MC10E196FNR2G [ONSEMI]

5V ECL Programmable Delay Chip; 5V ECL可编程延迟芯片
MC10E196FNR2G
型号: MC10E196FNR2G
厂家: ONSEMI    ONSEMI
描述:

5V ECL Programmable Delay Chip
5V ECL可编程延迟芯片

延迟线
文件: 总12页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC10E196, MC100E196  
5VꢀECL Programmable  
Delay Chip  
Description  
The MC10E/100E196 is a programmable delay chip (PDC)  
designed primarily for very accurate differential ECL input edge  
placement applications.  
http://onsemi.com  
The delay section consists of a chain of gates and a linear ramp delay  
adjust organized as shown in the logic symbol. The first two delay  
elements feature gates that have been modified to have delays  
1.25 and 1.5 times the basic gate delay of approximately 80 ps. These  
two elements provide the E196 with a digitally-selectable resolution  
of approximately 20 ps. The required device delay is selected by the  
seven address inputs D[0:6], which are latched on chip by a high signal  
on the latch enable (LEN) control.  
PLCC28  
FN SUFFIX  
CASE 776  
MARKING DIAGRAM*  
1
The FTUNE input takes an analog voltage and applies it to an  
internal linear ramp for reducing the 20 ps Least Significant Bit (LSB)  
minimum resolution still further. The FTUNE input is what  
differentiates the E196 from the E195.  
MCxxxE196FNG  
AWLYYWW  
An eighth latched input, D7, is provided for cascading multiple  
PDC’s for increased programmable range. The cascade logic allows  
full control of multiple PDC’s, at the expense of only a single added  
line to the data bus for each additional PDC, without the need for any  
external gating.  
xxx  
A
WL  
YY  
WW  
G
= 10 or 100  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
The V pin, an internally generated voltage supply, is available to  
BB  
this device only. For single-ended input conditions, the unused  
differential input is connected to V as a switching reference voltage.  
BB  
V
BB  
may also rebias AC coupled inputs. When used, decouple V  
BB  
and V via a 0.01 mF capacitor and limit current sourcing or sinking  
CC  
*For additional marking information, refer to  
Application Note AND8002/D.  
to 0.5 mA. When not used, V should be left open.  
BB  
The 100 Series contains temperature compensation.  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
Features  
2.0 ns Worst Case Delay Range  
20 ps/Delay Step Resolution  
Linear Input for Tighter Resolution  
>1.0 GHz Bandwidth  
On Chip Cascade Circuitry  
Meets or Exceeds JEDEC Spec EIA/JESD78 IC  
Latchup Test  
Moisture Sensitivity Level: Pb = 1; PbFree = 3  
For Additional Information, see Application Note  
AND8003/D  
Flammability Rating: UL 94 V0 @ 1.125 in,  
Oxygen Index: 28 to 34  
Transistor Count = 425 devices  
PbFree Packages are Available*  
PECL Mode Operating Range: V = 4.2 V to 5.7 V  
CC  
with V = 0 V  
EE  
NECL Mode Operating Range: V = 0 V  
CC  
with V = 4.2 V to 5.7 V  
EE  
Internal Input 50 kW Pulldown Resistors  
ESD Protection: Human Body Model; > 1 kV,  
Machine Model; > 75 V  
*For additional information on our PbFree strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
November, 2006 Rev. 9  
MC10E196/D  
MC10E196, MC100E196  
LOGIC DIAGRAM AND PINOUT ASSIGNMENT  
Table 1. PIN DESCRIPTION  
PIN  
D2  
D3 D4 D5 D6 D7 NC  
FUNCTION  
25  
24  
23  
22  
21  
20  
19  
IN/IN  
ECL Signal Input  
FTUNE  
NC  
D1  
D0  
26  
27  
18  
17  
EN  
ECL Input Enable (H Forces Q Low)  
ECL MUX Select Inputs  
ECL Signal Output  
D[0:7]  
Q/Q  
LEN  
ECL Latch Enable  
V
LEN 28  
16  
15  
CC  
SET MIN  
SET MAX  
CASCADE  
FTUNE  
ECL Min Delay Set  
ECL Max Delay Set  
ECL Cascade Signal  
ECL Linear Voltage Input  
Reference Voltage Output  
Positive Supply  
V
V
CCO  
EE  
1
2
3
4
MC10E196  
MC100E196  
IN  
IN  
Q
Q
V
14  
13  
12  
V
V
V
BB  
CC  
EE  
, V  
CCO  
Negative Supply  
No Connect  
V
BB  
CCO  
NC  
5
6
7
8
9
10  
11  
Table 2. TRUTH TABLE  
NC NC EN  
EN  
EN  
L
H
L
Q = IN  
Q Logic Low  
* All V and V  
pins are tied together on the die.  
CCO  
CC  
LEN  
