MC33074DTBR2 [ONSEMI]

High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers; 高压摆率,宽带宽,单电源运算放大器
MC33074DTBR2
型号: MC33074DTBR2
厂家: ONSEMI    ONSEMI
描述:

High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers
高压摆率,宽带宽,单电源运算放大器

运算放大器 放大器电路 光电二极管 高压
文件: 总20页 (文件大小:434K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
http://onsemi.com  
Quality bipolar fabrication with innovative design concepts are  
employed for the MC33071/72/74, MC34071/72/74 series of  
monolithic operational amplifiers. This series of operational  
amplifiers offer 4.5 MHz of gain bandwidth product, 13 V/µs slew rate  
and fast setting time without the use of JFET device technology.  
Although this series can be operated from split supplies, it is  
particularly suited for single supply operation, since the common  
8
1
8
SO–8  
1
P SUFFIX  
CASE 626  
D SUFFIX  
CASE 751  
mode input voltage range includes ground potential (V ). With A  
EE  
PIN CONNECTIONS  
Darlington input stage, this series exhibits high input resistance, low  
input offset voltage and high gain. The all NPN output stage,  
characterized by no deadband crossover distortion and large output  
voltage swing, provides high capacitance drive capability, excellent  
phase and gain margins, low open loop high frequency output  
impedance and symmetrical source/sink AC frequency response.  
The MC33071/72/74, MC34071/72/74 series of devices are  
available in standard or prime performance (A Suffix) grades and are  
specified over the commercial, industrial/vehicular or military  
temperature ranges. The complete series of single, dual and quad  
operational amplifiers are available in plastic DIP, SOIC and TSSOP  
surface mount packages.  
1
2
3
4
8
7
6
5
Offset Null  
Inputs  
NC  
V
CC  
Output  
+
V
EE  
Offset Null  
(Single, Top View)  
1
2
3
4
8
7
6
5
Output 1  
Inputs 1  
V
CC  
Output 2  
+
+
Inputs 2  
V
EE  
(Dual, Top View)  
Wide Bandwidth: 4.5 MHz  
High Slew Rate: 13 V/µs  
Fast Settling Time: 1.1 µs to 0.1%  
Wide Single Supply Operation: 3.0 V to 44 V  
Wide Input Common Mode Voltage Range: Includes Ground (V  
Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)  
Large Output Voltage Swing: –14.7 V to +14 V (with ±15 V  
Supplies)  
14  
14  
1
SO–14  
1
P SUFFIX  
CASE 646  
D SUFFIX  
CASE 751A  
EE)  
14  
1
TSSOP–14  
DTB SUFFIX  
CASE 948G  
Large Capacitance Drive Capability: 0 pF to 10,000 pF  
Low Total Harmonic Distortion: 0.02%  
Excellent Phase Margin: 60°  
PIN CONNECTIONS  
Excellent Gain Margin: 12 dB  
Output Short Circuit Protection  
ESD Diodes/Clamps Provide Input Protection for Dual and Quad  
1
Output 1  
Inputs 1  
14  
13  
Output 4  
Inputs 4  
2
3
4
1
4
3
+
+
12  
11  
V
CC  
V
EE  
Inputs 3  
Output 3  
5
6
10  
9
2
+
+
Inputs 2  
Output 2  
7
8
(Quad, Top View)  
ORDERING INFORMATION  
Seedetailedorderingandshippinginformationinthepackage  
dimensions section on page 17 of this data sheet.  
Semiconductor Components Industries, LLC, 1999  
1
Publication Order Number:  
October, 1999 – Rev. 2  
MC34071/D  
MC34071,2,4,A MC33071,2,4,A  
Representative Schematic Diagram  
(Each Amplifier)  
V
CC  
Q3  
Q8  
Q4  
Q6  
Q5  
Q7  
Q1  
Q17  
Q2  
R2  
R1  
C1  
D2  
Q18  
Bias  
R6  
R7  
Q11  
Q9  
Q10  
Output  
R8  
Inputs  
+
C2  
D3  
Q19  
Q15  
Q16  
Q13  
R4  
Q14  
Base  
Current  
Cancellation  
Q12  
D1  
Current  
Limit  
R5  
R3  
V /Gnd  
EE  
Offset Null  
(MC33071, MC34071 only)  
MAXIMUM RATINGS  
Rating  
Supply Voltage (from V  
Symbol  
Value  
+44  
Unit  
V
to V  
)
V
S
EE  
CC  
Input Differential Voltage Range  
Input Voltage Range  
V
Note 1  
Note 1  
V
IDR  
V
V
IR  
Output Short Circuit Duration (Note 2)  
Operating Junction Temperature  
Storage Temperature Range  
t
Indefinite  
+150  
sec  
°C  
°C  
SC  
T
J
T
–60 to +150  
stg  
NOTES: 1. Either or both input voltages should not exceed the magnitude of V  
or V .  
EE  
CC  
2. Power dissipation must be considered to ensure maximum junction temperature (T ) is not  
J
exceeded (see Figure 1).  
