MC100LVEP210 [ONSEMI]

Low-Voltage 1:5 Dual Diff.LVECL/LVPECL/LVEPECL/HSTL Clock Driver; 低压1 : 5双Diff.LVECL / LVPECL / LVEPECL / HSTL时钟驱动器
MC100LVEP210
型号: MC100LVEP210
厂家: ONSEMI    ONSEMI
描述:

Low-Voltage 1:5 Dual Diff.LVECL/LVPECL/LVEPECL/HSTL Clock Driver
低压1 : 5双Diff.LVECL / LVPECL / LVEPECL / HSTL时钟驱动器

时钟驱动器
文件: 总8页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MC100LVEP210 is a low skew 1–to–5 dual differential driver,  
designed with clock distribution in mind. The LVECL/LVPECL input  
http://onsemi.com  
signals can be either differential or single–ended if the V  
output is  
BB  
used. The signal is fanned out to 5 identical differential outputs. HSTL  
inputs can be used when the EP210 is operating in LVPECL mode.  
The LVEP210 specifically guarantees low output–to–output skew.  
Optimal design, layout, and processing minimize skew within a device  
and from lot to lot.  
To ensure the tight skew specification is realized, both sides of the  
differential output need to be terminated identically into 50even if  
only one side is being used. When fewer than all ten pairs are used,  
identically terminate all the output pairs on the same package side  
whether used or unused. If no outputs on a single side are used, then  
leave these outputs open (unterminated). This will maintain minimum  
output skew. Failure to do this will result in a 10–20ps loss of skew  
margin (propagation delay) in the output(s) in use.  
32–LEAD TQFP  
FA SUFFIX  
CASE 873A  
MARKING DIAGRAM*  
A
= Assembly Location  
MC100  
LVEP210  
AWLYYWW  
WL = Wafer Lot  
YY = Year  
WW = Work Week  
The MC100LVEP210, as with most other LVECL devices, can be  
operated from a positive V  
supply in LVPECL mode. This allows  
CC  
the LVEP210 to be used for high performance clock distribution in  
+3.3V or +2.5V systems. Single ended input operation is limited to a  
VCC 3.0V in PECL mode, or VEE –3.0V in ECL mode.  
Designers can take advantage of the LVEP210’s performance to  
distribute low skew clocks across the backplane or the board. In a  
LVPECL environment, series or Thevenin line terminations are  
typically used as they require no additional power supplies. For more  
information on using PECL, designers should refer to Application  
Note AN1406/D.  
32  
1
*For additional information, see Application Note  
AND8002/D  
ORDERING INFORMATION  
Device  
Package  
Shipping  
100ps Part–to–Part Skew  
35ps Output–to–Output Skew  
Differential Design  
MC100LVEP210FA  
TQFP  
250 Units/Tray  
MC100LVEP210FAR2 TQFP  
2000 Tape & Reel  
V Output  
BB  
475ps Typical Propagation Delay  
High Bandwidth to 1.5GHz Typical  
LVPECL and HSTL mode: 2.375V to 3.8V V  
with V = 0V  
EE  
CC  
LVECL mode: 0V V  
with V = –2.375V to –3.8V  
CC  
EE  
Internal Input Resistors: Pulldown on D, D  
Pullup and Pulldown on CLK  
ESD Protection: >2KV HBM, >100V MM  
Moisture Sensitivity Level 2  
For Additional Information, See Application Note AND8003/D  
Flammability Rating: UL–94 code V–0 @ 1/8”,  
Oxygen Index 28 to 34  
Transistor Count = 461 devices  
Semiconductor Components Industries, LLC, 1999  
1
Publication Order Number:  
March, 2000 – Rev. 2  
MC100LVEP210/D  
MC100LVEP210  
Qa3 Qa3 Qa4 Qa4 Qb0 Qb0 Qb1 Qb1  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
VCC  
Qa2  
Qa2  
Qa1  
Qa1  
Qa0  
Qa0  
VCC  
VCC  
Qb2  
Qb2  
PIN DESCRIPTION  
PIN  
FUNCTION  
CLKn/CLKn  
Qn0:4/Qn0:4  
VBB  
LVECL/LVPECL/HSTL CLK Inputs  
LVECL/LVPECL Outputs  
Reference Voltage Output  
Positive Supply  
Qb3  
Qb3  
Qb4  
Qb4  
VCC  
MC100LVEP210  
VCC  
VEE  
Negative, 0 Supply  
1
2
3
4
5
6
7
8
VCC NC CLKa CLKa VBB CLKb CLKb VEE  
Figure 1. 32–Lead TQFP Pinout (Top View)  
Warning: All V  
to Power Supply to guarantee proper operation.  
and V  
pins must be externally connected  
EE  
CC  
Qa0  
Qa0  
Qb0  
Qb0  
Qa1  
Qa1  
Qb1  
Qb1  
CLKa  
CLKa  
CLKb  
CLKb  
Qa2  
Qa2  
Qb2  
Qb2  
Qa3  
Qa3  
Qb3  
Qb3  
Qa4  
Qa4  
Qb4  
Qb4  
V
BB  
Figure 2. Logic Symbol  
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
