MC100ELT26D [ONSEMI]

Evaluation Board Manual for High Frequency SOIC 8; 评估板手册高频SOIC 8
MC100ELT26D
型号: MC100ELT26D
厂家: ONSEMI    ONSEMI
描述:

Evaluation Board Manual for High Frequency SOIC 8
评估板手册高频SOIC 8

文件: 总20页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ECLSOIC8EVB  
Evaluation Board Manual  
for High Frequency SOIC 8  
http://onsemi.com  
EVALUATION BOARD MANUAL  
Board Lay−Up  
INTRODUCTION  
The 8−lead SOIC evaluation board is implemented in four  
layers with split (dual) power supplies (Figure 2.  
Evaluation Board Lay−up). For standard ECL lab setup and  
test, a split (dual) power supply is essential to enable the  
50 W internal impedance in the oscilloscope as a termination  
for ECL devices. The first layer or primary trace layer is  
0.008thick Rogers RO4003 material, which is designed to  
have equal electrical length on all signal traces from the  
device under the test (DUT) to the sense output. The second  
layer is the 1.0 oz copper ground plane and a portion of the  
ON Semiconductor has developed an evaluation board for  
the devices in 8−lead SOIC package. These evaluation  
boards are offered as a convenience for the customers  
interested in performing their own engineering assessment  
on the general performance of the 8−lead SOIC device  
samples. The board provides a high bandwidth 50 W  
controlled impedance environment. The pictures in Figure 1  
show the top and bottom view of the evaluation board, which  
can be configured in several different ways, depending on  
device under test (See Table 1. Configuration List).  
This evaluation board manual contains:  
plane is the V power plane. The FR4 dielectric material is  
EE  
placed between second and third layer and between third and  
fourth layer. The third layer is also 1.0 oz copper ground  
Information on 8−lead SOIC Evaluation Board  
Assembly Instructions  
Appropriate Lab Setup  
plane and a portion of this layer is V power plane. The  
CC  
fourth layer is the secondary trace layer.  
Bill of Materials  
This manual should be used in conjunction with the device  
data sheet, which contains full technical details on the device  
specifications and operation.  
Figure 1. Top and Bottom View of the 8−lead SOIC Evaluation Board  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
August, 2004 − Rev. 1  
ECLSOIC8EVB/D  
 
ECLSOIC8EVB  
LAY−UP DETAIL  
4 LAYER  
SILKSCREEN (TOP SIDE)  
LAYER 1 (TOP SIDE)  
0.062 $ 0.007  
ROGERS 4003 0.008 in  
LAYER 2 (GROUND AND VEE PLANE P1) 1 OZ  
FR−4 0.020 in  
LAYER 3 (GROUND AND VCC PLANE P2) 1 OZ  
FR−4 0.025 in  
LAYER 4 (BOTTOM SIDE)  
Figure 2. Evaluation Board Lay−up  
Board Layout  
devices and the relevant configuration that utilizes this PCB  
board. List of components and simple schematics are located  
in Figures 4 through 14. Place SMA connectors on J1  
through J7, 50 W chip resistors on R1 through R7, and chip  
capacitors C1 through C4 according to configuration  
figures. (C1 and C2 are 0.01 mF and C3 and C4 are 0.1 mF).  
The 8−lead SOIC evaluation board was designed to be  
versatile and accommodate several different configurations.  
The input, output, and power pin layout of the evaluation  
board is shown in Figure 3. The evaluation board has at least  
eleven possible configurable options. Table 1. list the  
Top View  
Bottom View  
Figure 3. Evaluation Board Layout  
http://onsemi.com  
2
 