http://onsemi.com  
2
MC34071,2,4,A MC33071,2,4,A  
ELECTRICAL CHARACTERISTICS (V  
CC  
= +15 V, V = 15 V, R = connected to ground, unless otherwise noted. See Note 3 for  
EE L  
T
= T  
to T  
)
A
low  
high  
A Suffix  
Typ  
Non–Suffix  
Typ  
Characteristics  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Input Offset Voltage (R = 100 , V  
= 0 V, V = 0 V)  
V
IO  
mV  
S
CM  
O
V
CC  
V
CC  
V
CC  
= +15 V, V  
= +5.0 V, V  
= +15 V, V  
= –15 V, T = +25°C  
0.5  
0.5  
3.0  
3.0  
5.0  
1.0  
1.5  
5.0  
5.0  
7.0  
EE  
A
= 0 V, T = +25°C  
A
EE  
EE  
= –15 V, T = T  
to T  
low high  
A
Average Temperature Coefficient of Input Offset Voltage V /T  
IO  
10  
10  
µV/°C  
nA  
R
= 10 , V = 0 V, V = 0 V,  
S
A
CM O  
T
= T  
to T  
low  
high  
CM  
Input Bias Current (V  
= 0 V, V = 0 V)  
I
IB  
O
T
T
= +25°C  
100  
500  
700  
100  
500  
700  
A
A
= T  
to T  
low  
high  
Input Offset Current (V  
= 0 V, V = 0V)  
I
nA  
CM  
O
IO  
T
= +25°C  
6.0  
50  
300  
6.0  
75  
300  
A
T
= T  
to T  
A
low  
Input Common Mode Voltage Range  
= +25°C  
high  
V
ICR  
V
V
V
to (V  
CC  
to (V  
CC  
–1.8)  
–2.2)  
V
V
to (V  
to (V  
–1.8)  
–2.2)  
T
EE  
EE  
EE  
EE  
CC  
CC  
A
T
= T  
to T  
A
low  
high  
Large Signal Voltage Gain (V = ±10 V, R = 2.0 k)  
A
VOL  
V/mV  
V
O
L
T
T
A
= +25°C  
50  
25  
100  
25  
20  
100  
A
= T  
to T  
low  
high  
Output Voltage Swing (V = ±1.0 V)  
V
OH  
ID  
= 0 V, R = 2.0 k, T = +25°C  
V
V
V
= +5.0 V, V  
= +15 V, V  
= +15 V, V  
3.7  
13.6  
13.4  
4.0  
14  
3.7  
13.6  
13.4  
4.0  
14  
CC  
CC  
CC  
EE  
EE  
EE  
L
A
= –15 V, R = 10 k, T = +25°C  
L
L
A
= –15 V, R = 2.0 k,  
T
= T  
to T  
A
low  
high  
V
V
V
= +5.0 V, V  
= +15 V V  
,
= +15 V, V  
= 0 V, R = 2.0 k, T = +25°C  
V
OL  
0.1  
–14.7  
0.3  
–14.3  
–13.5  
0.1  
–14.7  
0.3  
–14.3  
–13.5  
V
CC  
CC  
CC  
EE  
EE  
EE  
L
A
= –15 V, R = 10 k, T = +25°C  
L
A
= –15 V, R = 2.0 k,  
L
T
= T  
to T  
high  
A
low  
Output Short Circuit Current (V = 1.0 V, V = 0 V,  
I
mA  
ID  
O
SC  
T
A
= 25°C)  
Source  
Sink  
10  
20  
30  
30  
10  
20  
30  
30  
Common Mode Rejection  
10 k, V = V  
CMR  
PSR  
80  
97  
70  
97  
dB  
dB  
R
, T = 25°C  
A
S
CM  
ICR  
Power Supply Rejection (R = 100 )  
80  
97  
70  
97  
S
V
/V  
= +16.5 V/–16.5 V to +13.5 V/–13.5 V,  
= 25°C  
CC EE  
T
A
Power Supply Current (Per Amplifier, No Load)  
I
mA  
D
V
V
V
= +5.0 V, V  
= +15 V, V  
= +15 V, V  
= 0 V, V = +2.5 V, T = +25°C  
1.6  
1.9  
2.0  
2.5  
2.8  
1.6  
1.9  
2.0  
2.5  
2.8  
CC  
CC  
CC  
EE  
EE  
EE  
O
A
= –15 V, V = 0 V, T = +25°C  
O A  
= –15 V, V = 0 V,  
O
T
= T  
to T  
A
low  
=
high  
NOTES: 3. T  
–40°C for MC33071, 2, 4, /A  
0°C for MC34071, 2, 4, /A  
T
= +85°C for MC33071, 2, 4, /A  
= +70°C for MC34071, 2, 4, /A  
low  
high  
=
http://onsemi.com  
3
MC34071,2,4,A MC33071,2,4,A  
AC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V = 15 V, R = connected to ground. T = +25°C, unless otherwise noted.)  
EE L A  
CC  
A Suffix  
Typ  
Non–Suffix  
Typ  
Characteristics  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Slew Rate (V = –10 V to +10 V, R = 2.0 k, C = 500 pF)  
SR  
V/µs  
in  
L
L
A
= +1.0  
= –1.0  
8.0  
10  
13  
8.0  
10  
13  
V
A
V
Setting Time (10 V Step, A = –1.0)  
V
To 0.1% (+1/2 LSB of 9–Bits)  
To 0.01% (+1/2 LSB of 12–Bits)  
t
s
µs  
1.1  
2.2  
1.1  
2.2  
Gain Bandwidth Product (f = 100 kHz)  
Power Bandwidth  
GBW  
BW  
3.5  
4.5  
3.5  
4.5  
MHz  
kHz  
160  
160  
A
V
= +1.0, R = 2.0 k, V = 20 V , THD = 5.0%  
L
O
pp  
Phase margin  
f
Deg  
dB  
m
R
R
= 2.0 kΩ  
= 2.0 k, C = 300 pF  
60  
40  
60  
40  
L
L
L
Gain Margin  
A
m
R
R
= 2.0 kΩ  
= 2.0 k, C = 300 pF  
12  
4.0  
12  
4.0  
L
L
L
Equivalent Input Noise Voltage  
= 100 , f = 1.0 kHz  
e
i
32  
32  
nV/Hz  
n
R
S
Equivalent Input Noise Current  
f = 1.0 kHz  
0.22  
150  
2.5  
0.22  
150  
2.5  
pA/Hz  
MΩ  
n
Differential Input Resistance  
R
C
in  
in  
V
= 0 V  
CM  
Differential Input Capacitance  
= 0 V  
pF  
%
V
CM  
Total Harmonic Distortion  
= +10, R = 2.0 k, 2.0 V V 20 V , f = 10 kHz  
THD  
0.02  
0.02  
A
V
L
pp pp  
O
Channel Separation (f = 10 kHz)  
Open Loop Output Impedance (f = 1.0 MHz)  
120  
30  
120  
30  
dB  
W
|Z  
|
O
Figure 1. Power Supply Configurations  
Figure 2. Offset Null Circuit  
V
CC  
Single Supply  
Split Supplies  
3.0 V to 44 V  
V
+|V |44 V  
CC EE  
7
2
3
V
CC  
V
CC  
6
5
+
1
2
V
CC  
1
2
1
4
10 k  
3
4
3
4
V
EE  
V
EE  
Offset nulling range is approximately ±80 mV with a 10 k  
potentiometer (MC33071, MC34071 only).  
