MC14536 [ONSEMI]

Programmable Timer; 可编程定时器
MC14536
型号: MC14536
厂家: ONSEMI    ONSEMI
描述:

Programmable Timer
可编程定时器

文件: 总16页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MC14536B programmable timer is a 24–stage binary ripple  
counter with 16 stages selectable by a binary code. Provisions for an  
on–chip RC oscillator or an external clock are provided. An on–chip  
monostable circuit incorporating a pulse–type output has been  
included. By selecting the appropriate counter stage in conjunction  
with the appropriate input clock frequency, a variety of timing can be  
achieved.  
http://onsemi.com  
MARKING  
DIAGRAMS  
0
24  
24 Flip–Flop Stages — Will Count From 2 to 2  
Last 16 Stages Selectable By Four–Bit Select Code  
8–Bypass Input Allows Bypassing of First Eight Stages  
Set and Reset Inputs  
16  
PDIP–16  
P SUFFIX  
CASE 648  
MC14536BCP  
AWLYYWW  
Clock Inhibit and Oscillator Inhibit Inputs  
On–Chip RC Oscillator Provisions  
1
16  
On–Chip Monostable Output Provisions  
Clock Conditioning Circuit Permits Operation With Very Long Rise  
and Fall Times  
14536B  
SOIC–16  
DW SUFFIX  
CASE 751G  
Test Mode Allows Fast Test Sequence  
AWLYYWW  
Supply Voltage Range = 3.0 Vdc to 18 Vdc  
1
Capable of Driving Two Low–power TTL Loads or One Low–power  
16  
Schottky TTL Load Over the Rated Temperature Range  
SOEIAJ–16  
F SUFFIX  
CASE 966  
MC14536B  
AWLYWW  
1
MAXIMUM RATINGS (Voltages Referenced to V ) (Note 2.)  
SS  
Symbol  
Parameter  
Value  
Unit  
V
A
= Assembly Location  
V
DD  
DC Supply Voltage Range  
0.5 to +18.0  
WL or L = Wafer Lot  
YY or Y = Year  
WW or W = Work Week  
V , V  
in out  
Input or Output Voltage Range  
(DC or Transient)  
0.5 to V + 0.5  
V
DD  
I , I  
in out  
Input or Output Current  
(DC or Transient) per Pin  
±10  
mA  
ORDERING INFORMATION  
P
Power Dissipation,  
per Package (Note 3.)  
500  
mW  
D
Device  
Package  
PDIP–16  
SOIC–16  
Shipping  
T
A
Operating Temperature Range  
Storage Temperature Range  
55 to +125  
65 to +150  
260  
°C  
°C  
°C  
MC14536BCP  
MC14536BDW  
2000/Box  
47/Rail  
T
stg  
T
Lead Temperature  
(8–Second Soldering)  
L
MC14536BDWR2  
MC14536BF  
SOIC–16 1000/Tape & Reel  
SOEIAJ–16 See Note 1.  
2. Maximum Ratings are those values beyond which damage to the device  
may occur.  
3. Temperature Derating:  
1. For ordering information on the EIAJ version of  
the SOIC packages, please contact your local  
ON Semiconductor representative.  
Plastic “P and D/DW” Packages: – 7.0 mW/ C From 65 C To 125 C  
This device contains protection circuitry to guard against damage due to high  
static voltages or electric fields. However, precautions must be taken to avoid  
applications of any voltage higher than maximum rated voltages to this  
high–impedancecircuit. For proper operation, V and V should be constrained  
in  
out  
to the range V  
(V or V  
)
V
DD  
.
SS  
in  
out  
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,  
either V or V ). Unused outputs must be left open.  
SS  
DD  
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
March, 2000 – Rev. 5  
MC14536B/D  
MC14536B  
PIN ASSIGNMENT  
SET  
RESET  
1
2
3
4
5
6
7
8
16  
V
DD  
15 MONO IN  
14 OSC INH  