Pass Through D[0:10]  
Latch D[0:10]  
Warning: All V , V  
, and V pins must be externally  
EE  
CC CCO  
connected to Power Supply to guarantee proper operation.  
LEN  
H
L
SETMIN  
SETMIN  
SETMAX  
SETMAX  
Normal Mode  
Figure 1. Pinout: PLCC28  
(Top View)  
H
L
Min Delay Path  
Normal Mode  
H
Max Delay Path  
V
BB  
FTUNE  
1
0
0
0
0
0
0
0
IN  
4 GATES  
8 GATES  
16 GATES  
IN  
1
1
1
1
1
1
1
1
1
1
Q
Q
0
EN  
* 1.25  
* 1.5  
1
1
LINEAR  
RAMP  
V
EE  
CASCADE  
LEN  
LATCH  
Q
LEN  
SET MIN  
SET MAX  
7 BIT LATCH  
D
CASCADE  
CASCADE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
* delays are 25% or 50% longer than  
* standard (standard 80 ps)  
Figure 2. Logic Diagram Simplified  
http://onsemi.com  
2
MC10E196, MC100E196  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
V
V
PECL Mode Power Supply  
NECL Mode Power Supply  
V
V
8
CC  
EE  
I
EE  
CC  
= 0 V  
8  
V
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V V  
6
6  
V
V
EE  
CC  
I
I
CC  
EE  
V V  
I
I
Output Current  
Continuous  
Surge  
50  
mA  
mA  
out  
100  
V
Sink/Source  
BB  
± 0.5  
mA  
°C  
BB  
T
Operating Temperature Range  
Storage Temperature Range  
0 to +85  
A
T
65 to +150  
°C  
stg  
q
Thermal Resistance (JunctiontoAmbient) 0 lfpm  
500 lfpm  
PLCC28  
PLCC28  
63.5  
43.5  
°C/W  
°C/W  
JA  
q
Thermal Resistance (JunctiontoCase)  
Standard Board  
PLCC28  
22 to 26  
°C/W  
JC  
V
PECL Operating Range  
NECL Operating Range  
4.2 to 5.7  
5.7 to 4.2  
V
V
EE  
T
sol  
Wave Solder  
Pb  
PbFree  
265  
265  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
3
MC10E196, MC100E196  
Table 4. 10E SERIES PECL DC CHARACTERISTICS V  
= 5.0 V; V = 0.0 V (Note 1)  
EE  
CCx  
0°C  
25°C  
Typ  
85°C  
Typ  
Min  
Typ  
130  
Max  
156  
Min  
Max  
156  
Min  
Max  
156  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
V
I
130  
130  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 2)  
Output LOW Voltage (Note 2)  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Output Voltage Reference  
3980  
3050  
3830  
3050  
3.62  
2.2  
4070  
3210  
3995  
3285  
4160  
3370  
4160  
3520  
3.74  
4.6  
4020  
3050  
3870  
3050  
3.65  
2.2  
4105  
3210  
4030  
3285  
4190  
3370  
4190  
3520  
3.75  
4.6  
4090  
3050  
3940  
3050  
3.69  
2.2  
4185  
3227  
4110  
3302  
4280  
3405  
4280  
3555  
3.81  
4.6  
OH  
OL  
IH  
IL  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration) (Note 3)  
V
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
IL  
0.5  
0.3  
0.5  
0.25  
0.3  
0.2  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
1. Input and output parameters vary 1:1 with V . V can vary 0.46 V / +0.06 V.  
CC  
EE  
2. Outputs are terminated through a 50 W resistor to V 2.0 V.  
CC  
3. V  
min varies 1:1 with V , max varies 1:1 with V  
.
IHCMR  
EE  
CC  
Table 5. 10E SERIES NECL DC CHARACTERISTICS V  
= 0.0 V; V = 5.0 V (Note 4)  
EE  
CCx  
0°C  
Typ  
130  
1020 930  
25°C  
Typ  
85°C  
Typ  
Min  
Max  
156  
Min  
Max  
156  
Min  
Max  
156  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
I
130  
130  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 5)  
Output LOW Voltage (Note 5)  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Output Voltage Reference  
840  
980  
895  
810  
910  
815  
720  
OH  
OL  
1950 1790 1630 1950 1790 1630 1950 1773 1595 mV  
1170 1005 840 1130 970 810 1060 890 720 mV  
1950 1715 1480 1950 1715 1480 1950 1698 1445 mV  
IH  
IL  
1.38  
2.8  
1.27 1.35  
1.25 1.31  
1.19  
0.4  
V
V
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration) (Note 6)  
0.4  
2.8  
0.4  
2.8  
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
IL  
0.5  
0.3  
0.5  
0.065  
0.3  
0.2  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
4. Input and output parameters vary 1:1 with V . V can vary 0.46 V / +0.06 V.  
CC  
EE  
5. Outputs are terminated through a 50 W resistor to V 2.0 V.  
CC  
6. V  
min varies 1:1 with V , max varies 1:1 with V  
.
IHCMR  
EE  
CC  
http://onsemi.com  
4
 