V
EE  
V
EE  
http://onsemi.com  
4
MC34071,2,4,A MC33071,2,4,A  
Figure 3. Maximum Power Dissipation versus  
Temperature for Package Types  
Figure 4. Input Offset Voltage versus  
Temperature for Representative Units  
2400  
2000  
1600  
1200  
800  
400  
0
V
= +15 V  
= –15 V  
= 0  
4.0  
2.0  
CC  
V
EE  
V
CM  
8 & 14 Pin Plastic Pkg  
SO–14 Pkg  
0
–2.0  
–4.0  
SO–8 Pkg  
–55 –40 –20  
0
20 40 60 80 100 120 140 160  
–55  
–25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 5. Input Common Mode Voltage  
Range versus Temperature  
Figure 6. Normalized Input Bias Current  
versus Temperature  
1.3  
V
CC  
V = +15 V  
CC  
V
CC  
V
/V = +1.5 V/ 1.5 V to +22 V/ 22 V  
CC EE  
1.2  
1.1  
1.0  
0.9  
V
= –15 V  
EE  
V
–0.8  
–1.6  
–2.4  
CC  
V
= 0  
CM  
V
CC  
V
CC  
V
EE  
+0.01  
0.8  
0.7  
V
EE  
V
EE  
–55  
–55  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Normalized Input Bias Current versus  
Input Common Mode Voltage  
Figure 8. Split Supply Output Voltage  
Swing versus Supply Voltage  
50  
40  
30  
20  
10  
0
1.4  
1.2  
R Connected  
L
V
= +15 V  
= –15 V  
CC  
to Ground T = 25°C  
A
V
EE  
T = 25°C  
A
R = 10 k  
L
R = 2.0 k  
L
1.0  
0.8  
0.6  
–12  
–8.0  
–4.0  
0
4.0  
8.0  
12  
0
5.0  
10  
V , |V |, SUPPLY VOLTAGE (V)  
CC EE  
15  
20  
25  
V , INPUT COMMON MODE VOLTAGE (V)  
IC  
http://onsemi.com  
5
MC34071,2,4,A MC33071,2,4,A  
Figure 9. Single Supply Output Saturation  
versus Load Resistance to V  
Figure 10. Split Supply Output Saturation  
versus Load Current  
CC  
V
V
CC  
CC  
V
CC  
V
/V = +5.0 V/ 5.0 V to +22 V/ 22 V  
CC EE  
V
CC  
T = 25°C  
A
V
–1.0  
–2.0  
CC  
V
–2.0  
CC  
V
= +15 V  
CC  
Source  
R = Gnd  
L
V
T = 25°C  
V
–4.0  
CC  
CC  
A
V
+2.0  
+1.0  
0.2  
0.1  
0
EE  
V
EE  
Sink  
5.0  
V
Gnd  
EE  
V
EE  
0
10  
LOAD CURRENT (±mA)  
15  
20  
100  
1.0 k  
10 k  
100 k  
I
L,  
R , LOAD RESISTANCE TO GROUND ()  
L
Figure 11. Single Supply Output Saturation  
versus Load Resistance to Ground  
Figure 12. Output Short Circuit Current  
versus Temperature  
0
60  
50  
40  
30  
20  
V
CC  
–0.4  
–0.8  
Sink  
Source  
2.0  
1.0  
V
= +15 V  
CC  
CC  
R to V  
L
V
= +15 V  
= –15 V  
CC  
T = 25°C  
A
V
EE  
10  
0
R 0.1 Ω  
L
Gnd  
V = 1.0 V  
in  
100  
1.0 k  
10 k  
CC  
100 k  
–55  
–25  
0
25  
50  
75  
100  
125  
R , LOAD RESISTANCE TO V ()  
T , AMBIENT TEMPERATURE (°C)  
A
L
Figure 13. Output Impedance  
versus Frequency  
Figure 14. Output Voltage Swing  
versus Frequency  
50  
40  
30  
20  
28  
24  
V
= +15 V  
= –15 V  
= 0  
CC  
V
= +15 V  
= –15 V  
CC  
V
EE  
V
EE  
V
CM  
A = +1.0  
V
V = 0  
O
20  
16  
12  
R = 2.0 k  
L
I = ±0.5 mA  
O
THD 1.0%  
T = 25°C  
A
T = 25°C  
A
A = 1000  
V
A = 100  
V
A = 10  
V
A = 1.0  
V
8.0  
4.0  
10  
0
0
3.0 k  
1.0 k  
10 k  
100  
f, FREQUENCY (Hz)  
1.0 M  
10 M  
10 k  
30 k  
100 k  
300 k  
1.0 M 3.0 M  
f, FREQUENCY (Hz)  
http://onsemi.com  
6
MC34071,2,4,A MC33071,2,4,A  
Figure 15. Total Harmonic Distortion  
versus Frequency  
Figure 16. Total Harmonic Distortion  
versus Output Voltage Swing  
4.0  
3.0  
0.4  
0.3  
V
= +15 V  
= –15 V  
CC  
A = 1000  
V
V
EE  
R = 2.0 k  
L
A = 1000  
V
T = 25°C  
A
V
= +15 V  
= –15 V  
CC  
V
EE  
V = 2.0 V  
2.0  
1.0  
0
O
pp  
0.2  
0.1  
0
R = 2.0 k  
L
T = 25°C  
A
A = 100  
V
A = 100  
V
A = 10  
V
A = 10  
V
A = 1.0  
V
A = 1.0  
V
10  
100  
1.0 k  
10 k  
100 k  
0
4.0  
8.0  
12  
16  
20  
f, FREQUENCY (Hz)  
V , OUTPUT VOLTAGE SWING (V )  
O pp  
Figure 17. Open Loop Voltage Gain  
versus Temperature  
Figure 18. Open Loop Voltage Gain and  
Phase versus Frequency  
100  
116  
112  
108  
104  
100  
96  
0
V
= +15 V  
= –15 V  
CC  
80  
60  
40  
20  
0
V
Gain  
EE  
45  
90  
135  
180  
Phase  
V = –10 V to +10 V  
O
R = 10 k  
L
f 10Hz  
Phase  
Margin  
= 60°  
V
= +15 V  
= –15 V  
CC  
V
EE  
V = 0 V  
O
R = 2.0 k  
L
T = 25°C  
A
–55  
–25  
0
25  
50  
75  
100  
125  
1.0  
10  
100 1.0 k 10 k 100 k 1.0 M 10 M 100 M  
