MC100EP446FAG [ONSEMI]

3.3 V/5 V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter; 3.3 V / 5 V 8位CMOS / ECL / TTL数据输入并行/串行转换器
MC100EP446FAG
型号: MC100EP446FAG
厂家: ONSEMI    ONSEMI
描述:

3.3 V/5 V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
3.3 V / 5 V 8位CMOS / ECL / TTL数据输入并行/串行转换器

转换器
文件: 总20页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10EP446, MC100EP446  
3.3 V/5 V 8-Bit  
CMOS/ECL/TTL Data Input  
Parallel/Serial Converter  
Description  
http://onsemi.com  
The MC10/100EP446 is an integrated 8bit parallel to serial data  
converter. The device is designed with unique circuit topology to  
operate for NRZ data rates up to 3.2 Gb/s. The conversion sequence  
from parallel data into a serial data stream is from bit D0 to D7. The  
parallel input pins D0D7 are configurable to be threshold controlled by  
CMOS, ECL, or TTL level signals. The serial data rate output can be  
selected at internal clock data rate or twice the internal clock data rate  
using the CKSEL pin.  
Control pins are provided to reset (SYNC) and disable internal clock  
circuitry (CKEN). In either CKSEL modes, the internal flipflops are  
triggered on the rising edge for CLK and the multiplexers are switched  
on the falling edge of CLK, therefore, all associated specification  
limits are referenced to the negative edge of the clock input.  
MARKING DIAGRAMS*  
MCxxx  
EP446  
AWLYYWWG  
LQFP32  
FA SUFFIX  
CASE 873A  
Additionally, V pin is provided for singleended input condition.  
BB  
The 100 Series devices contain temperature compensation network.  
1
MCxxx  
EP446  
Features  
32  
1
AWLYYWWG  
3.2 Gb/s Typical Data Rate Capability  
Differential Clock and Serial Outputs  
QFN32  
MN SUFFIX  
CASE 488AM  
G
V Output for Single-ended Input Applications  
BB  
Asynchronous Data Reset (SYNC)  
PECL Mode Operating Range:  
xxx  
A
= 10 or 100  
= Assembly Location  
V
= 3.0 V to 5.5 V with V = 0 V  
EE  
WL, L = Wafer Lot  
YY, Y = Year  
CC  
NECL Mode Operating Range:  
= 0 V with V = 3.0 V to 5.5 V  
WW, W = Work Week  
V
CC  
EE  
G or G = PbFree Package  
Open Input Default State  
Safety Clamp on Inputs  
Parallel Interface Can Support PECL, TTL or CMOS  
PbFree Packages are Available*  
(Note: Microdot may be in either location)  
*For additional marking information, refer to  
Application Note AND8002/D.  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 18 of this data sheet.  
*For additional information on our PbFree strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
© Semiconductor Components Industries, LLC, 2007  
1
Publication Order Number:  
February, 2007 Rev. 9  
MC10EP446/D  
MC10EP446, MC100EP446  
24  
23  
22  
21  
20  
19  
18  
17  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
V
CC  
16  
15  
V
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
EE  
V
V
EE  
CC  
V
PCLK  
PCLK  
PCLK  
PCLK  
CF  
V
CF  
14  
13  
12  
11  
10  
9
V
V
V
V
EF  
EF  
MC10EP446  
MC100EP446  
V
V
EE  
SYNC  
SYNC  
CC  
EE  
CC  
Exposed Pad (EP)  
SYNC  
S
S
OUT  
OUT  
SYNC  
S
S
OUT  
OUT  
V
V
V
V
BB2  
CC  
BB2  
CC  
V
V
CC  
CC  
V
V
CC  
CC  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
Warning: All V and V pins must be externally connected  
CC  
EE  
to Power Supply to guarantee proper operation.  
Figure 1. LQFP32 Pinout (Top View)  
Figure 2. QFN32 Pinout (Top View)  
Table 1. PIN DESCRIPTION  
PIN  
FUNCTION  
D0*D7*  
, S  
ECL, CMOS, or TTL Parallel Data Input  
ECL Differential Serial Data Output  
ECL Differential Clock Input  
S
OUT OUT  
CLK*, CLK*  
PCLK, PCLK  
SYNC*, SYNC**  
CKSEL*  
ECL Differential Parallel Clock Output  
ECL Conversion Synchronizing Differential Input (Reset)***  
ECL Clock Input Selector  
CKEN*, CKEN*  
ECL Clock Enable Differential Input  
ECL, CMOS, or TTL Input Selector  
ECL Reference Mode Connection  
Reference Voltage Output  
V
V
V
V
V
CF  
EF  
, V  
BB1 BB2  
Positive Supply  
CC  
EE  
Negative Supply  
* Pins will default LOW when left open.  