MC10E196, MC100E196  
Table 6. 100E SERIES PECL DC CHARACTERISTICS V  
= 5.0 V; V = 0.0 V (Note 7)  
EE  
CCx  
0°C  
25°C  
Typ  
85°C  
Typ  
Min  
Typ  
130  
Max  
156  
Min  
Max  
156  
Min  
Max  
179  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
V
I
130  
150  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 8)  
Output LOW Voltage (Note 8)  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Output Voltage Reference  
3975  
3190  
3835  
3190  
3.62  
2.2  
4050  
3295  
3975  
3355  
4120  
3380  
4120  
3525  
3.74  
4.6  
3975  
3190  
3835  
3190  
3.62  
2.2  
4050  
3255  
3975  
3355  
4120  
3380  
4120  
3525  
3.74  
4.6  
3975  
3190  
3835  
3190  
3.62  
2.2  
4050  
3260  
3975  
3355  
4120  
3380  
4120  
3525  
3.74  
4.6  
OH  
OL  
IH  
IL  
BB  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 9)  
V
IHCMR  
I
I
Input HIGH Current  
Input LOW Current  
150  
150  
150  
mA  
mA  
IH  
IL  
0.5  
0.3  
0.5  
0.25  
0.5  
0.2  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
7. Input and output parameters vary 1:1 with V . V can vary 0.46 V / +0.8 V.  
CC  
EE  
8. Outputs are terminated through a 50 W resistor to V 2.0 V.  
CC  
9. V  
min varies 1:1 with V , max varies 1:1 with V  
.
IHCMR  
EE  
CC  
Table 7. 100E SERIES NECL DC CHARACTERISTICS V  
= 0.0 V; V = 5.0 V (Note 10)  
EE  
CCx  
0°C  
Typ  
130  
25°C  
Typ  
130  
85°C  
Typ  
150  
Min  
Max  
Min  
Max  
Min  
Max  
179  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
I
156  
156  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 11)  
Output LOW Voltage (Note 11)  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Output Voltage Reference  
1025 950  
880 1025 950  
880 1025 950  
880  
OH  
OL  
1810 1705 1620 1810 1745 1620 1810 1740 1620 mV  
1165 1025 880 1165 1025 880 1165 1025 880 mV  
1810 1645 1475 1810 1645 1475 1810 1645 1475 mV  
IH  
IL  
1.38  
1.26 1.38  
1.26 1.38  
1.26  
0.4  
V
V
BB  
Input HIGH Voltage Common Mode Range 2.8  
0.4  
2.8  
0.4  
2.8  
IHCMR  
(Differential Configuration) (Note 12)  
I
I
Input HIGH Current  
150  
150  
150  
mA  
mA  
IH  
IL  
Input LOW Current  
0.5  
0.3  
0.5  
0.25  
0.5  
0.2  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
10.Input and output parameters vary 1:1 with V . V can vary 0.46 V / +0.8 V.  
CC  
EE  
11. Outputs are terminated through a 50 W resistor to V 2.0 V.  
CC  
12.V  
min varies 1:1 with V , max varies 1:1 with V  
.
IHCMR  
EE  
CC  
http://onsemi.com  
5
 