f, FREQUENCY (Hz)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 19. Open Loop Voltage Gain and  
Phase versus Frequency  
Figure 20. Normalized Gain Bandwidth  
Product versus Temperature  
20  
10  
1.15  
1.1  
1
100  
120  
140  
160  
180  
Phase  
Margin = 60°  
V
= +15 V  
= –15 V  
CC  
V
EE  
Gain  
Margin = 12 dB  
R = 2.0 k  
L
0
1.05  
–10  
–20  
–30  
–40  
1.0  
1. Phase R = 2.0 k  
2. Phase R = 2.0 k, C = 300 pF  
3. Gain R = 2.0 k  
4. Gain R = 2.0 k, C = 300 pF  
L
L
L
L
3
0.95  
L
L
4
V
= +15 V  
CC  
0.9  
V
= 15 V  
2
EE  
V = 0 V  
T = 25°C  
A
O
0.85  
1.0  
2.0  
3.0 5.0  
7.0 10  
20  
30  
–55  
–25  
0
25  
50  
75  
100  
125  
f, FREQUENCY (MHz)  
T , AMBIENT TEMPERATURE (°C)  
A
http://onsemi.com  
7
MC34071,2,4,A MC33071,2,4,A  
Figure 21. Percent Overshoot versus  
Load Capacitance  
Figure 22. Phase Margin versus  
Load Capacitance  
70  
60  
100  
80  
V
= +15 V  
= –15 V  
V
= +15 V  
= –15 V  
CC  
CC  
V
V
EE  
EE  
R = 2.0 k  
A = +1.0  
L
V
50  
40  
30  
20  
10  
0
V = –10 V to +10 V  
R = 2.0 k to  
L
O
T = 25°C  
V = –10 V to +10 V  
O
60  
A
T = 25°C  
A
40  
20  
0
10  
100  
1.0 k  
10 k  
10  
100  
1.0 k  
10 k  
C , LOAD CAPACITANCE (pF)  
L
C , LOAD CAPACITANCE (pF)  
L
Figure 23. Gain Margin versus Load Capacitance  
Figure 24. Phase Margin versus Temperature  
14  
12  
80  
60  
40  
20  
0
V
= +15 V  
= –15 V  
CC  
C = 10 pF  
L
V
EE  
C = 100 pF  
L
A = +1.0  
V
10  
8.0  
6.0  
4.0  
2.0  
0
R = 2.0 k to ∞  
L
V = –10 V to +10 V  
O
V
= +15 V  
= –15 V  
T = 25°C  
CC  
A
V
EE  
A = +1.0  
V
R = 2.0 k to  
L
V = –10 V to +10 V  
O
C = 1,000 pF  
L
C = 10,000 pF  
L
10  
100  
1.0 k  
10 k  
–55  
–25  
0
25  
50  
75  
100  
125  
C , LOAD CAPACITANCE (pF)  
L
T , AMBIENT TEMPERATURE (°C)  
A
Figure 26. Phase Margin and Gain Margin  
versus Differential Source Resistance  
Figure 25. Gain Margin versus Temperature  
70  
16  
12  
8.0  
4.0  
0
12  
V
= +15 V  
= –15 V  
CC  
10  
8.0  
6.0  
4.0  
2.0  
0
60  
50  
40  
30  
20  
10  
Gain  
C = 10 pF  
L
V
EE  
R
1
A = +1.0  
V
V
O
R = 2.0 k to ∞  
L
+
V = –10 V to +10 V  
O
C = 100 pF  
L
R
2
V
V
T
V
O
A
= +15 V  
= –15 V  
R = R + R  
CC  
EE  
C = 10,000 pF  
L
C = 1,000 pF  
L
1
2
Phase  
A = +100  
V = 0 V  
T = 25°C  
0
–55  
–25  
0
25  
50  
75  
100  
125  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
T , AMBIENT TEMPERATURE (°C)  
A
R , DIFFERENTIAL SOURCE RESISTANCE ()  
T
http://onsemi.com  
8
MC34071,2,4,A MC33071,2,4,A  
Figure 27. Normalized Slew Rate  
versus Temperature  
Figure 28. Output Settling Time  
10  
5.0  
0
1.15  
1.1  
V
= +15 V  
= –15 V  
V
= +15 V  
= –15 V  
CC  
CC  
1.0 mV  
V
V
EE  
EE  
10 mV  
1.0 mV  
A = +1.0  
A = –1.0  
V
V
R = 2.0 k  
L
T = 25°C  
A
1.05  
1.0  
C = 500 pF  
L
Compensated  
Uncompensated  
0.95  
1.0 mV  
–5.0  
10 mV  
0.5  
0.9  
1.0 mV  
0.85  
–10  
–55  
–25  
0
25  
50  
75  
100  
125  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
T , AMBIENT TEMPERATURE (°C)  
A
t , SETTLING TIME (µs)  
s
Figure 29. Small Signal Transient Response  
Figure 30. Large Signal Transient Reponse  
V
= +15 V  
= –15 V  
CC  
V
EE  
A = +1.0  
V
R = 2.0 k  
L
C = 300 pF  
L
T = 25°C  
A
0
0
V
= +15 V  
= –15 V  
CC  
V
EE  
A = +1.0  
V
R = 2.0 k  
L
C = 300 pF  
L
T = 25°C  
A
2.0 µs/DIV  
1.0 µs/DIV  
Figure 31. Common Mode Rejection  
versus Frequency  
Figure 32. Power Supply Rejection  
versus Frequency  
100  
80  
100  
80  
T = 125°C  
V
= +15 V  
= –15 V  
A
V
= +15 V  
= –15 V  
= 0 V  
CC  
CC  
V
V
EE  
T = 25°C  
T = 25°C  
EE  
A
V
A
CM  
V = ±1.5 V  
V  
CC  
T = –55°C  
A
CM  
(V = +1.5 V)  
CC  
60  
40  
20  
0
60  
A
DM  
V  
O
+
V  
EE  
+PSR  
40  
20  
0
V /A  
O
DM  
A
V  
DM  
V  
O
+PSR = 20 Log  
CM  
+
V  
CC  
V  
CM  
V /A  
O
DM  
–PSR  
(V = +1.5 V)  
CMR = 20 Log  
x A  
DM  
–PSR = 20 Log  
1.0  
V  
V  
O
EE  
EE  
0.1  
1.0  
10  
100  
1.0 k 10 k 100 k 1.0 M 10 M  
0.1  
10  
100  
1.0 k 10 k 100 k 1.0 M 10 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
http://onsemi.com  
9
MC34071,2,4,A MC33071,2,4,A  