**Pins will default HIGH when left open.  
***The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK  
initiates the conversion process synchronously on the next rising edge of CLK.  
http://onsemi.com  
2
MC10EP446, MC100EP446  
Table 2. TRUTH TABLE  
Function  
HIGH  
LOW  
Pin  
CKSEL  
S
: PCLK = 8:1  
S
: PCLK = 8:1  
OUT  
OUT  
CLK: S  
= 1:2  
CLK: S  
= 1:1  
OUT  
OUT  
CLK  
CLK  
S
S
OUT  
OUT  
CKEN  
SYNC  
Synchronously Disables Normal Parallel to Serial  
Conversion  
Synchronously Enables Normal Parallel to Serial Conversion  
Asynchronously Resets Internal FlipFlops*  
Synchronous Enable  
*The rising edge of SYNC will asynchronously reset the internal circuitry. The falling edge of the SYNC followed by the falling edge of CLK initiates  
the conversion process synchronously on the next rising edge of CLK.  
Table 3. INPUT VOLTAGE LEVEL SELECTION TABLE  
Table 4. DATA INPUT OPERATING VOLTAGE TABLE  
Input Function  
ECL Mode  
Connect To V Pin  
Data Inputs (D [0:7])  
Power Supply  
CF  
V
Pin  
CMOS  
TTL  
PECL  
NECL  
N/A  
p
(V ,V  
CC EE  
)
EF  
CMOS Mode  
TTL Mode*  
No Connect  
PECL  
NECL  
p
p
p
1.5 V $ 100 mV  
N/A  
N/A  
N/A  
*For TTL Mode, if no external voltage can be provided, the reference  
voltage can be provided by connecting the appropriate resistor  
Power Supply  
3.3 V  
Resistor Value 10% (Tolerance)  
between V and V pins.  
CF  
EE  
1.5 kW  
500 W  
5.0 V  
http://onsemi.com  
3
MC10EP446, MC100EP446  
D0  
D4  
D2  
D
C
Q
Q
Q
Q
Q
Q
Q
Q
R
R
R
R
R
R
R
R
MUX  
2:1  
D
C
Q
R
D
C
MUX  
2:1  
D
C
Q
R
D
C
MUX  
2:1  
D
C
Q
R
D
C
D6  
D1  
S
S
OUT  
OUT  
MUX  
2:1  
D
C
MUX  
2:1  
D
C
Q
R
D
C
D5  
D3  
D7  
MUX  
2:1  
D
C
Q
R
D
C
MUX  
2:1  
D
C
Q
R
D
C
÷2  
÷2  
÷2  
PCLK  
PCLK  
Control  
Logic  
MUX  
2:1  
CKEN  
CKEN  
D
C
Q
CLK  
CLK  
R
CKSEL  
SYNC  
SYNC  
V
CC  
V
V
V
EE  
BB  
CF  
V
EF  
Figure 3. Logic Diagram  
http://onsemi.com  
4
MC10EP446, MC100EP446  
Table 5. ATTRIBUTES  
Characteristics  
Value  
75 kW  
Internal Input Pulldown Resistor  
Internal Input Pullup Resistor  
ESD Protection  
37.5 kW  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 100 V  
> 2 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
Pb Pkg  
PbFree Pkg  
LQFP32  
QFN32  
Level 2  
Level 2  
Level 1  
Flammability Rating  
Transistor Count  
Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
962 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
Table 6. MAXIMUM RATINGS  
Symbol  
Parameter  
PECL Mode Power Supply  
NECL Mode Power Supply  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
V
V
V
V
6
CC  
EE  
I
EE  
CC  
= 0 V  
6  
V
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V V  
6
6  
V
EE  
CC  
I
I
CC  
EE  
V V  
I
I
Output Current  
Continuous  
Surge  
50  
mA  
out  
100  
V
Sink/Source  
BB  
0.5  
mA  
°C  
BB  
T
Operating Temperature Range  
Storage Temperature Range  
40 to +85  
65 to +150  
A
T
°C  
stg  
q
JA  
Thermal Resistance (JunctiontoAmbient) 0 lfpm  
500 lfpm  
LQFP32  
LQFP32  
80  
55  
°C/W  
q
q
Thermal Resistance (JunctiontoCase)  
Standard Board  
Thermal Resistance (JunctiontoAmbient) 0 lfpm  
500 lfpm  
2S2P  
Pb <2 to 3 sec @ 248°C  
LQFP32  
12 to 17  
°C/W  
°C/W  
JC  
QFN32  
QFN32  
31  
27  
JA  
q
JC  
Thermal Resistance (JunctiontoCase)  
QFN32  
12  
°C/W  
°C  
T
sol  
Wave Solder  
265  
265  
PbFree <2 to 3 sec @ 260°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
5
MC10EP446, MC100EP446  
Table 7. 10EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 2)  
CC  
EE  
40°C  
25°C  
Typ  
110  
85°C  
Typ  
115  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Power Supply Current  
Unit  
I
EE  
90  
110  
140  
90  
140  
95  
145  
mA  
V
V
V
Output HIGH Voltage (Note 3)  
Output LOW Voltage (Note 3)  
Input HIGH Voltage (SingleEnded)  
2165 2290 2415 2230 2355 2480 2290 2415 2540 mV  
1365 1490 1615 1430 1555 1680 1490 1615 1740 mV  
OH  
OL  
IH  
mV  
CMOS 2000  