–6.0 to 0  
6.0 to 0  
–6.0 to 0  
6.0 to 0  
Unit  
V
V
V
V
Power Supply (V  
Power Supply (V  
= 0V)  
= 0V)  
VDC  
VDC  
VDC  
VDC  
mA  
EE  
CC  
CC  
EE  
Input Voltage (V  
Input Voltage (V  
Output Current  
= 0V, V not more negative than V )  
EE  
I
I
CC  
I
= 0V, V not more positive than V  
)
CC  
EE  
I
I
Continuous  
Surge  
50  
100  
out  
I
V
Sink/Source Current  
± 0.5  
mA  
°C  
BB  
BB  
T
Operating Temperature Range  
Storage Temperature  
–40 to +85  
–65 to +150  
A
T
°C  
stg  
θ
Thermal Resistance (Junction–to–Ambient)  
Still Air  
500lfpm  
80  
55  
°C/W  
JA  
θ
Thermal Resistance (Junction–to–Case)  
12 to 17  
265  
°C/W  
°C  
JC  
T
Solder Temperature (<2 to 3 Seconds: 245°C desired)  
sol  
* Maximum Ratings are those values beyond which damage to the device may occur.  
Use for inputs of same package only.  
http://onsemi.com  
2
MC100LVEP210  
DC CHARACTERISTICS, ECL/LVECL (V  
= 0V; V  
= –3.3(+0.925, –0.5)V) (Note 5.)  
CC  
EE  
–40°C  
Typ  
70  
25°C  
Typ  
70  
85°C  
Typ  
70  
Symbol  
Characteristic  
Power Supply Current  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
60  
90  
60  
90  
60  
90  
mA  
IEE  
(Note 1.)  
V
V
V
V
Output HIGH Voltage  
(Note 2.)  
–1145 –1020 –895 –1145 –1020 –895 –1145 –1020 –895  
–1995 –1820 –1650 –1995 –1820 –1650 –1995 –1820 –1650  
mV  
mV  
mV  
mV  
OH  
OL  
IH  
Output LOW Voltage  
(Note 2.)  
Input HIGH Voltage  
Single Ended  
–1165  
–1810  
–880 –1165  
–1625 –1810  
–880 –1165  
–1625 –1810  
–880  
Input LOW Voltage  
Single Ended  
–1625  
IL  
V
V
Output Voltage Reference (Note 3.)  
–1525 –1425 –1325 –1525 –1425 –1325 –1525 –1425 –1325  
mV  
V
BB  
Input HIGH Voltage Common Mode  
Range (Note 4.)  
V +1.2  
EE  
0.0  
V +1.2  
EE  
0.0  
V +1.2  
EE  
0.0  
IHCMR  
I
I
Input HIGH Current  
150  
150  
150  
µA  
µA  
IH  
Input LOW Current  
CLK  
CLK  
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.  
1. V  
= 0V, V  
= V  
to V  
, all other pins floating.  
CC  
EE  
EEmin  
EEmax  
2. All loading with 50 ohms to V –2.0 volts.  
3. Single ended input operation is limited V  
4. V  
IHCMR  
5. Input and output parameters vary 1:1 with V  
CC  
–3.0V in ECL/LVECL mode.  
EE  
min varies 1:1 with V , max varies 1:1 with V .  
EE CC  
.
CC  
DC CHARACTERISTICS, LVPECL (V  
= 3.3V ± 0.5V, V  
= 0V) (Note 10.)  
EE  
CC  
–40°C  
Typ  
70  
25°C  
85°C  
Typ  
70  
Symbol  
Characteristic  
Power Supply Current  
Min  
Max  
Min  
Typ  
Max  
Min  
Max  
Unit  
60  
90  
60  
70  
90  
60  
90  
mA  
IEE  
(Note 6.)  
V
V
V
V
Output HIGH Voltage  
(Note 7.)  
2155  
1305  
2135  
1490  
2280  
1480  
2405  
1650  
2420  
1675  
2155  
1305  
2135  
1490  
2280  
1480  
2405  
1650  
2420  
1675  
2155  
1305  
2135  
1490  
2280  
1480  
2405  
1650  
2420  
1675  
mV  
mV  
mV  
mV  
OH  
OL  
IH  
Output LOW Voltage  
(Note 7.)  
Input HIGH Voltage  
Single Ended  
Input LOW Voltage  
Single Ended  
IL  
V
V
Output Voltage Reference (Note 8.)  
1775  
1.2  
1875  
1975  
3.3  
1775  
1.2  
1875  
1975  
3.3  
1775  
1.2  
1875  
1975  
3.3  
mV  
V
BB  
Input HIGH Voltage Common Mode  
Range (Note 9.)  
IHCMR  
I
I
Input HIGH Current  
150  
150  
150  
µA  
µA  
IH  
Input LOW Current  
CLK  
CLK  
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.  
6. V  
= 3.3V ± 0.5V, V  
= 0V, all other pins floating.  
CC  
EE  
7. All loading with 50 ohms to V –2.0 volts.  
CC  
8. Single ended input operation is limited V  
–3.0V in PECL mode.  
CC  
9. V  
min varies 1:1 with V , max varies 1:1 with V .  
IHCMR  
EE CC  
10.Input and output parameters vary 1:1 with V  
.
CC  
http://onsemi.com  
3
MC100LVEP210  
DC CHARACTERISTICS, LVEPECL (V  
= 2.5V ± 0.125V, V  
= 0V) (Note 14.)  
EE  
CC  
–40°C  
Typ  
70  
25°C  
Typ  
70  
85°C  
Typ  
70  
Symbol  
Characteristic  
Power Supply Current  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
60  
90  
60  
90  
60  
90  
mA  
IEE  
(Note 11.)  
V
V
V
V
V
Output HIGH Voltage  
(Note 12.)  
1355  
505  
1335  
690  
1.2  
1480  
680  