ECLSOIC8EVB  
Table 1. Configuration List  
ECLinPS PlusE  
ECLinPS LiteE  
Device  
Comments  
See Figure 4  
See Figure 4  
See Figure 4  
See Figure 6  
See Figure 5  
Configuration  
Device  
Comments  
See Figure 4  
See Figure 5  
See Figure 4  
See Figure 5  
See Figure 6  
See Figure 6  
See Figure 5  
See Figure 4  
See Figure 7  
See Figure 7  
See Figure 4  
See Figure 4  
See Figure 4  
See Figure 8  
See Figure 6  
See Figure 9  
Configuration  
MC10EP01D/MC100EP01D  
MC10EP05D/MC100EP05D  
MC10EP08D/MC100EP08D  
MC10EP11D/MC100EP11D  
1
1
1
3
2
MC10EL01D/MC100EL01D  
MC10EL04D/MC100EL04D  
MC10EL05D/MC100EL05D  
MC10EL07D/MC100EL07D  
MC10EL11D/MC100EL11D  
MC10EL12D/MC100EL12D  
MC10EL16D/MC100EL16D*  
MC10EL31D/MC100EL31D  
MC10EL32D/MC100EL32D  
MC10EL33D/MC100EL33D  
MC10EL35D/MC100EL35D  
MC10EL51D/MC100EL51D  
MC10EL52D/MC100EL52D  
MC10EL58D/MC100EL58D  
MC10EL89D/MC100EL89D  
1
2
1
2
3
3
2
1
4
4
1
1
1
5
3
6
MC10EP16D/  
MC100EP16D*  
MC100EP16FD*  
See Figure 5  
See Figure 5  
2
2
MC10EP16TD/  
MC100EP16TD*  
MC100EP16VAD*  
See Figure 5  
See Figure 5  
See Figure 8  
See Figure 5  
See Figure 5  
See Figure 4  
See Figure 7  
See Figure 7  
See Figure 4  
See Figure 4  
See Figure 4  
See Figure 8  
See Figure 6  
See Figure 9  
2
2
5
2
2
1
4
4
1
1
1
5
3
6
MC100EP16VBD*  
MC100EP16VCD*  
MC100EP16VSD*  
MC100EP16VTD*  
MC10EP31D/MC100EP31D  
MC10EP32D/MC100EP32D  
MC10EP33D/MC100EP33D  
MC10EP35D/MC100EP35D  
MC10EP51D/MC100EP51D  
MC10EP52D/MC100EP52D  
MC10EP58D/MC100EP58D  
MC100EP89D  
MC10ELT20D/  
MC100ELT20D  
MC10ELT21D/  
MC100ELT21D  
See Figure 10  
See Figure 11  
7
8
MC10ELT22D/  
MC100ELT22D  
MC100ELT23D  
See Figure 12  
See Figure 13  
9
MC10ELT26D/  
MC100ELT26D  
10  
MC10EPT20D/  
MC100EPT20D  
MC10ELT28D/  
MC100ELT28D  
See Figure 14  
11  
MC100EPT21D*  
MC100EPT22D  
MC100EPT23D*  
MC100EPT26D*  
See Figure 10  
See Figure 11  
See Figure 12  
See Figure 13  
7
8
9
Low Voltage ECLinPSE  
Comments  
10  
Device  
MC100LVEL01D  
MC100LVEL05D  
MC100LVEL11D  
MC100LVEL12D  
MC100LVEL16D*  
MC100LVEL31D  
MC100LVEL32D  
MC100LVEL33D  
MC100LVEL51D  
MC100LVEL58D  
MC100LVELT22D  
MC100LVELT23D  
Configuration  
See Figure 4  
See Figure 4  
See Figure 6  
See Figure 6  
See Figure 5  
See Figure 4  
See Figure 7  
See Figure 7  
See Figure 4  
See Figure 8  
See Figure 11  
See Figure 12  
1
1
3
3
2
1
4
4
1
5
8
9
Low Voltage ECLinPS Plus  
Comments  
Device  
MC100LVEP11D  
MC100LVEP16D*  
Configuration  
See Figure 6  
3
2
See Figure 5  
*See Appendix for additions or modifications to the current  
configuration.  
ECLinPS MAXE  
Device  
Comments  
See Figure 6  
See Figure 5  
Configuration  
NB6L11D  
NB6L16D  
3
2
http://onsemi.com  
3
 