PECL 2090  
TTL 2000  
3300 2000  
3300 2155  
3300 2000  
3300 2000  
3300 2215  
3300 2000  
3300  
3300  
3300  
V
Input LOW Voltage (SingleEnded)  
IL  
mV  
CMOS  
PECL 1365  
TTL  
0
800  
1690 1460  
800  
0
800  
1755 1490  
800  
0
800  
1815  
800  
0
0
0
V
V
Output Voltage Reference  
1790 1840 1990 1855 1905 2055 1915 1965 2115 mV  
BB  
Input HIGH Voltage Common Mode Range (Dif-  
ferential Configuration) (Note 4)  
2.0  
3.3  
150  
0.5  
2.0  
3.3  
150  
0.5  
2.0  
3.3  
150  
0.5  
V
IHCMR  
I
I
Input HIGH Current  
mA  
mA  
IH  
Input LOW Current  
(All Except SYNC, SYNC)  
0.5  
0.5  
0.5  
IL  
SYNC, SYNC 150  
150  
150  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
2. Input and output parameters vary 1:1 with V . V can vary +0.3 V to 2.2 V.  
CC  
EE  
3. All loading with 50 W to V 2.0 V.  
CC  
4. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
6
MC10EP446, MC100EP446  
Table 8. 10EP DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 5)  
CC  
EE  
40°C  
25°C  
Typ  
110  
85°C  
Typ  
115  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Power Supply Current  
Unit  
I
EE  
90  
110  
140  
90  
140  
95  
145  
mA  
V
V
V
Output HIGH Voltage (Note 6)  
Output LOW Voltage (Note 6)  
Input HIGH Voltage (SingleEnded)  
3865 3950 4115 3930 4055 4180 3990 4115 4240 mV  
3065 3190 3315 3130 3255 3380 3190 3315 3440 mV  
OH  
OL  
IH  
mV  
CMOS 3500  
PECL 3790  
TTL 2000  
5000 3500  
5000 3855  
5000 2000  
5000 3500  
5000 3915  
5000 2000  
5000  
5000  
5000  
V
Input LOW Voltage (SingleEnded)  
IL  
mV  
CMOS  
PECL 3065  
TTL  
0
1500  
3390 3130  
800  
0
1500  
3455 3190  
800  
0
1500  
3915  
800  
0
0
0
V
V
Output Voltage Reference  
3490 3540 3690 3555 3605 3755 3615 3665 3815 mV  
BB  
Input HIGH Voltage Common Mode Range (Dif-  
ferential Configuration) (Note 7)  
2.0  
5.0  
150  
0.5  
2.0  
5.0  
150  
0.5  
2.0  
5.0  
150  
0.5  
V
IHCMR  
I
I
Input HIGH Current  
mA  
mA  
IH  
Input LOW Current  
(All Except SYNC, SYNC)  
0.5  
0.5  
0.5  
IL  
SYNC, SYNC 150  
150  
150  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
5. Input and output parameters vary 1:1 with V . V can vary +2.0 V to 0.5 V.  
CC  
EE  
6. All loading with 50 W to V 2.0 V.  
CC  
7. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
7
MC10EP446, MC100EP446  
Table 9. 10EP DC CHARACTERISTICS, NECL V = 0 V, V = 5.5 V to 3.0 V (Note 8)  
CC  
EE  
40°C  
25°C  
Typ  
110  
85°C  
Typ  
115  
Min  
90  
Typ  
Max  
Min  
Max  
Min  
Max  
145  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
I
EE  
110  
140  
90  
140  
95  
V
V
V
V
V
V
Output HIGH Voltage (Note 9)  
Output LOW Voltage (Note 9)  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Output Voltage Reference  
1135 1010 885 1070 945  
820 1010 885  
760  
OH  
OL  
1935 1810 1685 1870 1745 1620 1810 1685 1560 mV  
1210  
1935  
885 1145  
1610 1870  
820 1085  
1545 1810  
760  
mV  
IH  
1485 mV  
IL  
1510 1460 1310 1445 1395 1245 1385 1335 1185 mV  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 10)  
V
+2.0  
0.0  
V
+2.0  
0.0  
V
+2.0  
EE  
0.0  
V
IHCMR  
EE  
EE  
I
I
Input HIGH Current  
150  
150  
150  
mA  
mA  
IH  
Input LOW Current  
IL  
(All Except SYNC, SYNC)  
0.5  
0.5  
0.5  
SYNC, SYNC 150  
0.5  
150  
0.5  
150  
0.5  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
8. Input and output parameters vary 1:1 with V  
.
CC  
9. All loading with 50 W to V 2.0 V.  
CC  
10.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 10. 100EP DC CHARACTERISTICS, PECL V = 3.3 V, V = 0 V (Note 11)  
CC  
EE  
40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Min  
90  
Max  
Min  
90  
Max  
130  
Min  
95  
Max  
135  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
I
EE  
110  
130  
2405  
1605  
110  
115  
V
V
V
Output HIGH Voltage (Note 12)  
Output LOW Voltage (Note 12)  
2155  
1355  
2280  
1480  
2155  
1355  
2280  
1480  
2405  
1605  
2155  
1355  
2280  
1480  
2405  