Figure 33. Supply Current versus  
Supply Voltage  
Figure 34. Power Supply Rejection  
versus Temperature  
105  
95  
85  
75  
65  
9.0  
8.0  
7.0  
6.0  
–PSR (V = +1.5 V)  
EE  
V
V
EE  
= +15 V  
= –15 V  
CC  
T = –55°C  
A
(V = +1.5 V)  
+PSR  
CC  
T = 25°C  
A
V  
CC  
V /A  
O
DM  
T = 125°C  
A
+PSR = 20 Log  
–PSR = 20 Log  
V  
A
CC  
DM  
V  
O
+
5.0  
4.0  
V /A  
O
DM  
V  
EE  
V  
EE  
0
5.0  
10  
15  
20  
25  
–55  
–25  
0
25  
50  
75  
100  
125  
V
, |V |, SUPPLY VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
A
CC EE  
Figure 35. Channel Separation versus Frequency  
Figure 36. Input Noise versus Frequency  
2.8  
120  
100  
80  
60  
40  
20  
0
70  
V
= +15 V  
= –15 V  
= 0  
CC  
60  
50  
40  
30  
20  
10  
0
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
V
= +15 V  
= –15 V  
V
CC  
EE  
V
V
EE  
CM  
T = 25°C  
T = 25°C  
A
A
Voltage  
Current  
0
10  
20  
30  
50  
70  
100  
200  
300  
10  
100  
1.0 k  
f, FREQUENCY (kHz)  
10 k  
100 k  
f, FREQUENCY (kHz)  
APPLICATIONS INFORMATION  
CIRCUIT DESCRIPTION/PERFORMANCE FEATURES  
Althoughthebandwidth, slewrate, andsettlingtimeofthe  
MC34071 amplifier series are similar to op amp products  
utilizing JFET input devices, these amplifiers offer other  
additional distinct advantages as a result of the PNP  
transistor differential input stage and an all NPN transistor  
output stage.  
up to approximately 5.0 mA of current from V through  
EE  
either inputs clamping diode without damage or latching,  
although phase reversal may again occur.  
If one or both inputs exceed the upper common mode  
voltage limit, the amplifier output is readily predictable and  
may be in a low or high state depending on the existing input  
bias conditions.  
Since the input common mode voltage range of this input  
stage includes the V potential, single supply operation is  
feasible to as low as 3.0 V with the common mode input  
voltage at ground potential.  
The input stage also allows differential input voltages up  
to ±44 V, provided the maximum input voltage range is not  
exceeded. Specifically, the input voltages must range  
Since the input capacitance associated with the small  
geometry input device is substantially lower (2.5 pF) than  
the typical JFET input gate capacitance (5.0 pF), better  
frequency response for a given input source resistance can  
be achieved using the MC34071 series of amplifiers. This  
performance feature becomes evident, for example, in fast  
settling D–to–A current to voltage conversion applications  
where the feedback resistance can form an input pole with  
the input capacitance of the op amp. This input pole creates  
a 2nd order system with the single pole op amp and is  
therefore detrimental to its settling time. In this context,  
lower input capacitance is desirable especially for higher  
EE  
between V  
and V  
supply voltages as shown by the  
EE  
maximum rating table. In practice, although not  
recommended, the input voltages can exceed the V  
CC  
CC  
voltagebyapproximately3.0VanddecreasebelowtheV  
EE  
voltage by 0.3 V without causing product damage, although  
output phase reversal may occur. It is also possible to source  
http://onsemi.com  
10  
MC34071,2,4,A MC33071,2,4,A  
values of feedback resistances (lower current DACs). This  
minimum current sink capability, typically to an output  
input pole can be compensated for by creating a feedback  
zero with a capacitance across the feedback resistance, if  
necessary, to reduce overshoot. For 2.0 kof feedback  
resistance, the MC34071 series can settle to within 1/2 LSB  
of 8 bits in 1.0 µs, and within 1/2 LSB of 12–bits in 2.2 µs  
for a 10 V step. In a inverting unity gain fast settling  
configuration, the symmetrical slew rate is ±13 V/µs. In the  
classic noninverting unity gain configuration, the output  
positive slew rate is +10 V/µs, and the corresponding  
negative slew rate will exceed the positive slew rate as a  
function of the fall time of the input waveform.  