ECLSOIC8EVB  
Evaluation Board Assembly Instructions  
On the top side of the evaluation board solder the four  
surface mount test point clips to the pads labeled V , V  
The 8−lead SOIC evaluation board is designed for  
characterizing devices in a 50 W laboratory environment  
using high bandwidth equipment. Each signal trace on the  
board has a via, which has an option of termination resistor  
or bypassing capacitor depending on the input/output  
configuration (see Table 1. Configuration List). Table 17  
contains the Bill of Materials for this evaluation board.  
,
CC EE  
and GND. The V clip connects directly to pin 8 of the  
CC  
device. The V clip connects directly to pin 5 of the device.  
EE  
There are two GND clip footprints which can be connected  
to the ground plane of the evaluation board depending on the  
setup configuration.  
It is recommended to solder 0.01 mF capacitors to C1 and  
C2 to reduce the unwanted noise from the power supplies.  
C3 and C4 pads are provided for 0.1 mF capacitor to further  
diminish the noise from the power supplies. Adding  
capacitors can improve edge rates, reduce overshoot and  
undershoot.  
Solder the Device on the Evaluation Board  
The soldering can be accomplished by hand soldering or  
soldering re−flow techniques. Make sure pin 1 of the device  
is located next the white dotted mark U1 and all the pins are  
aligned to the footprint pads. Solder the 8−lead SOIC device  
to the evaluation board.  
Termination  
All ECL outputs need to be terminated to V (V = V  
TT  
TT  
CC  
Connecting Power and Ground Planes  
–2.0 V = GND) via a 50 W resistor in a split power supply  
lab set−up. 0603 chip resistor pads are provided on the  
bottom side of the evaluation board to terminate the ECL  
driver (More information on termination is provided in  
AN8020). Solder the chip resistors to the bottom side of the  
board on the appropriate input of the device pins labeled R1,  
R2, R3, R4, R6, and R7, depending on the specific device.  
For standard ECL lab setup and test, a split (dual) power  
supply is required enabling the 50 W internal impedance in  
the oscilloscope to be used as a termination of the ECL  
signals (V = V – 2.0 V, in split power supply setup, V  
TT  
CC  
TT  
is the system ground, V is 2.0 V, and V is –3.0 V or  
CC  
EE  
–1.3 V; see Table 2: Power Supply Levels).  
Installing the SMA Connectors  
Table 2. Power Supply Levels  
Each configuration indicates the number of SMA  
connectors needed to populate an evaluation board for a  
given configuration. Each input and output requires one  
SMA connector. Attach all the required SMA connectors  
onto the board and solder the connectors to the board. Please  
note that alignment of the signal connector pin of the SMA  
can influence the lab results. The reflection and launch of the  
signals are largely influenced by imperfect alignment and  
soldering of the SMA connector.  
Power Supply  
5.0 V  
V
V
GND  
0.0 V  
0.0 V  
0.0 V  
CC  
EE  
2.0 V  
2.0 V  
2.0 V  
−3.0 V  
−1.3 V  
−0.5 V  
3.3 V  
2.5 V  
The power supply for voltage level translating device need  
slight modification as indicated in Table 3. Power Supply  
Levels for Translators.  
Validating the Assembled Board  
Table 3. Power Supply Levels for Translators  
After assembling the evaluation board, it is recommended  
to perform continuity checks on all soldered areas before  
commencing with the evaluation process. Time Domain  
Reflectometry (TDR) is another highly recommended  
validation test.  
V
CC  
V
EE  
GND  
PECL Translators  
3.3 V / 5.0 V  
0.0 V  
0.0 V  
http://onsemi.com  
4
 