13 DECODE  
IN 1  
OUT 1  
OUT 2  
12  
11  
10  
9
D
C
B
A
8–BYPASS  
CLOCK INH  
V
SS  
BLOCK DIAGRAM  
CLOCK INH.  
7
RESET SET 8 BYPASS  
2
1
6
OSC. INHIBIT 14  
STAGES 9 THRU 24  
STAGES  
1 THRU 8  
IN  
1
Q
9
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
3
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
4
OUT  
5
A
B
C
D
9
OUT  
2
1
10  
11  
12  
DECODER  
V
DD  
= PIN 16  
V
SS  
= PIN 8  
DECODE  
OUT  
MONOSTABLE  
MULTIVIBRATOR  
MONO–IN 15  
13  
http://onsemi.com  
2
MC14536B  
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V  
)
SS  
– 55 C  
25 C  
125 C  
V
Vdc  
DD  
(4.)  
Characteristic  
Output Voltage  
Symbol  
Unit  
Min  
Max  
Min  
Typ  
Max  
Min  
Max  
“0” Level  
“1” Level  
“0” Level  
V
OL  
5.0  
10  
15  
0.05  
0.05  
0.05  
0
0
0
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
Vdc  
V
in  
= V or 0  
DD  
V
OH  
5.0  
10  
15  
4.95  
9.95  
14.95  
4.95  
9.95  
14.95  
5.0  
10  
15  
4.95  
9.95  
14.95  
Vdc  
Vdc  
V
in  
= 0 or V  
DD  
Input Voltage  
(V = 4.5 or 0.5 Vdc)  
V
IL  
5.0  
10  
15  
1.5  
3.0  
4.0  
2.25  
4.50  
6.75  
1.5  
3.0  
4.0  
1.5  
3.0  
4.0  
O
(V = 9.0 or 1.0 Vdc)  
O
(V = 13.5 or 1.5 Vdc)  
O
“1” Level  
V
IH  
Vdc  
(V = 0.5 or 4.5 Vdc)  
5.0  
10  
15  
3.5  
7.0  
11  
3.5  
7.0  
11  
2.75  
5.50  
8.25  
3.5  
7.0  
11  
O
(V = 1.0 or 9.0 Vdc)  
O
(V = 1.5 or 13.5 Vdc)  
O
Output Drive Current  
I
mAdc  
OH  
(V = 2.5 Vdc)  
Source  
Pins 4 & 5  
5.0  
5.0  
10  
– 1.2  
– 0.25  
– 0.62  
– 1.8  
– 1.0  
– 0.25  
– 0.5  
– 1.5  
– 1.7  
– 0.36  
– 0.9  
– 3.5  
– 0.7  
– 0.14  
– 0.35  
– 1.1  
OH  
(V = 4.6 Vdc)  
OH  
(V = 9.5 Vdc)  
OH  
(V = 13.5 Vdc)  
OH  
15  
(V = 2.5 Vdc)  
Source  
Pin 13  
5.0  
5.0  
10  
– 3.0  
– 0.64  
– 1.6  
– 4.2  
– 2.4  
– 0.51  
– 1.3  
– 4.2  
– 0.88  
– 2.25  
– 8.8  
– 1.7  
– 0.36  
– 0.9  
– 2.4  
mAdc  
mAdc  
OH  
(V = 4.6 Vdc)  
OH  
(V = 9.5 Vdc)  
OH  
(V = 13.5 Vdc)  
OH  
15  
– 3.4  
(V = 0.4 Vdc)  
Sink  
I
OL  
5.0  
10  
15  
0.64  
1.6  
4.2  
0.51  
1.3  
3.4  
0.88  
2.25  
8.8  
0.36  
0.9  
2.4  
OL  
(V = 0.5 Vdc)  
OL  
(V = 1.5 Vdc)  
OL  
Input Current  
Input Capacitance  
I
15  
±0.1  
±0.00001  
±0.1  
±1.0  
µAdc  
in  
C
5.0  
7.5  
pF  
in  
(V = 0)  
in  
Quiescent Current  
(Per Package)  
I
5.0  
10  
15  
5.0  
10  
20  
0.010  
0.020  
0.030  
5.0  
10  
20  
150  
300  
600  
µAdc  
µAdc  
DD  
(5.) (6.)  
Total Supply Current  
I
T
5.0  
10  
15  
I = (1.50 µA/kHz) f + I  
T
I = (2.30 µA/kHz) f + I  
T
I = (3.55 µA/kHz) f + I  
T
DD  
DD  
DD  
(Dynamic plus Quiescent,  
Per Package)  
(C = 50 pF on all outputs, all  
L
buffers switching)  
4. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
5. The formulas given are for the typical characteristics only at 25 C.  
6. To calculate total supply current at loads other than 50 pF:  
I (C ) = I (50 pF) + (C – 50) Vfk  
T
L
T
L
where: I is in µA (per package), C in pF, V = (V – V ) in volts, f in kHz is input frequency, and k = 0.003.  
T
L
DD  
SS  
http://onsemi.com  
3
MC14536B  
SWITCHING CHARACTERISTICS (7.) (C = 50 pF, T = 25 C)  
L
A
(8.)  
Characteristic  
Symbol  
V
DD  
Min  
Typ  
Max  
Unit  
Output Rise and Fall Time (Pin 13)  