1605  
OH  
OL  
IH  
Input HIGH Voltage (SingleEnded)  
mV  
CMOS  
PECL  
TTL  
2000  
2075  
2000  
3300  
3300  
3300  
2000  
2075  
2000  
3300  
3300  
3300  
2000  
2075  
2000  
3300  
3300  
3300  
V
Input LOW Voltage (SingleEnded)  
IL  
mV  
CMOS  
PECL  
TTL  
0
1355  
0
800  
1675  
800  
0
1355  
0
800  
1675  
800  
0
1355  
0
800  
1675  
800  
V
V
Output Voltage Reference  
1775  
2.0  
1875  
1975  
3.3  
1775  
2.0  
1875  
1975  
3.3  
1775  
2.0  
1875  
1975  
3.3  
mV  
V
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 13)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
11. Input and output parameters vary 1:1 with V . V can vary +0.3 V to 2.2 V.  
CC  
EE  
12.All loading with 50 W to V 2.0 V.  
CC  
13.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
8
MC10EP446, MC100EP446  
Table 11. 100EP DC CHARACTERISTICS, PECL V = 5.0 V, V = 0 V (Note 14)  
CC  
EE  
40°C  
Typ  
25°C  
Typ  
85°C  
Typ  
Min  
90  
Max  
Min  
90  
Max  
130  
Min  
95  
Max  
135  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
I
EE  
110  
130  
4105  
3305  
110  
115  
V
V
V
Output HIGH Voltage (Note 15)  
Output LOW Voltage (Note 15)  
3855  
3055  
3980  
3180  
3855  
3055  
3980  
3180  
4105  
3305  
3855  
3055  
3980  
3180  
4105  
3305  
OH  
OL  
IH  
Input HIGH Voltage (SingleEnded)  
mV  
CMOS  
PECL  
TTL  
3500  
3775  
2000  
5000  
5000  
5000  
3500  
3775  
2000  
5000  
5000  
5000  
3500  
3775  
2000  
5000  
5000  
5000  
V
Input LOW Voltage (SingleEnded)  
IL  
mV  
CMOS  
PECL  
TTL  
0
3055  
0
1500  
3375  
800  
0
3055  
0
1500  
3375  
800  
0
3055  
0
1500  
3375  
800  
V
V
Output Voltage Reference  
3475  
2.0  
3575  
3675  
5.0  
3475  
2.0  
3575  
3675  
5.0  
3475  
2.0  
3575  
3675  
5.0  
mV  
V
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 16)  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
14.Input and output parameters vary 1:1 with V . V can vary +2.0 V to 0.5 V.  
CC  
EE  
15.All loading with 50 W to V 2.0 V.  
CC  
16.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 12. 100EP DC CHARACTERISTICS, NECL V = 0 V, V = 5.5 V to 3.0 V (Note 17)  
CC  
EE  
40°C  
Typ  
25°C  
Typ  
110  
85°C  
Typ  
115  
Min  
Max  
130  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
I
EE  
90  
110  
90  
130  
95  
135  
V
V
V
V
V
V
Output HIGH Voltage (Note 18)  
Output LOW Voltage (Note 18)  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Output Voltage Reference  
1145 1020 895 1145 1020 895 1145 1020 895  
OH  
OL  
1945 1820 1695 1945 1820 1695 1945 1820 1695 mV  
1225  
1945  
880 1225  
1625 1945  
880 1225  
1625 1945  
880  
mV  
IH  
1625 mV  
IL  
1525 1425 1325 1525 1425 1325 1525 1425 1325 mV  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 19)  
V
+2.0  
0.0  
V
+2.0  
0.0  
V
+2.0  
EE  
0.0  
V
IHCMR  
EE  
EE  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
0.5  
0.5  
0.5  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
17.Input and output parameters vary 1:1 with V  
.
CC  
18.All loading with 50 W to V 2.0 V.  
CC  
19.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
9
MC10EP446, MC100EP446  
Table 13. AC CHARACTERISTICS V = 0 V; V = 3.0 V to 5.5 V or V = 3.0 V to 5.5 V; V = 0 V (Note 20)  
CC  
EE  
CC  
EE  
40°C  
25°C  
85°C  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Symbol  
Characteristic  
Maximum Frequency  
(Figure 15)  
Unit  
f
max  
GHz  
CKSEL High  
CKSEL Low  
3.2  
1.6  
3.4  
1.7  
3.2  
1.6  
3.4  
1.7  
3.2  
1.6  
3.4  
1.7  
t
t
,
Propagation Delay to Output Differential  
PLH  
PHL  
ps  
ps  
CKSEL = 0  
CLK TO S  
,
650  
700  
750  
800  
850  
900  
700  
750  
800  
850  
900  
950  
725  
775  
850  
900  
975  
1025  
OUT  
CLK TO PCLK  
CKSEL = 1  
CLK TO S  
,
775  
850  
875  
950  
975  
1050  
825  
900  
925  
1000  
1025  
1100  
875  
950  
1000  
1075  
1125  
1200  
OUT  
CLK TO PCLK  
t
t
t
t
Setup Time  
D to CLK+  
SYNCto CLK−  
CKEN+ to CLK−  