ECLSOIC8EVB  
CONFIGURATIONS  
V
CC  
GND  
C4  
0.1 mF  
R1  
50 W  
C1  
0.01 mF  
J1  
J2  
J3  
J4  
R2  
50 W  
DUT  
J5  
J6  
R3  
50 W  
C2  
0.01 mF  
R4  
50 W  
C3  
0.1 mF  
V
EE  
GND  
Figure 4. Configuration 1 Schematic  
Table 4. Configuration 1  
Pin 1  
J1 R1  
Pin 2  
J2 R2  
Pin 3  
J3 R3  
Pin 4  
Pin 5  
Pin 6  
J6 R6  
Pin 7  
Pin 8  
J4 R4 C2 C3  
J7 R7 C1 C4  
Device  
MC10EL01D/MC100EL01D  
MC10EL05D/MC100EL05D  
MC10EL31D/MC100EL31D  
MC10EL35D/MC100EL35D  
MC10EL51D/MC100EL51D  
MC10EL52D/MC100EL52D  
MC100LVEL01D  
MC100LVEL05D  
MC100LVEL31D  
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes No Yes Yes  
MC100LVEL51D  
MC10EP01D/MC100EP01D  
MC10EP05D/MC100EP05D  
MC10EP08D/MC100EP08D  
MC10EP31D/MC100EP31D  
MC10EP35D/MC100EP35D  
MC10EP51D/MC100EP51D  
MC10EP52D/MC100EP52D  
http://onsemi.com  
5
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
C1  
0.01 mF  
R2  
50 W  
DUT  
J2  
J3  
J7  
J6  
Pin 6  
R3  
50 W  
C2  
0.01 mF  
Pin 5  
C3  
0.1 mF  
J4  
(Optional)  
V
EE  
GND  
Figure 5. Configuration 2 Schematic  
Table 5. Configuration 2  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6 R6 J7 R7 C1 C4  
Device  
MC10EL04D/MC100EL04D  
MC10EL07D/MC100EL07D  
MC10EL16D/MC100EL16D*  
MC100LVEL16D*  
MC10EP16D/MC100EP16D*  
MC100EP16FD*  
MC100LVEP160*  
No No Yes Yes Yes Yes No No Yes Yes Yes No Yes No Yes Yes  
MC10EP16TD/MC100EP16TD*  
MC100EP16VAD*  
MC100EP16VBD*  
MC100EP16VSD*  
MC100EP16VTD*  
NB6L160D  
*See Appendix for additional or modification to the current configuration  
http://onsemi.com  
6
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
C1  
0.01 mF  
J1  
J2  
J3  
J4  
R7  
50 W  
DUT  
J7  
J6  
Pin 6  
R6  
50 W  
C2  
0.01 mF  
Pin 5  
C3  
0.1 mF  
V
EE  
GND  
Figure 6. Configuration 3 Schematic  
Table 6. Configuration 3  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
Device  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6 R6 J7 R7 C1 C4  
MC10EL11D/MC100EL11D  
MC10EL12D/MC100EL12D  
MC10EL89D/MC100EL89D  
MC100LVEL11D  
MC100LVEL12D  
Yes No Yes No Yes No Yes No Yes Yes Yes Yes Yes Yes Yes Yes  
MC10EP11D/MC100EP11D  
MC100EP89D  
MC100LVEP11D  
NB6L11D  
http://onsemi.com  
7
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
R1  
50 W  
C1  
0.01 mF  
J1  
J2  
R2  
50 W  
DUT  
J7  
J6  
Pin 6  
R3  
50 W  
C2  
0.01 mF  
J3  
Pin 5  
C3  
0.1 mF  
J4  
(Optional)  
V
EE  
GND  
Figure 7. Configuration 4 Schematic  
Table 7. Configuration 4  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6 R6 J7 R7 C1 C4  
Device  
MC10EL32D/MC100EL32D  
MC10EL33D/MC100EL33D  
MC100LVEL32D  
Yes Yes Yes Yes Yes Yes No No Yes Yes Yes No Yes No Yes Yes  
MC100LVEL33D  
MC10EP32D/MC100EP32D  
MC10EP33D/MC100EP33D  
http://onsemi.com  
8
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
C1  
0.01 mF  
R2  
50 W  
DUT  
J2  
J3  
J7  
J6  
Pin 6  
Pin 5  
R3  
50 W  
C2  
0.01 mF  
R4  
50 W  
C3  
0.1 mF  
J4  
(Optional)  
V
EE  
GND  
Figure 8. Configuration 5 Schematic  
Table 8. Configuration 5  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6 R6 J7 R7 C1 C4  
Device  
MC100EP16VCD*  
MC10EL58D/MC100EL58D  
MC100LVEL58D  
No No Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes No Yes Yes  
MC10EP58D/MC100EP58D  
*See Appendix for addition or modification to the current configuration  
http://onsemi.com  
9
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
C1  
0.01 mF  
R7  
50 W  
(optional)  
DUT  
J2  
J3  
J7  
Pin 6  
Pin 5  
Short  
V
EE  
GND  
Figure 9. Configuration 6 − Translator Schematic  
Table 9. Configuration 6  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
R7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6 R6 J7  
C1 C4  
Device  
MC10ELT20D/MC100EL20D  
MC10EPT20D/MC100EPT20D  
No No Yes No Yes No No No No No No No Yes Optional Yes Yes  
http://onsemi.com  
10  
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
C1  
0.01 mF  
R2  
50 W  
DUT  
J2  
J3  
J7  
Pin 6  
Pin 5  
R3  
50 W  
Short  
V
EE  
GND  
Figure 10. Configuration 7 − Translator Schematic  
(Unloaded Testing Condition)  
Table 10. Configuration 7  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6 R6 J7 R7 C1 C4  
Device  
MC10ELT21D/MC100EL21D  
MC100EPT21D  
No No Yes Yes Yes Yes No No No No No No Yes No Yes Yes  
*See Appendix for loaded testing condition.  
http://onsemi.com  
11  
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
C1  
0.01 mF  
J1  
J2  
J3  
J4  
R7  
50 W  
(optional)  
DUT  
J7  
J6  
Pin 6  
Pin 5  
R6  
50 W  
(optional)  
Short  
V
EE  
GND  
Figure 11. Configuration 8 − Translator Schematic  
Table 11. Configuration 8  
Device  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
R6  
Pin 7  
R7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6  
J57  
C1 C4  
MC10ELT22D/  
MC100EL22D  
Yes No Yes No Yes No Yes No No No Yes Optional Yes Optional Yes Yes  
MC100LVELT22D  
MC100EPT22D  
http://onsemi.com  
12  
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
R1  
50 W  
C1  
0.01 mF  
J1  
J2  
J3  
J4  
R2  
50 W  
DUT  
J7  
J6  
Pin 6  
Pin 5  
R3  
50 W  
R4  
50 W  
Short  
V
EE  
GND  
Figure 12. Configuration 9 − Translator Schematic  
(Unloaded Testing Condition)  
Table 12. Configuration 9  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6 R6 J7 R7 C1 C4  
Device  
MC100EL23D  
Yes  
MC100LVELT23D  
Yes Yes Yes Yes Yes  
Yes Yes No No Yes No Yes No Yes Yes  
MC100EPT23D  
*See Appendix for loaded testing condition.  
http://onsemi.com  
13  
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
C1  
0.01 mF  
R2  
50 W  
DUT  
J2  
J3  
J7  
J6  
R3  
50 W  
Pin 6  
Pin 5  
Short  
V
EE  
GND  
Figure 13. Configuration 10 − Translator Schematic  
(Unloaded Testing Condition)  
Table 13. Configuration 10  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
Pin 7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6 R6 J7 R7 C1 C4  
Device  
MC10ELT26D/MC100ELT26D  
MC100EPT26D  
Yes  
Yes Yes  
No No Yes Yes Yes Yes No No No No Yes Yes  
No  
*See Appendix for loaded testing condition.  
http://onsemi.com  
14  
 