Since the bipolar input device matching characteristics  
are superior to that of JFETs, a low untrimmed maximum  
offset voltage of 3.0 mV prime and 5.0 mV downgrade can  
be economically offered with high frequency performance  
characteristics. This combination is ideal for low cost  
precision, high speed quad op amp applications.  
voltage of (V +1.8 V). In single supply applications the  
EE  
output can directly source or sink base current from a  
common emitter NPN transistor for fast high current  
switching applications.  
In addition, the all NPN transistor output stage is  
inherently fast, contributing to the bipolar amplifier’s high  
gain bandwidth product and fast settling capability. The  
associated high frequency low output impedance (30 typ  
@ 1.0 MHz) allows capacitive drive capability from 0 pF to  
10,000 pF without oscillation in the unity closed loop gain  
configuration. The 60° phase margin and 12 dB gain margin  
as well as the general gain and phase characteristics are  
virtually independent of the source/sink output swing  
conditions. This allows easier system phase compensation,  
since output swing will not be a phase consideration. The  
high frequency characteristics of the MC34071 series also  
allow excellent high frequency active filter capability,  
especially for low voltage single supply applications.  
Although the single supply specifications is defined at  
5.0 V, these amplifiers are functional to 3.0 V @ 25°C  
although slight changes in parametrics such as bandwidth,  
slew rate, and DC gain may occur.  
The all NPN output stage, shown in its basic form on the  
equivalent circuit schematic, offers unique advantages over  
the more conventional NPN/PNP transistor Class AB  
output stage. A 10 kload resistance can swing within 1.0  
V of the positive rail (V ), andwithin0.3Vofthenegative  
CC  
rail(V ),providinga28.7V swingfrom±15Vsupplies.  
If power to this integrated circuit is applied in reverse  
polarity or if the IC is installed backwards in a socket, large  
unlimited current surges will occur through the device that  
may result in device destruction.  
EE pp  
This large output swing becomes most noticeable at lower  
supply voltages.  
The positive swing is limited by the saturation voltage of  
thecurrentsourcetransistorQ , andV oftheNPNpullup  
Special static precautions are not necessary for these  
bipolar amplifiers since there are no MOS transistors on  
the die.  
7
BE  
transistorQ ,andthevoltagedropassociatedwiththeshort  
17  
circuit resistance, R . The negative swing is limited by the  
7
saturation voltage of the pull–down transistor Q , the  
As with most high frequency amplifiers, proper lead  
dress, component placement, and PC board layout should  
be exercised for optimum frequency performance. For  
example, long unshielded input or output leads may result in  
unwanted input–output coupling. In order to preserve the  
relatively low input capacitance associated with these  
amplifiers, resistors connected to the inputs should be  
immediatelyadjacent to the input pin to minimize additional  
stray input capacitance. This not only minimizes the input  
pole for optimum frequency response, but also minimizes  
extraneous “pick up” at this node. Supply decoupling with  
adequatecapacitanceimmediatelyadjacenttothesupplypin  
is also important, particularly over temperature, since many  
types of decoupling capacitors exhibit great impedance  
changes over temperature.  
The output of any one amplifier is current limited and thus  
protected from a direct short to ground. However, under  
such conditions, it is important not to allow the device to  
exceed the maximum junction temperature rating. Typically  
for ±15 V supplies, any one output can be shorted  
continuously to ground without exceeding the maximum  
temperature rating.  
16  
voltage drop I R , and the voltage drop associated with  
L 6  
resistance R , where I is the sink load current. For small  
7
L
valued sink currents, the above voltage drops are negligible,  
allowing the negative swing voltage to approach within  
millivolts of V . For large valued sink currents (>5.0 mA),  
EE  
diode D3 clamps the voltage across R , thus limiting the  
6
negative swing to the saturation voltage of Q , plus the  
16  
forward diode drop of D3 (V +1.0 V). Thus for a given  
EE  
supplyvoltage, unprecedentedpeak–to–peakoutputvoltage  
swing is possible as indicated by the output swing  
specifications.  
If the load resistance is referenced to V  
instead of  
CC  
ground for single supply applications, the maximum  
possible output swing can be achieved for a given supply  
voltage. For light load currents, the load resistance will pull  
the output to V  
during the positive swing and the output  
CC  
will pull the load resistance near ground during the negative  
swing. The load resistance value should be much less than  
that of the feedback resistance to maximize pull up  
capability.  