S
ps  
ps  
ps  
(Figure 4) 375  
425  
140  
40  
400  
200  
70  
450  
140  
40  
450  
200  
70  
500  
140  
40  
(Figure 5)  
(Figure 6)  
200  
70  
Hold Time  
D to CLK+  
SYNCto CLK−  
CLKto CKEN−  
h
(Figure 4) 525  
575  
550  
0
75  
600  
600  
0
75  
650  
0
(Figure 6)  
75  
45  
45  
45  
Minimum Pulse Width (Note 22)  
Data (D0D7)  
SYNC  
pw  
150  
200  
145  
150  
200  
145  
150  
200  
145  
CKEN  
Random Clock Jitter (RMS)  
0.2  
800  
100  
< 1  
1200  
150  
0.2  
800  
120  
< 1  
1200  
170  
0.2  
800  
140  
< 1  
1200  
190  
ps  
mV  
ps  
JITTER  
v f  
Typ  
max  
V
Input Differential Voltage Swing  
(Note 21)  
150  
50  
150  
70  
150  
90  
PP  
t
r
t
f
Output Rise/Fall Times  
S
OUT  
(20% 80%)  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
20.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to V 2.0 V.  
CC  
21.V (min) is the minimum input swing for which AC parameters are guaranteed.  
PP  
22.The minimum pulse width is valid only if the setup and hold times are respected.  
http://onsemi.com  
10  
MC10EP446, MC100EP446  
CLK  
Data  
Valid  
Data  
Setup Time  
t
s
t
h
+ 0 −  
Figure 4. Setup and Hold Time for Data  
SYNC  
SYNC  
CLK  
t
s
CLK  
CLK  
CKEN  
t
S
t
h
Figure 5. Setup Time for SYNC  
Figure 6. Setup and Hold Time for CKEN  
http://onsemi.com  
11  
MC10EP446, MC100EP446  
APPLICATION INFORMATION  
The MC10/100EP446 is an integrated 8:1 parallel to serial  
Note: all pins requiring ECL voltage inputs must have a  
50 W terminating resistor to V (V = V – 2.0 V).  
The CKSEL input (Pin 2) is provided to enable the user to  
select the serial data rate output between internal clock data  
rate or twice the internal clock data rate. For CKSEL LOW  
operation, the time from when the parallel data is latched ¬  
converter. An attribute for EP446 is that the parallel inputs  
D0–D7 (Pins 17 – 24) can be configured to accept either  
CMOS, ECL, or TTL level signals by a combination of  
TT  
TT  
CC  
interconnects between V (Pin 27) and V (Pin 26) pins.  
EF  
CF  
For CMOS input levels, leave V and V open. For ECL  
EF  
CF  
operation, short V and V (Pins 26 and 27). For TTL  
to when the data is seen on the S  
­ is on the falling edge  
CF  
EF  
OUT  
th  
operation, connect a 1.5 V supply reference to V and leave  
of the 7 clock cycle plus internal propagation delay  
(Figure 7). Note the PCLK switches on the falling edge of  
CLK.  
CF  
the V pin open. The 1.5 V reference voltage to V pin can  
EF  
CF  
be accomplished by placing a 1.5 kW or 500 W between V  
CF  
and V for 3.3 V or 5.0 V power supplies, respectively.  
EE  
Number of Clock Cycles from Data Latch to SOUT  
À
1
2
3
4
5
6
7
CLK  
D0  
D01  
D02  
D12  
D22  
D32  
D42  
D52  
D62  
D72  
D03  
D13  
D23  
D33  
D43  
D53  
D63  
D73  
D04  
D14  
D24  
D34  
D44  
D54  
D64  
D74  
D11  
D21  
D31  
D41  
D51  
D61  
D71  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Data Latched  
Data Latched  
Data Latched  
Data Latched  
Á
SOUT  
CKSEL  
PCLK  
Figure 7. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW  
http://onsemi.com  
12  
MC10EP446, MC100EP446  
Similarly, for CKSEL HIGH operation, the time from when the parallel data is latched ¬ to when the data is seen on the  
th  
S
­ is on the rising edge of the 14 clock cycle plus internal propagation delay (Figure 8). Furthermore, the PCLK switches  
OUT  
on the rising edge of CLK.  
Number of Clock Cycles from Data Latch to SOUT  
À
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
CLK  
D0  
D01  
D11  
D21  
D31  
D41  
D51  
D61  
D71  
D02  
D12  
D22  
D32  
D42  
D52  
D62  
D72  
D03  
D13  
D23  
D33  
D43  
D53  
D63  
D73  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Data Latched  
Data Latched  
Data Latched  
Á
SOUT  
CKSEL  
PCLK  
Figure 8. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH  
http://onsemi.com  
13  
MC10EP446, MC100EP446  