ECLSOIC8EVB  
V
CC  
GND  
C4  
0.1 mF  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 8  
Pin 7  
R1  
50 W  
C1  
0.01 mF  
J2  
R2  
50 W  
DUT  
J2  
J3  
J3  
J7  
R6  
50 W  
(optional) J6  
Pin 6  
Pin 5  
Short  
V
EE  
GND  
Figure 14. Configuration 11 − Translator Schematic  
Table 14. Configuration 11  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
R6  
Pin 7  
Pin 8  
J1 R1 J2 R2 J3 R3 J4 R4 C2 C3 J6  
J7 R7 C1 C4  
Device  
MC10ELT28D/MC100ELT28D  
Yes Yes Yes Yes Yes No Yes No No No Yes Optional Yes No Yes Yes  
http://onsemi.com  
15  
 
ECLSOIC8EVB  
LAB SETUP  
Power Supply  
V
CC  
GND  
OUT1  
OUT1  
Test Measuring  
Equipment  
J1  
J2  
J7  
Channel 1  
Differential  
Signal Generator  
DUT  
Channel 2  
TRIGGER  
OUT2  
J3  
J6  
J4  
OUT2  
TRIGGER  
V GND  
EE  
Power Supply  
Figure 15. Example of Standard Lab Setup (Configuration 1)  
1. Connect appropriate power supplies to V , V  
,
EE  
The power supply for voltage level translating device need  
slight modification as indicated in Table 16.  
CC  
and GND.  
For standard ECL lab setup and test, a split (dual)  
power supply is required enabling the 50 W  
internal impedance in the oscilloscope to be used  
Table 16. Power Supply Levels for Translators  
V
CC  
V
EE  
GND  
as a termination of the ECL signals (V = V  
TT  
CC  
3.3 V / 5.0 V  
0.0 V  
0.0 V  
PECL Translators  
– 2.0 V, in split power supply setup, V is the  
TT  
system ground, V is 2.0 V, and V is –3.0 V or  
–1.3 V; see Table 15).  
CC  
EE  
2. Connect a signal generator to the input SMA  
connectors. Setup input signal according to the  
device data sheet.  
3. Connect a test measurement device on the device  
output SMA connectors.  
Table 15. Power Supply Levels  
Power Supply  
5.0 V  
V
V
GND  
0.0 V  
0.0 V  
0.0 V  
CC  
EE  
2.0 V  
2.0 V  
2.0 V  
−3.0 V  
−1.3 V  
−0.5 V  
NOTE: The test measurement device must contain 50 W  
3.3 V  
termination.  
2.5 V  
http://onsemi.com  
16  
 
ECLSOIC8EVB  
Table 17. Bill of Materials  
Components  
Manufacturer  
Description  
Part Number  
Web Site  
SMA Connector  
Rosenberger  
SMA Connector, Side  
Launch, Gold Plated  
32K243−40ME3  
http://www.rosenberger.de  
http://www.rosenbergerna.com  
Johnson  
Components*  
SMA Connector, Side  
Launch, Gold Plated  
142−0701−851  
http://www.johnsoncomponents.com  
Surface Mount Test  
Points  
Keystone*  
SMT Miniature Test Point  
SMT Compact Test Point  
5015  
5016  
http://www.keyelco.com  
Thru−Hole Mount  
5005−5009  
Compact Test Point  
Chip Capacitor  
Chip Resistor  
AVC Corporation*  
Vishay Dale*  
0603 0.01 mF ±10%  
0603 0.1 mF ±10%  
06035C103KAT2A  
06035C104KAT2A  
CRCW060351R1J  
http://www.avxcorp.com  
http://www.vishay.com  
0603 50 W ± 1% Thick  
Film Resistor  
Evaluation Board  
Device Samples  
ON Semiconductor SOIC 8 Evaluation Board  
ON Semiconductor SOIC 8 Package Device  
ECLSOIC8EVB  
Various  
http://www.onsemi.com  
http://www.onsemi.com  
*Components are available through most distributors, i.e. www.newark.com, www.digikey.com  
http://onsemi.com  
17  
ECLSOIC8EVB  
Appendix A (Modified Configurations)  
MC100EP16VSD  
This device has an option of varying the output swing  
amplitude and being driven single−endedly. In order to  
utilize these options, Configuration 2 needs to be modified.  
MC10EL16D/MC100EL16D  
MC100LVEL16D  
MC10EP16D/MC100EP16D  
MC10EP16DF/MC100EP16DF  
MC100EP16VAD  
Output Swing Control  
1. Connect a SMA connector on J1  
2. Add a decoupling capacitor between J1 and V  
MC100LVEP16D  
CC  
The devices listed above have the option of being driven  