Because the PNP output emitter–follower transistor has  
been eliminated, the MC34071 series offers a 20 mA  
http://onsemi.com  
11  
MC34071,2,4,A MC33071,2,4,A  
(Typical Single Supply Applications V  
CC  
= 5.0 V)  
Figure 37. AC Coupled Noninverting Amplifer  
Figure 38. AC Coupled Inverting Amplifier  
V
CC  
5.1 M  
V
O
3.7 V  
pp  
0
3.7 V  
pp  
0
V
CC  
100 k  
1.0 M  
20 k  
C
in  
C
O
68 k  
+
V
O
+
MC34071  
C
in  
MC34071  
10 k  
V
O
36.6 mV  
pp  
C
O
10 k  
100 k  
V
in  
10 k  
R
L
100 k  
R
L
V 370 mV  
in pp  
1.0 k  
A = 101  
V
A = 10 BW (–3.0 dB) = 450 kHz  
V
BW (–3.0 dB) = 45 kHz  
Figure 39. DC Coupled Inverting Amplifer  
Maximum Output Swing  
Figure 40. Unity Gain Buffer TTL Driver  
2.5 V  
V
O
V
4.75 V  
pp  
0
0 to 10,000 pF  
Cable  
CC  
2.63 V  
+
V
in  
MC54/74XX  
MC34071  
91 k  
TTL Gate  
5.1 k  
R
L
5.1 k  
100 k  
+
MC34071  
V
O
Figure 42. Active Bandpass Filter  
1.0 M  
A = 10  
V
V
in  
BW (–3.0 dB) = 450 kHz  
C
0.047  
R3  
2.2 k  
R1  
V
in  
MC34071  
1.1 k  
R2  
5.6 k  
Figure 41. Active High–Q Notch Filter  
V
O
C
0.047  
+
V
CC  
f = 30 kHz  
o
H = 10  
H = 1.0  
o
o
V 0.2 Vdc  
in  
0.4 V  
R2 =  
CC  
V
O
MC34071  
Given f = Center Frequency  
o
R
R
+
A = Gain at Center Frequency  
O
V
in  
16 k  
16 k  
Choose Value f , Q, A , C  
o
o
C
Then:  
Q
R3  
R1 R3  
2
0.01  
R3 =  
R1 =  
πf C  
o
2H  
4Q R1–R3  
o
f = 1.0 kHz  
o
Q f  
o o  
2.0 R  
32 k  
< 0.1  
For less than 10% error from operational amplifier  
GBW  
1
f =  
o
4πRC  
where f and GBW are expressed in Hz.  
o
GBW = 4.5 MHz Typ.  
2.0 C  
0.02  
2.0 C  
0.02  
http://onsemi.com  
12  
MC34071,2,4,A MC33071,2,4,A  
Figure 43. Low Voltage Fast D/A Converter  
Figure 44. High Speed Low Voltage Comparator  
C
F
V
in  
2.0 V  
R
F
V
in  
+
V
O
5.0 k  
5.0 k  
5.0 k  
t
MC34071  
V
O
MC34071  
2.0 k  
R
L
V
O
+
10 k  
10 k  
10 k  
V
CC  
0.2 µs  
1.0 V  
4.0 V  
Delay  
Bit  
Switches  
13 V/µs  
25 V/µs  
(R–2R) Ladder Network  
0.1  
t
Settling Time  
1.0 µs (8–Bits, 1/2 LSB)  
Delay  
1.0 µs  
Figure 45. LED Driver  
Figure 46. Transistor Driver  
V
CC  
V
CC  
“ON”  
V
CC  
V < V  
in ref  
R
L
+
+
+
V
in  
MC34071  
MC34071  
MC34071  
V
ref  
R
L
“ON”  
(A) PNP  
(B) NPN  
V > V  
in ref  
Figure 47. AC/DC Ground Current Monitor  
Figure 48. Photovoltaic Cell Amplifier  
I
Load  
R
F
+
I
Cell  
V
O
MC34071  
MC34071  
V
O
+
Ground Current  
Sense Resistor  
R
S
R1  
R1  
R2  
V
Cell  
= 0 V  
R2  
V = I  
R
S
1+  
O
Load  
V = I  
Cell  
O
R
F
O
V > 0.1 V  
For V > 0.1V  
O
R2  
R1+R2  
BW ( –3.0 dB) = GBW  
http://onsemi.com  
13  
MC34071,2,4,A MC33071,2,4,A  
Figure 49. Low Input Voltage Comparator  
with Hysteresis  
Figure 50. High Compliance Voltage to  
Sink Current Converter  
V
O
Hysteresis  
I
out  
R2  
V
in  
V
OH  
V
ref R1  
+
+
MC34071  
MC34071  
V
OL  
V
in  
V
in  
V
V
inH  
inL  
V
R1  
ref  
V
inL  
=
(V –V )+V  
OL ref ref  
R1+R2  
R
V ±V  
R1  
in IO  
V
inH  
=
(V –V )+V  
OH ref ref  
I
out  
=
R1+R2  
R
R1  
V =  
H
(V –V  
)
OH OL  
R1+R  
Figure 51. High Input Impedance  
Differential Amplifier  
Figure 52. Bridge Current Amplifier  
+V  
ref  
R1  
R2  
R
F
R4  
R
R
R3  
1/2  
V
O
V
O
MC34072  
+
1/2  
MC34072  
MC34071  
+V1  
+V2  
+
R
+
R = R  
R2  
R1  
R4  
R3  
R R  
F
=
(Critical to CMRR)  
V = V  
ref  
O
2
2R  
(V 0.1 V)  
R
F
R < < R  
R > > R  
R4  
R3  
R4  
R3  
V = 1  
O
+
V2V1  
F
O
For (V2 V1), V > 0  
Figure 54. High Frequency Pulse  
Width Modulation  
Figure 53. Low Voltage Peak Detector  
0.85  
RC  
f
OSC  
+
I
B
V
in  
+
SC  
V
I
+
V = V (pk)  
O in  
MC34071  
V
P
0
t
Base Charge  
Removal  
t
+
I
out  
R
L
V
P
10,000 pF  
R
+
1/2  
MC34072  
1/2  
MC34072  
C
+
±I  
B
V
in  
V+  
100 k  
V
P
Pulse Width  
Control Group  
100 k  
V
P
47 k  
t
OSC  
Comparator  
High Current  
Output  
http://onsemi.com  
14  