MC10E196, MC100E196  
Table 8. AC CHARACTERISTICS V  
= 5.0 V; V = 0.0 V or V  
= 0.0 V; V = 5.0 V (Note 13)  
CCx EE  
CCx  
EE  
0°C  
25°C  
Typ  
85°C  
Min  
Typ  
Max  
Min  
Max  
Min  
Typ  
Max  
Symbol  
Characteristic  
Unit  
GHz  
ps  
f
Maximum Toggle Frequency  
>1.0  
MAX  
t
t
Propagation Delay  
PLH  
PHL  
1210  
3320  
1250  
300  
1360  
3570  
1450  
450  
1510  
3820  
1650  
700  
1240  
3380  
1275  
300  
1390  
3630  
1475  
450  
1540  
3880  
1675  
700  
1440  
3920  
1350  
300  
1590  
4270  
1650  
450  
1765  
4720  
1950  
700  
IN to Q; Tap = 0  
IN to Q; Tap = 127  
EN to Q; Tap = 0  
D7 to CASCADE  
t
Programmable Range  
(max) t (min)  
ps  
ps  
RANGE  
2000  
2175  
2050  
2240  
2375  
2580  
t
PD  
PD  
Dt  
Step Delay (Note 14)  
17  
34  
17.5  
35  
21  
42  
D0 High  
D1 High  
D2 High  
D3 High  
D4 High  
D5 High  
D6 High  
55  
115  
250  
505  
1000  
68  
105  
180  
325  
620  
1190  
55  
115  
250  
515  
1030  
70  
105  
180  
65  
140  
305  
620  
1240  
84  
120  
205  
136  
272  
544  
1088  
140  
280  
560  
1120  
168  
336  
672  
1344  
325  
380  
620  
1220  
740  
1450  
Lin  
Linearity (Note 15)  
Duty Cycle Skew  
D1  
D0  
D1  
D0  
D1  
D0  
t
ps  
SKEW  
±30  
±30  
±30  
t
t  
(Note 16)  
PHL PLH  
t
t
Random Clock Jitter (RMS)  
Setup Time  
< 5  
< 5  
< 5  
ps  
ps  
JITTER  
s
200  
800  
200  
0
200  
800  
200  
0
200  
800  
200  
0
D to LEN  
D to IN (Note 17)  
EN to IN (Note 18)  
t
t
Hold Time  
ps  
ps  
h
500  
0
250  
500  
0
250  
500  
0
250  
LEN to D  
IN to EN (Note 19)  
Release Time  
R
300  
800  
800  
300  
800  
800  
300  
800  
800  
EN to IN (Note 20)  
SET MAX to LEN  
SET MIN to LEN  
t
Random Clock Jitter (RMS)  
Output Rise/Fall Time  
< 5  
< 5  
< 5  
ps  
ps  
jit  
t
t
r
f
125  
300  
225  
450  
325  
650  
125  
300  
225  
450  
325  
650  
125  
300  
225  
450  
325  
650  
2080% (Q)  
2080% (CASCADE)  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
13.10 Series: V can vary 0.46 V / +0.06 V.  
EE  
100 Series: V can vary 0.46 V / +0.8 V.  
EE  
14.Specification limits represent the amount of delay added with the assertion of each individual delay control pin. The various combinations  
of asserted delay control inputs will typically realize D0 resolution steps across the specified programmable range.  
15.The linearity specification guarantees to which delay control input the programmable steps will be monotonic (i.e. increasing delay steps for  
increasing binary counts on the control inputs Dn). Typically the device will be monotonic to the D0 input, however under worst case conditions  
and process variation, delays could decrease slightly with increasing binary counts when the D0 input is the LSB. With the D1 input as the  
LSB the device is guaranteed to be monotonic over all specified environmental conditions and process variation.  
16.Duty cycle skew guaranteed only for differential operation measured from the cross point of the input to the cross point of the output.  
17.This setup time defines the amount of time prior to the input signal the delay tap of the device must be set.  
18.This setup time is the minimum time that EN must be asserted prior to the next transition of IN/IN to prevent an output response greater than  
±75 mV to that IN/IN transition.  
19.This hold time is the minimum time that EN must remain asserted after a negative going IN or positive going IN to prevent an output response  
greater than ±75 mV to that IN/IN transition.  
20.This release time is the minimum time that EN must be deasserted prior to the next IN/IN transition to ensure an output response that meets  
the specified IN to Q propagation delay and transition times.  
http://onsemi.com  
6
 