(0.01 mF)  
single−endedly by using the provided V pin of the device.  
In order to drive it single−endedly, Configuration 2 needs to  
be modified.  
BB  
Drive Single−Endedly  
1. Remove the 50 W chip resistor from R3.  
2. Short pin 3 and pin 4 together.  
Option A) Short R3 and R4.  
Or  
1. Remove the 50 W chip resistor from R3.  
2. Short pin 3 and pin 4 together.  
Option A) Short R3 and R4 trace pads.  
Or  
Option B) Place a SMA connector on J4 and use  
a cable with SMA connectors to short  
J3 and J4 connectors.  
Option B) Place a SMA connector on J4 and use  
a cable with SMA connectors to short  
J3 and J4 connectors.  
MC100EP16VTD  
This device has an option of varying the output swing  
amplitude and internal termination. In order to utilize these  
options, Configuration 2 needs to be modified.  
MC10EP16D/MC100EP16DT  
This device has an option of being 50 W terminated  
internally. To evaluate the internal 50 W resistor of the  
device, Configuration 2 needs to be modified.  
1. Remove the 50 W chip resistors from R2 and R3.  
Output Swing Control  
1. Connect a SMA connector on J1  
2. Add a decoupling capacitor between J1 and V  
CC  
2. Short R1 and R4 to V (GND).  
TT  
(0.0 1 mF)  
Option A) Short R1 and R4 to V (GND).  
TT  
Internal Termination  
Or  
1. Remove the 50 W chip resistors from R2 and R3.  
2. Short R1 and R4 to V (GND)  
Option B) Place SMA connectors on J1 and J4.  
Place shorting barrels on J1 and J4  
SMA connector.  
TT  
Option A) Short R1 and R4 to V (GND).  
TT  
Or  
MC100EP16VBD  
This device has an option of single−ended feedback  
output and being driven single−endedly using the V . To  
Option B) Place SMA connectors on J1 and J4.  
Place shorting barrels on J1 and J4  
SMA connector.  
BB  
utilize the feedback option and drive it single−endedly,  
Configuration 2 needs to be modified.  
MC10ELT21D/MC100EL21D  
MC100EL23D  
MC10ELT26D/MC100ELT26D  
MC100EPT21D  
Feedback option  
1. Connect a SMA connector on J1  
MC100EPT23D  
MC100EPT26D  
MC100LVELT23  
Drive single−endedly  
2. Remove the 50 W chip resistor from R3.  
3. Short pin 3 and pin 4 together.  
Option A) Short R3 and R4.  
Or  
The TTL output data presented in the data sheet are obtained  
under 500 W load resistor in parallel with 20 pF fixture  
capacitance. In order to obtain comparable data as in the data  
sheet, the evaluation board needs to be modified.  
1. Cut the output trace so that the 0402* size chip  
resistor can be placed over the cut out trace.  
2. Solder a 450 W chip resistor across the cut out  
trace.  
Option B) Place a SMA connector on J4 and use  
a cable with SMA connectors to short  
J3 and J4 connectors.  
MC100EP16VCD  
This device has an option of single−ended feedback  
output with an enable pin. To utilize the feedback option and  
enable option, Configuration 5 needs to be modified.  
1. Connect a SMA connector on J1.  
*Any size chip resistor can be used. The recommended size of the  
chip resistor is 0402, to reduce the effect of parasitic with a 17 mil  
trace width. 450 W in series with 50 W instrument resistance add up  
to 500 W loaded condition.  
2. Remove the 50 W chip resistor from R3.  
http://onsemi.com  
18  
ECLSOIC8EVB  
Appendix B (Gerber Files)  
Top Layer  
Second Layer (V and Ground Plane  
EE  
Third Layer (V and Ground Plane)  
Bottom Layer  
CC  
Figure 16. Gerber Files  
http://onsemi.com  
19  
ECLSOIC8EVB  
ECLinPS, ECLinPS Lite, ECLinPS Plus, and ECLinPS MAX are trademarks of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
ECLSOIC8EVB/D  

