units / Rail  
MC100EL1648MG  
SOEAIJ14  
(PbFree)  
MC100EL1648MEL  
MC100EL1648MELG  
SOEAIJ14  
2000 / Tape & Reel  
2000 / Tape & Reel  
SOEAIJ14  
(PbFree)  
MC100EL1648MNR4  
MC100EL1648MNR4G  
DFN8  
1000 / Tape & Reel  
1000 / Tape & Reel  
DFN8  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1672/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
12  
MC100EL1648  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AH  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
13  
MC100EL1648  
PACKAGE DIMENSIONS  
TSSOP8  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948R02  
ISSUE A  
8x K REF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T
U
S
U
0.15 (0.006) T  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
2X L/2  
8
5
4
0.25 (0.010)  
B
U−  
L
1
M
PIN 1  
IDENT  
5. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
6. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE −W−.  
S
0.15 (0.006) T  
U
A
V−  
F
DETAIL E  
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
3.10  
3.10  
MAX  
0.122  
0.122  
0.043  
0.006  
0.028  
A
B
C
D
F
2.90  
2.90  
0.80  
0.05  
0.40  
0.114  
0.114  
C
1.10 0.031  
0.15 0.002  
0.70 0.016  
0.10 (0.004)  
W−  
SEATING  
PLANE  
D
T−  
G
G
K
L
0.65 BSC  
0.026 BSC  
0.25  
0.40 0.010  
0.016  
4.90 BSC  
_
0.193 BSC  
0
DETAIL E  
M
0
6
6
_
_
_
http://onsemi.com  
14  
MC100EL1648  
PACKAGE DIMENSIONS  
SOEIAJ14  
CASE 96501  
ISSUE A  
NOTES:  
ꢀꢁ1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
ꢀꢁ2. CONTROLLING DIMENSION: MILLIMETER.  
ꢀꢁ3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD FLASH  
OR PROTRUSIONS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
L
E
14  
8
Q
1
ꢀꢁ4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
H
E
_
E
M
ꢀꢁ5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
L
7
1
DETAIL P  
Z
D
MILLIMETERS  
INCHES  
MIN  
−−−  
VIEW P  
DIM MIN  
MAX  
MAX  
0.081  
0.008  
0.020  
0.008  
0.413  
0.215  
A
e
A
−−−  
0.05  
0.35  
0.10  
9.90  
5.10  
2.05  
c
A
1
b
c
0.20 0.002  
0.50 0.014  
0.20 0.004  
10.50 0.390  
5.45 0.201  
D
E
e
A
b
1
1.27 BSC  
0.050 BSC  
H
M
7.40  
0.50  
1.10  
8.20 0.291  
0.85 0.020  
1.50 0.043  
0.323  
0.033  
0.059  
0.13 (0.005)  
E
0.10 (0.004)  
0.50  
L
E
M
0
0.70  
−−−  
10  
0.90 0.028  
10  
0.035  
0.056  
0
_
_
_
_
Q
1
Z
1.42  
−−−  
http://onsemi.com  
15  
MC100EL1648  
PACKAGE DIMENSIONS  
DFN8  
CASE 506AA01  
ISSUE D  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994 .  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
E
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
0.20  
0.30  
2 X  
D
D2  
E
E2  
e
K
2.00 BSC  
0.10  
C
1.10  
1.30  
2.00 BSC  
2 X  
0.70  
0.90  
0.50 BSC  
0.10  
C
TOP VIEW  
0.20  
0.25  
−−−  
0.35  
L
A
0.10  
0.08  
C
C
8 X  
(A3)  
SIDE VIEW  
D2  
A1  
SEATING  
PLANE  
C
e
e/2  
4
1
8 X L  
E2  
K
8
5
0.10  
0.05  
C A  
B
8 X b  
C
NOTE 3  
BOTTOM VIEW  
ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC100EL1648/D  

相关型号:

MC100EL1648_07

5 V ECL Voltage Controlled Oscillator Amplifier
ONSEMI

MC100EL16D

Differential Receiver
MOTOROLA

MC100EL16D

Differential Receiver
ONSEMI

MC100EL16DG

5.0 V ECL Differential Receiver
ONSEMI

MC100EL16DR2

Differential Receiver
ONSEMI

MC100EL16DR2G

5.0 V ECL Differential Receiver
ONSEMI

MC100EL16DT

Differential Receiver
ONSEMI

MC100EL16DTG

5.0 V ECL Differential Receiver
ONSEMI

MC100EL16DTR2

Differential Receiver
ONSEMI

MC100EL16DTR2G

5.0 V ECL Differential Receiver
ONSEMI

MC100EL16MNR4

5.0 V ECL Differential Receiver
ONSEMI

MC100EL16MNR4G

5.0 V ECL Differential Receiver
ONSEMI