MC10E196, MC100E196  
ANALOG INPUT CHARACTERISTICS  
FTUNE = V to V  
CC  
EE  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
60  
40  
20  
0
10  
0
−4.5  
−3.5  
−2.5  
−1.5  
−0.5  
−5  
−4  
−3  
−2  
−1  
0
FTUNE VOLTAGE (V)  
FTUNE VOLTAGE (V)  
Propagation Delay versus FTUNE Voltage  
(100E196)  
Propagation Delay versus FTUNE Voltage  
(10E196)  
USING THE FTUNE ANALOG INPUT  
The analog FTUNE pin on the E196 device is intended to  
add more delay in a tunable gate to enhance the 20 ps  
resolution capabilities of the fully digital E195. The level of  
resolution obtained is dependent on the number of  
increments applied to the appropriate range on the FTUNE  
pin.  
To provide this further level of resolution (See Logic  
Diagram), the FTUNE pin must be capable of adjusting the  
additional delay finer than the 20 ps digital resolution. From  
the provided graphs one sees that this requirement is easily  
achieved as over the entire FTUNE voltage range a 100 ps  
additional delay can be achieved. This extra analog range  
ensures that the FTUNE pin will be capable even under  
worst case conditions of covering the digital resolution.  
Typically the analog input will be driven by an external DAC  
to provide a digital control with very fine analog output  
steps. The final resolution of the device will be dependent on  
the width of the DAC chosen.  
To determine the voltage range necessary for the FTUNE  
input, the graphs provided should be used. As an example if  
a tuning range of 40 ps is selected to cover worst case  
conditions and ensure coverage of the digital range, from the  
100E196 graph a voltage range of 3.25 V to 4.0 V would  
be necessary on the FTUNE pin. Obviously there are  
numerous voltage ranges which can be used to cover a given  
delay range, users are given the flexibility to determine  
which one best fits their designs.  
one more address line per added E196. Obviously cascading  
multiple PDC’s will result in a larger programmable range,  
however, this increase is at the expense of a longer minimum  
delay.  
Figure 3 illustrates the interconnect scheme for  
cascading two E196’s. As can be seen, this scheme can  
easily be expanded for larger E196 chains. The D7 input of  
the E196 is the cascade control pin. With the interconnect  
scheme of Figure 3 when D7 is asserted it signals the need  
for a larger programmable range than is achievable with a  
single device.  
An expansion of the latch section of the block diagram is  
pictured below. Use of this diagram will simplify the  
explanation of how the cascade circuitry works. When D7  
of chip #1 above is low the cascade output will also be low  
while the cascade bar output will be a logical high. In this  
condition the SET MIN pin of chip #2 will be asserted and  
thus all of the latches of chip #2 will be reset and the device  
will be set at its minimum delay. Since the RESET and SET  
inputs of the latches are overriding any changes on the  
A0A6 address bus will not affect the operation of chip #2.  
Chip #1 on the other hand will have both SET MIN and  
SET MAX de-asserted so that its delay will be controlled  