1605  
850  
1620  
875  
2.5  
1355  
505  
1335  
690  
1.2  
1480  
680  
1605  
850  
1620  
875  
2.5  
1355  
505  
1335  
690  
1.2  
1480  
680  
1605  
850  
1620  
875  
2.5  
mV  
mV  
mV  
mV  
V
OH  
Output LOW Voltage  
(Note 12.)  
OL  
Input HIGH Voltage  
Single Ended  
IH  
Input LOW Voltage  
Single Ended  
IL  
Input HIGH Voltage Common Mode  
Range (Note 13.)  
IHCMR  
I
I
Input HIGH Current  
150  
150  
150  
µA  
µA  
IH  
Input LOW Current  
CLK  
CLK  
0.5  
–150  
0.5  
–150  
0.5  
–150  
IL  
NOTE: 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The  
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500lfpm is maintained.  
11. V  
= 2.5V, V = 0V, all other pins floating.  
CC  
EE  
12.All loading with 50 ohms to V  
.
EE  
13.V  
min varies 1:1 with V , max varies 1:1 with V .  
IHCMR  
EE CC  
14.Input and output parameters vary 1:1 with V  
.
CC  
DC CHARACTERISTICS, HSTL (V  
= 2.5(–0.125, +1.3)V, V  
= 0V)  
EE  
CC  
–40°C  
25°C  
85°C  
Symbol  
Characteristic  
Input HIGH Voltage  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
mV  
mV  
mV  
mA  
V
IH  
1200  
V
V
Input LOW Voltage  
400  
900  
IL  
Input Crossover Voltage  
680  
I
Power Supply Current (Note 15.)  
= 2.375V to 3.8V, V = 0V, all other pins floating.  
100  
100  
100  
CC  
15.V  
CC  
EE  
AC CHARACTERISTICS (V  
= 0V; V  
EE  
= –2.5V to –3.8V) or (V  
= 2.5V to 3.8V; V  
CC  
CC  
EE = 0V)  
–40°C  
25°C  
85°C  
Symbol  
Characteristic  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
f
f
Maximum Toggle Frequency  
for LVECL and LVPECL  
(Note 16.)  
1.5  
GHz  
maxLVPECL  
Maximum Toggle Frequency  
for HSTL (Note 16.)  
250  
350  
MHz  
ps  
maxHSTL  
t
t
,
Propagation Delay  
Differential  
200  
300  
400  
200  
450  
35  
300  
500  
750  
PLH  
PHL  
t
Within Device Skew  
Duty Cycle Skew (Note 17.)  
TBD  
TBD  
25  
100  
TBD  
TBD  
ps  
SKEW  
t
Cycle–to–Cycle Jitter  
TBD  
800  
170  
TBD  
800  
180  
TBD  
800  
280  
ps  
mV  
ps  
JITTER  
V
Input Voltage Swing (Diff.)  
150  
100  
1200  
270  
150  
100  
1200  
290  
150  
100  
1200  
350  
PP  
t
r
t
f
Output Rise/Fall Times  
(20% – 80%)  
Q
16.F  
max  
guaranteed for functionality only.  
17.Skewismeasuredbetweenoutputsunderidenticaltransitionsofsimilarpathsthroughadevice.Dutycycleskewisdefinedonlyfordifferential  
operation when the delays are measured from the crosspoint of the inputs to the crosspoint of the outputs.  
http://onsemi.com  
4
MC100LVEP210  
PACKAGE DIMENSIONS  
TQFP  
FA SUFFIX  
32–LEAD PLASTIC PACKAGE  
CASE 873A–02  
ISSUE A  
4X  
A
A1  
0.20 (0.008) AB TU  
Z
32  
25  
1
–U–  
V
–T–  
B
AE  
AE  
P
B1  
DETAIL Y  
–Z–  
V1  
17  
8
DETAIL Y  
9
4X  
0.20 (0.008) AC TU  
Z
9
NOTES:  
S1  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE AB– IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T–, –U–, AND Z– TO BE  
DETERMINED AT DATUM PLANE AB.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC–.  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE PROTRUSION  
IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
DETAIL AD  
G
–AB–  
–AC–  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL  
BE 0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
8X M  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
A
A1  
B
3.500 BSC  
7.000 BSC  
3.500 BSC  
1.400 1.600 0.055 0.063  
0.300 0.450 0.012 0.018  
1.350 1.450 0.053 0.057  
0.300 0.400 0.012 0.016  
SECTION AE–AE  
E
C
B1  
C
D
E
F
W
G
H
J
K
M
N
P
0.800 BSC  
0.031 BSC  
Q
H
K
X
0.050 0.150 0.002 0.006  
0.090 0.200 0.004 0.008  
0.500 0.700 0.020 0.028  
12 REF  
0.090 0.160 0.004 0.006  
0.400 BSC 0.016 BSC  
12 REF  
DETAIL AD  
Q
R
1
5
1
5
0.150 0.250 0.006 0.010  
S
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.354 BSC  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
S1  
V
V1  
W
X
http://onsemi.com  
5
MC100LVEP210  
Notes  
http://onsemi.com  
6
MC100LVEP210  
Notes  
http://onsemi.com  
7
MC100LVEP210  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC100LVEP210/D  