t
,
ns  
TLH  
t
t
t
, t  
= (1.5 ns/pF) C + 25 ns  
t
THL  
5.0  
10  
15  
100  
50  
40  
200  
100  
80  
TLH THL  
L
, t  
= (0.75 ns/pF) C + 12.5 ns  
TLH THL  
L
, t  
= (0.55 ns/pF) C + 9.5 ns  
L
TLH THL  
Propagation Delay Time  
t
,
ns  
PLH  
Clock to Q1, 8–Bypass (Pin 6) High  
t
PHL  
t
t
t
, t  
= (1.7 ns/pF) C + 1715 ns  
= (0.66 ns/pF) C + 617 ns  
L
5.0  
10  
15  
1800  
650  
450  
3600  
1300  
1000  
PLH PHL  
L
, t  
PLH PHL  
, t  
= (0.5 ns/pF) C + 425 ns  
PLH PHL  
L
Clock to Q1, 8–Bypass (Pin 6) Low  
t
t
,
µs  
µs  
ns  
PLH  
t
t
t
t
, t  
= (1.7 ns/pF) C + 3715 ns  
= (0.66 ns/pF) C + 1467 ns  
L
= (0.5 ns/pF) C + 1075 ns  
L
5.0  
10  
15  
3.8  
1.5  
1.1  
7.6  
3.0  
2.3  
PLH PHL  
L
PHL  
, t  
PLH PHL  
, t  
PLH PHL  
Clock to Q16  
,
PLH  
t
t
t
, t  
= (1.7 ns/pF) C + 6915 ns  
= (0.66 ns/pF) C + 2967 ns  
L
= (0.5 ns/pF) C + 2175 ns  
L
t
5.0  
10  
15  
7.0  
3.0  
2.2  
14  
6.0  
4.5  
PHL PLH  
L
PHL  
, t  
PHL PLH  
, t  
PHL PLH  
Reset to Q  
t
n
PHL  
t
t
t
= (1.7 ns/pF) C + 1415 ns  
5.0  
10  
15  
1500  
600  
450  
3000  
1200  
900  
PHL  
PHL  
PHL  
L
= (0.66 ns/pF) C + 567 ns  
L
= (0.5 ns/pF) C + 425 ns  
L
Clock Pulse Width  
t
5.0  
10  
15  
600  
200  
170  
300  
100  
85  
ns  
MHz  
WH  
Clock Pulse Frequency  
(50% Duty Cycle)  
f
cl  
5.0  
10  
15  
1.2  
3.0  
5.0  
0.4  
1.5  
2.0  
Clock Rise and Fall Time  
Reset Pulse Width  
t
,
5.0  
10  
15  
TLH  
t
No Limit  
THL  
t
5.0  
10  
15  
1000  
400  
300  
500  
200  
150  
ns  
WH  
7. The formulas given are for the typical characteristics only at 25 C.  
8. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.  
http://onsemi.com  
4
MC14536B  
PIN DESCRIPTIONS  
INPUTS  
OSC INHIBIT (Pin 14) — A high level on this pin stops  
the RC oscillator which allows for very low–power standby  
operation. May also be used, in conjunction with an external  
clock, with essentially the same results as the Clock Inhibit  
input.  
MONO–IN (Pin 15) — Used as the timing pin for the  
on–chip monostable multivibrator. If the Mono–In input is  
SET (Pin 1) — A high on Set asynchronously forces  
Decode Out to a high level. This is accomplished by setting  
an output conditioning latch to a high level while at the same  
time resetting the 24 flip–flop stages. After Set goes low  
(inactive), the occurrence of the first negative clock  
transition on IN causes Decode Out to go low. The  
1
connected to V , the monostable circuit is disabled, and  
SS  
counter’s flip–flop stages begin counting on the second  
Decode Out is directly connected to the selected Q output.  
The monostable circuit is enabled if a resistor is connected  
negative clock transition of IN . When Set is high, the  
on–chip RC oscillator is disabled. This allows for very  
low–power standby operation.  
1
between Mono–In and V . This resistor and the device’s  
DD  
internal capacitance will determine the minimum output  
pulse widths. With the addition of an external capacitor to  
RESET (Pin 2) — A high on Reset asynchronously  
forces Decode Out to a low level; all 24 flip–flop stages are  
also reset to a low level. Like the Set input, Reset disables  
the on–chip RC oscillator for standby operation.  