entirely by the address bus A0A6. If the delay needed is  
greater than can be achieved with 31.75 gate delays  
(1111111 on the A0A6 address bus) D7 will be asserted to  
signal the need to cascade the delay to the next E196 device.  
When D7 is asserted the SET MIN pin of chip #2 will be  
de-asserted and the delay will be controlled by the A0A6  
address bus. Chip #1 on the other hand will have its SET  
MAX pin asserted resulting in the device delay to be  
independent of the A0A6 address bus.  
Cascading Multiple E196’s  
To increase the programmable range of the E196 internal  
cascade circuitry has been included. This circuitry allows for  
the cascading of multiple E196’s without the need for any  
external gating. Furthermore this capability requires only  
http://onsemi.com  
7
MC10E196, MC100E196  
When the SET MAX pin of chip #1 is asserted the D0 and  
When cascading multiple PDC’s it will prove more cost  
effective to use a single E196 for the Most Significant Bit  
(MSB) of the chain while using E195 for the lower order  
bits. This is due to the fact that only one fine tune input is  
needed to further reduce the delay step resolution.  
D1 latches will be reset while the rest of the latches will be  
set. In addition, to maintain monotonicity an additional gate  
delay is selected in the cascade circuitry. As a result when D7  
of chip #1 is asserted the delay increases from 31.75 gates  
to 32 gates. A 32 gate delay is the maximum delay setting for  
the E196.  
ADDRESS BUS (A0−A6)  
LINEAR  
INPUT  
A7  
D1  
FTUNE  
D1  
FTUNE  
D0  
D0  
E196  
Chip #1  
E196  
Chip #2  
V
V
LEN  
LEN  
CC  
CC  
V
V
V
V
CC0  
Q
CC0  
Q
V
V
EE  
EE  
IN  
IN  
IN  
IN  
INPUT  
OUTPUT  
Q
Q
CC0  
CC0  
V
V
BB  
BB  
Figure 3. Cascading Interconnect Architecture  
TO SELECT MULTIPLEXERS  
BIT 0  
BIT 1  
D1  
BIT 2  
BIT 3  
D3  
BIT 4  
BIT 5  
BIT 6  
D6  
BIT 7  
CASCADE  
CASCADE  
D0  
Q0  
Q1  
D2  
Q2  
Q3  
D4  
Q4  
D5  
Q5  
Q6  
D7  
Q7  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
Reset Reset  
LEN  
Reset Reset  
SET MIN  
SET MAX  
Figure 4. Expansion of the Latch Section of the E196 Block Diagram  
http://onsemi.com  
8
MC10E196, MC100E196  
30  
1600  
1575  
Note:  
All Taps Selected  
SET = H, Temp. = 0°C  
25  
20  
1550  
1525  
1500  
15  
10  
5
1475  
1450  
1425  
1400  
1375  
1350  
1325  
1300  
0
5  
10  
15  
5.5  
5.3  
5.1  
4.9  
, (V)  
4.7  
4.5  
4.3  
0
0
0
10  
20  
30 40 50 60  
70  
80 90 100  
V
Temperature (°C)  
EE  
Figure 5. Change in Delay vs. Change in  
Supply Voltage  
Figure 6. Delay vs. Temperature (Fixed Path)  
4400  
4300  
4200  
4100  
4000  
3900  
3800  
3700  
3600  
2800  
2000  
1200  
85°C  
0°C  
3600  
3500  
3400  
0
10  
20  
30 40 50 60  
70  
80 90 100  
32  
64  
96  
128  
Temperature (°C)  
Tap Delay  
Figure 7. Delay vs. Temperature (Max. Delay).  
Figure 8. 100E196 Temperature Effects on  
Delay.  
3900  
3400  
2900  
88  
84  
80  
76  
72  
68  
2400  
1900  
1400  
64  
0
10  
20  
30 40 50 60  
70  
80 90 100  
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Tap Selection  