相关型号:

MC100LVEP210FA

Low-Voltage 1:5 Dual Diff.LVECL/LVPECL/LVEPECL/HSTL Clock Driver
ONSEMI

MC100LVEP210FAG

2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver
ONSEMI

MC100LVEP210FAR2

Low-Voltage 1:5 Dual Diff.LVECL/LVPECL/LVEPECL/HSTL Clock Driver
ONSEMI

MC100LVEP210FARG

2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver
ONSEMI

MC100LVEP210MNG

2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver
ONSEMI

MC100LVEP210MNR2G

2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver
ONSEMI

MC100LVEP210_06

2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver
ONSEMI

MC100LVEP210_14

2.5V / 3.3V 1:5 Dual Differential ECL/PECL/HSTL Clock Driver
ONSEMI

MC100LVEP34

2.5V / 3.3V ECL /2, /4, /8 Clock Generation Chip
ONSEMI

MC100LVEP34D

2.5V / 3.3V ECL /2, /4, /8 Clock Generation Chip
ONSEMI

MC100LVEP34DG

2.5V / 3.3V ECL ±2, ±4, ±8 Clock Generation Chip
ONSEMI

MC100LVEP34DR2

2.5V / 3.3V ECL /2, /4, /8 Clock Generation Chip
ONSEMI