V
, the pulse width range may be extended. For reliable  
SS  
operation the resistor value should be limited to the range of  
5 kto 100 kand the capacitor value should be limited to  
a maximum of 1000 pf. (See figures 3, 4, 5, and 10).  
A, B, C, D (Pins 9, 10, 11, 12) — These inputs select the  
flip–flop stage to be connected to Decode Out. (See the truth  
tables.)  
IN (Pin 3) — The device’s internal counters advance on  
1
the negative–going edge of this input. IN may be used as an  
1
external clock input or used in conjunction with OUT and  
1
OUT to form an RC oscillator. When an external clock is  
2
used, both OUT and OUT may be left unconnected or  
1
2
used to drive 1 LSTTL or several CMOS loads.  
OUTPUTS  
8–BYPASS (Pin 6) — A high on this input causes the first  
8 flip–flop stages to be bypassed. This device essentially  
becomes a 16–stage counter with all 16 stages selectable.  
Selection is accomplished by the A, B, C, and D inputs. (See  
the truth tables.)  
CLOCK INHIBIT (Pin 7) — A high on this input  
disconnects the first counter stage from the clocking source.  
This holds the present count and inhibits further counting.  
However, the clocking source may continue to run.  
Therefore, when Clock Inhibit is brought low, no oscillator  
start–up time is required. When Clock Inhibit is low, the  
counter will start counting on the occurrence of the first  
OUT , OUT (Pin 4, 5) — Outputs used in conjunction  
1
2
with IN to form an RC oscillator. These outputs are  
1
0
buffered and may be used for 2 frequency division of an  
external clock.  
DECODE OUT (Pin 13) — Output function depends on  
configuration. When the monostable circuit is disabled, this  
output is a 50% duty cycle square wave during free run.  
TEST MODE  
The test mode configuration divides the 24 flip–flop  
stages into three 8–stage sections to facilitate a fast test  
sequence. The test mode is enabled when 8–Bypass, Set and  
Reset are at a high level. (See Figure 8.)  
negative edge of the clocking source at IN .  
1
http://onsemi.com  
5
MC14536B  
TRUTH TABLES  
Input  
Input  
Stage Selected  
for Decode Out  
Stage Selected  
for Decode Out  
8–Bypass  
D
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
C
B
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
8–Bypass  
D
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
C
B
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FUNCTION TABLE  
Clock  
Inh  
OSC  
Inh  
Decode  
Out  
In  
1
Set  
Reset  
Out 1  
Out 2  
0
0
0
0
No  
Change  
0
0
0
0
Advance to  
next state  
X
X
X
1
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
1
0
No  
Change  
X
0
1
0
0
0
0
0
0
0
0
0
1
0
0
1
1
No  
Change  
X
No  
Change  
Advance to  
next state  
X = Don’t Care  
http://onsemi.com  
6
MC14536B  
LOGIC DIAGRAM  
http://onsemi.com  
7
MC14536B  
TYPICAL RC OSCILLATOR CHARACTERISTICS  
(For Circuit Diagram See Figure 11 In Application)  
8.0  
4.0  
100  
V
DD  
= 10 V  
V
DD  
= 15 V  
50  
f AS A FUNCTION  
OF R  
20  
10  
TC  
(C = 1000 pF)  
0
(R 2R  
)
TC  
S
10 V  
5.0  
4.0  
f AS A FUNCTION  
OF C  
2.0  
1.0  
0.5  
8.0  
12  
16  
(R = 56 k)  
TC  
5.0 V  
(R = 120 k)  
S
0.2  
0.1  