Figure 9. Delay vs. Temperature (Per Gate).  
Figure 10. E195 Delay Linearity.  
http://onsemi.com  
9
MC10E196, MC100E196  
Z = 50 W  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 W  
o
50 W  
50 W  
V
TT  
V
= V 2.0 V  
TT  
CC  
Figure 11. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D Termination of ECL Logic Devices.)  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC10E196FN  
PLCC28  
37 Units / Rail  
37 Units / Rail  
MC10E196FNG  
PLCC28  
(PbFree)  
MC10E196FNR2  
PLCC28  
500 / Tape & Reel  
500 / Tape & Reel  
MC10E196FNR2G  
PLCC28  
(PbFree)  
MC100E196FN  
PLCC28  
37 Units / Rail  
37 Units / Rail  
MC100E196FNG  
PLCC28  
(PbFree)  
MC100E196FNR2  
MC100E196FNR2G  
PLCC28  
500 / Tape & Reel  
500 / Tape & Reel  
PLCC28  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1672/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
10  
MC10E196, MC100E196  
PACKAGE DIMENSIONS  
PLCC28  
FN SUFFIX  
PLASTIC PLCC PACKAGE  
CASE 77602  
ISSUE E  
M
S
S
0.007 (0.180)  
T
L−M  
N
B
Y BRK  
D
N−  
M
S
S
N
0.007 (0.180)  
T
L−M  
U
Z
M−  
L−  
W
D
S
S
S
N
0.010 (0.250)  
T
L−M  
X
G1  
V
28  
1
VIEW DD  
M
S
S
S
A
0.007 (0.180)  
0.007 (0.180)  
T
L−M  
L−M  
N
M
S
S
N
0.007 (0.180)  
T
L−M  
H
Z
M
S
T
N
R
K1  
C
E
0.004 (0.100)  
G
K
SEATING  
PLANE  
T−  
J
M
S
S
N
0.007 (0.180)  
T
L−M  
F
VIEW S  
G1  
S
S
S
N
0.010 (0.250)  
T
L−M  
VIEW S  
NOTES:  
INCHES  
MILLIMETERS  
1. DATUMS −L−, −M−, AND −N− DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM −T−, SEATING PLANE.  
3. DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALLOWABLE MOLD FLASH IS  
0.010 (0.250) PER SIDE.  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
5. CONTROLLING DIMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASTIC BODY.  
DIM MIN  
MAX  
0.495  
0.495  
0.180  
0.110  
0.019  
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
A
B
C
E
F
0.485  
0.485  
0.165  
0.090  
0.013  
2.29  
0.33  
2.79  
0.48  
G
H
J
0.050 BSC  
1.27 BSC  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
0.032  
−−−  
−−−  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
−−−  
0.81  
−−−  
K
R
U
V
W
X
Y
Z
−−−  
0.456  
0.456  
0.048  
0.048  
0.056  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10  
−−− 0.020  
10  
2
2
_
_
_
_
G1 0.410  
K1 0.040  
0.430  
−−−  
10.42  
1.02  
10.92  
−−−  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
http://onsemi.com  
11  
MC10E196, MC100E196  
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC10E196/D  

相关型号:

MC10E196_06

5V ECL Programmable Delay Chip
ONSEMI

MC10E197

DATA SEPARATOR
ONSEMI

MC10E197FN

DATA SEPARATOR
MOTOROLA

MC10E197FN

5V ECL Data Separator
ONSEMI

MC10E197FNR2

5V ECL Data Separator
ONSEMI

MC10E197_06

5V ECL Data Separator
ONSEMI

MC10E211

1:6 DIFFERENTIAL CLOCK DISTRIBUTION CHIP
ONSEMI

MC10E211FN

1:6 DIFFERENTIAL CLOCK DISTRIBUTION CHIP
MOTOROLA

MC10E211FN

5V ECL 1:6 Differential Clock Distribution Chip
ONSEMI

MC10E211FNG

5V ECL 1:6 Differential Clock Distribution Chip
ONSEMI

MC10E211FNR2

5V ECL 1:6 Differential Clock Distribution Chip
ONSEMI

MC10E211FNR2G

5V ECL 1:6 Differential Clock Distribution Chip
ONSEMI