The device also features a differential SYNC input (Pins 29 and 30), which asynchronously reset all internal flip–flops and  
clock circuitry on the rising edge of SYNC. The release of SYNC is a synchronous process, which ensures that no runt serial  
data bits are generated. The falling edge of the SYNC followed by a falling edge of CLK initiates the start of the conversion  
process on the next rising edge of CLK (Figures 9 and 10). As shown in the figures below, the device will start to latch the  
parallel input data after the a falling edge of SYNC ¬, followed by the falling edge CLK ­, on the next rising of edge of CLK  
® for CKSEL LOW  
SYNC  
(Synchronous ENABLE)  
Number of Clock Cycles from Data Latch to SOUT  
1
2
3
4
5
6
7
SYNC  
(Asynchronous RESET)  
Á
À
CLK  
Â
SYNC  
D01  
D11  
D21  
D31  
D41  
D51  
D61  
D71  
D02  
D12  
D22  
D32  
D42  
D52  
D62  
D72  
D03  
D13  
D23  
D33  
D43  
D53  
D63  
D73  
D04  
D14  
D24  
D34  
D44  
D54  
D64  
D74  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Data Latched  
Data Latched  
Data Latched  
Data Latched  
SOUT  
CKSEL  
PCLK  
Figure 9. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL LOW and SYNC  
SYNC  
À
Á
Â
CLK  
Figure 10. Synchronous Release of SYNC for CKSEL LOW  
http://onsemi.com  
14  
MC10EP446, MC100EP446  
For CKSEL HIGH, as shown in the timing diagrams below, the device will start to latch the parallel input data after the falling  
edge of SYNC ¬, followed by the falling edge CLK ­, on the second rising edge of CLK ® (Figures 11 and 12).  
SYNC  
(Synchronous ENABLE)  
Number of Clock Cycles from Data Latch to SOUT  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SYNC  
(Asynchronous RESET)  
Á Â  
À
CLK  
SYNC  
D01  
D11  
D21  
D31  
D41  
D51  
D61  
D71  
D02  
D03  
D13  
D23  
D33  
D43  
D53  
D63  
D73  
D04  
D14  
D24  
D34  
D44  
D54  
D64  
D74  
D0  
D12  
D22  
D32  
D42  
D52  
D62  
D72  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Data Latched  
Data Latched  
Data Latched  
SOUT  
CKSEL  
PCLK  
Figure 11. Timing Diagram 1:8 Parallel to Serial Conversion with CKSEL HIGH and SYNC  
SYNC  
À
Á
Â
CLK  
Figure 12. Synchronous Release of SYNC for CKSEL HIGH  
http://onsemi.com  
15  
MC10EP446, MC100EP446  
The differential synchronous CKEN inputs (Pins 6 and 7), disable the internal clock circuitry. The synchronous CKEN will  
suspend all of the device activities and prevent runt pulses from being generated. The rising edge of CKEN followed by the  
falling edge of CLK will suspend all activities. The falling edge of CKEN followed by the falling edge of CLK will resume  
all activities (Figure 13).  
Internal Clock  
Disabled  
Internal Clock  
Enabled  
CLK  
CKEN  
SOUT  
D01  
D11  
D21  
D31  
D41  
D51  
PCLK  
CKSEL  
Figure 13. Timing Diagram with CKEN with CKSEL HIGH  
The differential PCLK output (Pins 14 and 15) is a word  
framer and can help the user synchronize the serial data  
conditions, the unused differential input is connected to V  
BB  
as a switching reference voltage. V may also rebias AC  
BB  
output, S  
(Pins 11 and 12), in their applications.  
coupled inputs. When used, decouple V and V via a  
OUT  
BB CC  
Furthermore, PCLK can be used as a trigger for input  
parallel data (Figure 14).  
0.01 mF capacitor and limit current sourcing or sinking to  
0.5 mA. When not used, V should be left open. Also, both  
BB  
An internally generated voltage supply, the V pin, is  
outputs of the differential pair must be terminated (50 W to  
BB  
available to this device only. For single–ended input  
V
) even if only one output is used.  
TT  
CLK  
CLK  
RESET  
SYNC  
Pattern Generator  
Data Format Logic  
(FPGA, ASIC)  
EP446  
S
SERIAL DATA  
OUT  
TRIGGER  
PCLK  
Figure 14. PCLK as Trigger Application  
http://onsemi.com  
16  
MC10EP446, MC100EP446  
800  
700  
600  
500  
400  
300  
200  
100  
0
CKSEL High  
CKSEL Low  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
INPUT CLOCK FREQUENCY (MHz)  