R
= 56 k,  
R = 0, f = 10.15 kHz @ V = 10 V, T = 25°C  
S DD A  
R = 120 k, f = 7.8 kHz @ V = 10 V, T = 25°C  
TC  
C = 1000 pF  
S
DD  
A
55  
25  
0
25  
50  
75  
100  
125  
1.0 k  
10 k  
TC  
0.001  
100 k  
1.0 M  
0.1  
R
, RESISTANCE (OHMS)  
* Device Only.  
T , AMBIENT TEMPERATURE (°C)*  
A
0.0001  
0.01  
C, CAPACITANCE (µF)  
Figure 1. RC Oscillator Stability  
Figure 2. RC Oscillator Frequency as a  
Function of RTC and C  
MONOSTABLE CHARACTERISTICS  
(For Circuit Diagram See Figure 10 In Application)  
100  
100  
FORMULA FOR CALCULATING t IN  
FORMULA FOR CALCULATING t IN  
W
W
MICROSECONDS IS AS FOLLOWS:  
MICROSECONDS IS AS FOLLOWS:  
t
W
= 0.00247 R C 0.85  
t = 0.00247 R C 0.85  
W X X  
X
X
WHERE R IS IN k, C IN pF.  
WHERE R IS IN k, C IN pF.  
X
X
10  
10  
R = 100 kΩ  
X
R = 100 kΩ  
X
50 kΩ  
50 kΩ  
1.0  
0.1  
1.0  
0.1  
10 kΩ  
5 kΩ  
10 kΩ  
5 kΩ  
T = 25°C  
T = 25°C  
A
A
V
= 5 V  
V
= 10 V  
DD  
DD  
1.0  
10  
100  
1000  
1.0  
10  
100  
1000  
C , EXTERNAL CAPACITANCE (pF)  
X
C , EXTERNAL CAPACITANCE (pF)  
X
Figure 3. Typical CX versus Pulse Width  
@ VDD = 5.0 V  
Figure 4. Typical CX versus Pulse Width  
@ VDD = 10 V  
100  
FORMULA FOR CALCULATING t IN  
W
MICROSECONDS IS AS FOLLOWS:  
t
W
= 0.00247 R C 0.85  
X X  
WHERE R IS IN k, C IN pF.  
X
10  
R = 100 kΩ  
X
50 kΩ  
1.0  
0.1  
10 kΩ  
5 kΩ  
T = 25°C  
A
V
DD  
= 15 V  
1.0  
10  
100  
1000  
C , EXTERNAL CAPACITANCE (pF)  
X
Figure 5. Typical CX versus Pulse Width  
@ VDD = 15 V  
http://onsemi.com  
8
MC14536B  
V
DD  
0.01 µF  
CERAMIC  
I
D
500 µF  
SET  
20 ns  
20 ns  
IN  
RESET OUT 1  
8–BYPASS  
C
L
V
DD  
50%  
1
PULSE  
IN  
1
GENERATOR  
t
t
WH  
WL  
C INH  
MONO IN  
OSC INH  
A
SET  
OUT 1  
OUT  
2
RESET  
90%  
10%  
50%  
t
OUT  
t
C
L
8–BYPASS  
IN  
PULSE  
GENERATOR  
1
PHL  
PLH  
B
t
t
THL  
C INH  
MONO IN  
OSC INH  
A
TLH  
C
D
DECODE  
OUT  
OUT  
2
C
L
V
SS  
B
C
D
DECODE  
OUT  
20 ns  
20 ns  
C
L
V
SS  
90%  
10%  
50%  
50%  
DUTY CYCLE  
Figure 6. Power Dissipation Test  
Circuit and Waveform  
Figure 7. Switching Time Test Circuit and Waveforms  
V
DD  
FUNCTIONAL TEST SEQUENCE  
SET  
Test function (Figure 8) has been included for the  
reduction of test time required to exercise all 24 counter  
stages. This test function divides the counter into three  
8–stage sections and 255 counts are loaded in each of the  
8–stage sections in parallel. All flip–flops are now at a “1”.  
The counter is now returned to the normal 24–stages in  
RESET OUT 1  
8–BYPASS  
PULSE  
GENERATOR  
IN  
1
C INH  
MONO IN  
OSC INH  
A
OUT  
2
series configuration. One more pulse is entered into In  
1
B
which will cause the counter to ripple from an all “1” state  
to an all “0” state.  
C
D
DECODE  
OUT  
V
SS  
Figure 8. Functional Test Circuit  
http://onsemi.com  
9
MC14536B  
FUNCTIONAL TEST SEQUENCE  
Outputs  
Inputs  
Comments  
Decade Out  
Q1 thru Q24  
In  
Set  
0
Reset  
8–Bypass  
1
All 24 stages are in Reset mode.  
1
1
0
1
1
1
1
1
1
0
0
0
1
Counter is in three 8 stage sections in parallel mode.  
First “1” to “0” transition of clock.  
1
1
0
1
1
1
255 “1” to “0” transitions are clocked in the counter.  
0
0
1
0
1
0
1
0
1
1