相关型号:

MC100ELT26DR2

ECL TO TTL TRANSLATOR, TRUE OUTPUT, PDSO8, PLASTIC, SOIC-8
MOTOROLA

MC100ELT28

TTL to Differential PECL/Differential PECL to TTL Translator
ONSEMI

MC100ELT28D

5 V TTL to Differential PECL and Differential PECL to TTL Translator
ONSEMI

MC100ELT28DG

5 V TTL to Differential PECL and Differential PECL to TTL Translator
ONSEMI

MC100ELT28DR2

5 V TTL to Differential PECL and Differential PECL to TTL Translator
ONSEMI

MC100ELT28DR2G

5 V TTL to Differential PECL and Differential PECL to TTL Translator
ONSEMI

MC100ELT28DT

5 V TTL to Differential PECL and Differential PECL to TTL Translator
ONSEMI

MC100ELT28DTG

5 V TTL to Differential PECL and Differential PECL to TTL Translator
ONSEMI

MC100ELT28DTR2G

Translator, TTL to Differential PECL and Differential PECL to TTL, TSSOP 8 3.0x3.0x0.95 mm, 2500-REEL
ONSEMI

MC100ELT28MNR4

5 V TTL to Differential PECL and Differential PECL to TTL Translator
ONSEMI

MC100ELT28MNR4G

5 V TTL to Differential PECL and Differential PECL to TTL Translator
ONSEMI

MC100EP01

3.3V / 5V ECL 4−Input OR/NOR
ONSEMI