Figure 15. Typical VOUTPP versus Input Clock Frequency, 255C  
Figure 16. SOUT System Jitter Measurement  
(Condition: 3.4 GHz input frequency, CKSEL HIGH, BEOFE32 bit pattern on SOUT  
http://onsemi.com  
17  
MC10EP446, MC100EP446  
Z = 50 W  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 W  
o
50 W  
50 W  
V
TT  
V
= V 2.0 V  
TT  
CC  
Figure 17. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D Termination of ECL Logic Devices.)  
ORDERING INFORMATION  
Device  
MC10EP446FA  
Package  
Shipping  
LQFP32  
250 Units / Tray  
250 Units / Tray  
MC10EP446FAG  
LQFP32  
(PbFree)  
MC10EP446FAR2  
MC10EP446FAR2G  
LQFP32  
2000 / Tape & Reel  
2000 / Tape & Reel  
LQFP32  
(PbFree)  
MC100EP446FA  
LQFP32  
250 Units / Tray  
250 Units / Tray  
MC100EP446FAG  
LQFP32  
(PbFree)  
MC100EP446FAR2  
MC100EP446FAR2G  
LQFP32  
2000 / Tape & Reel  
2000 / Tape & Reel  
LQFP32  
(PbFree)  
MC10EP446MNG  
QFN32  
74 Units / Rail  
74 Units / Rail  
(PbFree)  
MC100EP446MNG  
MC10EP446MNR4G  
MC100EP446MNR4G  
QFN32  
(PbFree)  
QFN32  
(PbFree)  
1000 / Tape & Reel  
1000 / Tape & Reel  
QFN32  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1672/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
18  
MC10EP446, MC100EP446  
PACKAGE DIMENSIONS  
32 LEAD LQFP  
CASE 873A02  
ISSUE C  
4X  
A
A1  
0.20 (0.008) AB T−U  
Z
32  
25  
1
AE  
AE  
U−  
T−  
P
B
V
B1  
DETAIL Y  
BASE  
METAL  
DETAIL Y  
V1  
17  
8
N
9
4X  
Z−  
0.20 (0.008) AC T−U  
Z
9
F
D
S1  
S
_
8X M  
J
R
DETAIL AD  
G
SECTION AEAE  
AB−  
AC−  
E
C
SEATING  
PLANE  
0.10 (0.004) AC  
W
_
Q
H
K
X
DETAIL AD  
NOTES:  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
0.276 BSC  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION:  
MILLIMETER.  
A
A1  
B
3.500 BSC  
7.000 BSC  
3.500 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
3. DATUM PLANE ABIS LOCATED AT  
BOTTOM OF LEAD AND IS COINCIDENT  
WITH THE LEAD WHERE THE LEAD  
EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND ZTO BE  
DETERMINED AT DATUM PLANE AB.  
5. DIMENSIONS S AND V TO BE  
DETERMINED AT SEATING PLANE AC.  
6. DIMENSIONS A AND B DO NOT  
INCLUDE MOLD PROTRUSION.  
ALLOWABLE PROTRUSION IS 0.250  
(0.010) PER SIDE. DIMENSIONS A AND  
B DO INCLUDE MOLD MISMATCH AND  
ARE DETERMINED AT DATUM PLANE  
AB.  
B1  
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
0.018  
0.057  
0.016  
D
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
E
F
G
H
0.800 BSC  
0.031 BSC  
0.050  
0.090  
0.450  
0.150  
0.200  
0.750  
0.002  
0.004  
0.018  
0.006  
0.008  
0.030  
J
K
_
12 REF  
_
12 REF  
M
N
0.090  
0.160  
0.004  
0.006  
P
0.400 BSC  
1_  
0.016 BSC  
1_  
Q
R
5_  
5_  
0.150  
0.250  
0.006  
0.010  
S
9.000 BSC  
0.354 BSC  
7. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. DAMBAR  
PROTRUSION SHALL NOT CAUSE THE  
D DIMENSION TO EXCEED 0.520 (0.020).  
8. MINIMUM SOLDER PLATE THICKNESS  
SHALL BE 0.0076 (0.0003).  
S1  
V
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
V1  
W
X
9. EXACT SHAPE OF EACH CORNER  
MAY VARY FROM DEPICTION.  
http://onsemi.com  
19  
MC10EP446, MC100EP446  
PACKAGE DIMENSIONS  
QFN32 5*5*1 0.5 P  
CASE 488AM01  
ISSUE O  
A
B
NOTES:  
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM TERMINAL  
PIN ONE  
LOCATION  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
E
MILLIMETERS  
DIM MIN  
0.800 0.900 1.000  
A1 0.000 0.025 0.050  
NOM MAX  
A
2 X  
0.15  
C
TOP VIEW  
A3  
b
D
0.200 REF  
0.180 0.250 0.300  
5.00 BSC  
2 X  
0.15  
C
C
D2 2.950 3.100 3.250  
5.00 BSC  
E2 2.950 3.100 3.250  
E
(A3)  
0.10  
0.08  
e
K
L
0.500 BSC  
0.200 −−−  
0.300 0.400 0.500  
A
−−−  
SEATING  
PLANE  
32 X  
C
A1  
SIDE VIEW  
D2  
C
L
EXPOSED PAD  
32 X  
SOLDERING FOOTPRINT*  
K
9
16  
32 X  
17  
5.30  
8
3.20  
E2  
32 X  
0.63  
1
24  
25  
32  
32 X  
b
e
3.20 5.30  
0.10  
0.05  
C
A
B
C
BOTTOM VIEW  
32 X  
0.28  
28 X  
0.50 PITCH  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC10EP446/D  