The 255 “1” to “0” transition.  
Counter converted back to 24 stages in series mode.  
Set and Reset must be connected together and simultaneously  
go from “1” to “0”.  
1
0
0
0
0
0
0
0
1
0
In Switches to a “1”.  
1
Counter Ripples from an all “1” state to an all “0” state.  
http://onsemi.com  
10  
MC14536B  
+V  
16  
V
DD  
6
8–BYPASS  
4
5
9
A
OUT 1  
OUT 2  
10  
B
11  
C
12  
D
2
RESET  
14  
OSC INH  
15  
MONO–IN  
1
PULSE  
GEN.  
SET  
7
CLOCK INH  
3
13  
DECODE OUT  
IN  
1
PULSE  
GEN.  
V
SS  
8
CLOCK  
IN  
1
SET  
CLOCK INH  
DECODE OUT  
POWER UP  
NOTE: When power is first applied to the device, Decode Out can be either at a high or low state.  
On the rising edge of a Set pulse the output goes high if initially at a low state. The output  
remains high if initially at a high state. Because Clock Inh is held high, the clock source on  
the input pin has no effect on the output. Once Clock Inh is taken low, the output goes low  
on the first negative clock transition. The output returns high depending on the 8–Bypass,  
n
A, B, C, and D inputs, and the clock input period. A 2 frequency division (where n = the  
0
number of stages selected from the truth table) is obtainable at Decode Out. A 2 –divided  
output of IN can be obtained at OUT and OUT .  
1
1
2
Figure 9. Time Interval Configuration Using an External Clock, Set,  
and Clock Inhibit Functions  
(Divide–by–2 Configured)  
http://onsemi.com  
11  
MC14536B  
+V  
16  
V
DD  
6
9
8–BYPASS  
R
X
4
5
A
OUT 1  
OUT 2  
10  
11  
12  
2
B
C
D
PULSE  
GEN.  
RESET  
SET  
1
7
CLOCK INH  
MONO–IN  
CLOCK INH  
15  
14  
3
13  
DECODE OUT  
IN  
1
CLOCK  
V
SS  
C
X
8
IN  
1
RESET  
*t .00247 R C 0.85  
w
X
X
t
R
C
in µsec  
w
DECODE OUT  
in kΩ  
X
X
in pF  
*t  
w
POWER UP  
NOTE: When Power is first applied to the device with the Reset input going high, Decode Out initializes low. Bringing the Reset  
n
input low enables the chip’s internal counters. After Reset goes low, the 2 /2 negative transition of the clock input causes  
Decode Out to go high. Since the Mono–In input is being used, the output becomes monostable. The pulse width of the  
n
output is dependent on the external timing components. The second and all subsequent pulses occur at 2 x (the clock  
period) intervals where n = the number of stages selected from the truth table.  
Figure 10. Time Interval Configuration Using an External Clock, Reset,  
and Output Monostable to Achieve a Pulse Output  
(Divide–by–4 Configured)  
http://onsemi.com  
12  
MC14536B  
+V  
R
S
16  
V
DD  
6
9
8–BYPASS  
4
5
A
OUT 1  
OUT 2  
10  
11  
12  
2
C
B
C
R
TC  
D
PULSE  
GEN.  
RESET  
SET  
14  
15  
CLOCK INH  
MONO–IN  
CLOCK INH  
1
7
3
13  
DECODE OUT  
IN  
1
V
SS  
8
RESET  
OUT 1  
OUT 2  
1
f
osc  
2.3R  
C
tc  
DECODE OUT  
tc  
R  
R
s
= Hz  
= Ohms  
= FARADS  
F
R
C
t
w
POWER UP  
NOTE: This circuit is designed to use the on–chip oscillation function. The oscillator frequency is deter-  
mined by the external R and C components. When power is first applied to the device, Decode Out  
initializes to a high state. Because this output is tied directly to the Osc–Inh input, the oscillator is  
disabled.Thisputsthedeviceinalow–currentstandbycondition. TherisingedgeoftheResetpulse  