相关型号:

MC100EP446FAR2

3.3V/5V 8々Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI

MC100EP446FAR2G

3.3 V/5 V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI

MC100EP446MNG

3.3 V/5 V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI

MC100EP446MNR4G

3.3 V/5 V 8-Bit CMOS/ECL/TTL Data Input Parallel/Serial Converter
ONSEMI

MC100EP451

3.3V / 5VECL 6-Bit Differential Register with Master Reset
ONSEMI

MC100EP451FA

3.3V / 5VECL 6-Bit Differential Register with Master Reset
ONSEMI

MC100EP451FA

100E SERIES, POSITIVE EDGE TRIGGERED D FLIP-FLOP, COMPLEMENTARY OUTPUT, PQFP32, LQFP-32
ROCHESTER

MC100EP451FAG

3.3V / 5VECL 6-Bit Differential Register with Master Reset
ONSEMI

MC100EP451FAG

100E SERIES, POSITIVE EDGE TRIGGERED D FLIP-FLOP, COMPLEMENTARY OUTPUT, PQFP32, LEAD FREE, LQFP-32
ROCHESTER

MC100EP451FAR2

3.3V / 5VECL 6-Bit Differential Register with Master Reset
ONSEMI

MC100EP451FAR2

100E SERIES, POSITIVE EDGE TRIGGERED D FLIP-FLOP, COMPLEMENTARY OUTPUT, PQFP32, LQFP-32
ROCHESTER

MC100EP451FAR2G

3.3V / 5V ECL 6−Bit Differential Register with Master Reset
ONSEMI