will cause the output to go low. This in turn causes Osc–Inh to go low. However, while Reset is high,  
the oscillator is still disabled (i.e.: standy condition). After Reset goes low, the output remains low  
n
for 2 /2 of the oscillator’s period. After the part times out, the output again goes high.  
Figure 11. Time Interval Configuration Using On–Chip RC Oscillator and  
Reset Input to Initiate Time Interval  
(Divide–by–2 Configured)  
http://onsemi.com  
13  
MC14536B  
PACKAGE DIMENSIONS  
PDIP–16  
P SUFFIX  
PLASTIC DIP PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
16  
1
9
8
B
S
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
MIN MAX  
F
A
B
C
D
F
G
H
J
K
L
M
S
C
L
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
0.040  
0.70  
SEATING  
PLANE  
–T–  
0.100 BSC  
0.050 BSC  
0.008 0.015  
2.54 BSC  
1.27 BSC  
K
M
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295 0.305  
10  
0.020 0.040  
0.130  
2.80  
7.50  
0
G
D 16 PL  
0
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
SOIC–16  
DW SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751G–03  
ISSUE B  
A
D
16  
9
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
1
8
MILLIMETERS  
B
16X B  
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
10.45  
7.60  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
10.15  
7.40  
M
S
S
0.25  
T A  
B
e
1.27 BSC  
H
h
L
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
SEATING  
PLANE  
14X  
e
C
T
http://onsemi.com  
14  
MC14536B  
PACKAGE DIMENSIONS  
SOEIAJ–16  
F SUFFIX  
PLASTIC EIAJ SOIC PACKAGE  
CASE 966–01  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
ISSUE O  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD FLASH  
OR PROTRUSIONS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
L
E
16  
9
8
Q
1
H
E
M
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
E
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
1
L
DETAIL P  
Z
D
VIEW P  
e
MILLIMETERS  
INCHES  
A
DIM MIN  
MAX  
MIN  
–––  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
c
A
1
–––  
0.05  
0.35  
0.18  
9.90  
5.10  
2.05  
A
0.20 0.002  
0.50 0.014  
0.27 0.007  
10.50 0.390  
5.45 0.201  
b
c
D
E
A
1
b
0.13 (0.005)  
e
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
M
H
7.40  
0.50  
1.10  
0
0.70  
–––  
8.20 0.291  
0.85 0.020  
1.50 0.043  
10  
0.90 0.028  
0.78 –––  
0.323  
0.033  
0.059  
10  
0.035  
0.031  
E
L
L
E
M
Q
0
1
Z
http://onsemi.com  
15  
MC14536B  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC14536B/D  

相关型号:

MC14536B

Programmable Timer
ONSEMI

MC14536B

PROGRAMMABLE TIMER
MOTOROLA

MC14536BAL

0 TIMER(S), PROGRAMMABLE TIMER, CDIP16, 620-09
MOTOROLA

MC14536BALD

0 TIMER(S), PROGRAMMABLE TIMER, CDIP16, 620-09
MOTOROLA

MC14536BALDS

暂无描述
MOTOROLA

MC14536BALS

Analog Waveform Generation Function, CMOS, CDIP16
MOTOROLA

MC14536BCL

Programmable Timer
MOTOROLA

MC14536BCLD

Programmable Timer, 0 Timer(s), CMOS, CDIP16, 620-09
MOTOROLA

MC14536BCLDS

0 TIMER(S), PROGRAMMABLE TIMER, CDIP16, 620-09
MOTOROLA

MC14536BCLS

Analog Waveform Generation Function, CMOS, CDIP16
MOTOROLA

MC14536BCP

Programmable Timer
MOTOROLA

MC14536BCP

Programmable Timer
ONSEMI