MC34071,2,4,A MC33071,2,4,A  
GENERAL ADDITIONAL APPLICATIONS INFORMATION V = ±15.0 V  
S
Figure 55. Second Order Low–Pass Active Filter  
Figure 56. Second Order High–Pass Active Filter  
C2  
0.02  
R1  
46.1 k  
C2  
0.05  
C1  
1.0  
R2  
5.6 k  
R1  
560  
R3  
510  
MC34071  
C1  
1.0  
f = 100 Hz  
o
H = 20  
o
R2  
1.1 k  
+
MC34071  
C1  
f = 1.0 kHz  
H = 10  
o
o
+
0.44  
H +0.5  
o
Then: R1 =  
R2 =  
Choose: f , H , C1  
o
o
Choose: f , H , C2  
o
o
πf C1  
o
2
2
Then: C1 = 2C2 (H +1)  
o
2πf C1 (1/H +2)  
o
o
2
R2  
R2  
C
R2 =  
R3 =  
R1 =  
C2 =  
4πf C2  
o
H +1  
o
H
o
H
o
Figure 57. Fast Settling Inverter  
Figure 58. Basic Inverting Amplifier  
C *  
F
V = 10 V  
O
Step  
R
F
+
MC34071  
V
O
2.0 k  
R1  
R
L
V
in  
R2  
MC34071  
V
O
+
V
O
R2  
R1  
R1  
R1 +R2  
I
=
BW (–3.0 dB) = GBW  
t = 1.0 µs  
V
in  
s
Uncompensated  
to 1/2 LSB (8–Bits)  
SR = 13 V/µs  
t = 2.2 µs  
s
to 1/2 LSB (12–Bits)  
High Speed  
DAC  
Compensated  
SR = 13 V/µs  
*Optional Compensation  
Figure 59. Basic Noninverting Amplifier  
Figure 60. Unity Gain Buffer (A = +1.0)  
V
+
+
V
in  
MC34071  
V
O
MC34071  
V
O
V
in  
R2  
R
L
BW = 200 kHz  
p
R1  
V = 20 V  
O
pp  
V
O
R2  
R1  
SR = 10 V/µs  
=
1 +  
V
in  
R1  
R1 +R2  
BW (–3.0 dB) = GBW  
http://onsemi.com  
15  
MC34071,2,4,A MC33071,2,4,A  
Figure 61. High Impedance Differential Amplifier  
+
R
R
MC34074  
R
R
MC34074  
V
O
R
E
+
R
Example:  
Let: R = R = 12 k  
Then: A = 3.0  
V
BW = 1.5 MHz  
MC34074  
E
R
A = 1 + 2  
V
+
R
E
R
Figure 62. Dual Voltage Doubler  
+V  
O
+
+
+
MC34074  
R
L
100 k  
+10  
10  
10  
MC34074  
220 pF  
+
100 k  
–10  
+
+
R
L
+
10  
MC34074  
R
+V  
–V  
O
L
O
100 k  
10  
18.93 –18.78  
10 k  
5.0 k  
18  
–18  
–V  
O
15.4  
–15.4  
http://onsemi.com  
16  
MC34071,2,4,A MC33071,2,4,A  
ORDERING INFORMATION  
Operating  
Op Amp  
Function  
Temperature Range  
Device  
Package  
Shipping  
Single  
MC34071P, MC34071AP  
MC34071D, MC34071AD  
MC34071DR2, MC34071ADR2  
DIP–8  
SO–8  
SO–8 / Tape & Reel  
50 Units / Rail  
98 Units / Rail  
2500 Units / Tape & Reel  
T
A
= 0° to +70°C  
MC33071P, MC33071AP  
MC33071D, MC33071AD  
MC33071DR2, MC33071ADR2  
DIP–8  
SO–8  
SO–8 / Tape & Reel  
50 Units / Rail  
98 Units / Rail  
2500 Units / Tape & Reel  
T
A
= –40° to +85°C  
Dual  
MC34072P, MC34072AP  
MC34072D, MC34072AD  
MC34072DR2, MC34072ADR2  
DIP–8  
SO–8  
SO–8 / Tape & Reel  
50 Units / Rail  
98 Units / Rail  
2500 Units / Tape & Reel  
T
A
= 0° to +70°C  
MC33072P, MC33072AP  
MC33072D, MC33072AD  
MC33072DR2, MC33072ADR2  
DIP–8  
SO–8  
SO–8 / Tape & Reel  
50 Units / Rail  
98 Units / Rail  
2500 Units / Tape & Reel  
T
= –40° to +85°C  
= –40° to +125°C  
A
MC34072VD  
MC34072VDR2  
SO–8  
SO–8 / Tape & Reel  
98 Units / Rail  
2500 Units / Tape & Reel  
T
A
Quad  
MC34074P, MC34074AP  
MC34074D, MC34074AD  
MC34074DR2, MC34074ADR2  
DIP–8  
SO–8  
SO–8 / Tape & Reel  
50 Units / Rail  
98 Units / Rail  
2500 Units / Tape & Reel  
T
A
= 0° to +70°C  
MC33074P, MC33074AP  
MC33074D, MC33074AD  
DIP–8  
SO–8  
50 Units / Rail  
98 Units / Rail  
MC33074DR2, MC33074ADR2  
MC33074DTB, MC33074ADTB  
MC33074DTBR2, MC33074ADTBR2  
SO–8 / Tape & Reel  
TSSOP–14  
TSSOP–14 / Tape & Reel  
2500 Units / Tape & Reel  
96 Units / Rail  
2500 Units / Tape & Reel  
T
= –40° to +85°C  
= –40° to +125°C  
A
MC34074VD  
MC34074VDR2  
SO–8  
SO–8 / Tape & Reel  
98 Units / Rail  
2500 Units / Tape & Reel  
T
A
http://onsemi.com  
17  
MC34071,2,4,A MC33071,2,4,A  
PACKAGE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
8
5
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
–B–  
1
4
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
MILLIMETERS  
DIM MIN MAX  
INCHES  
F
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
–A–  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
10.16 0.370  
6.60 0.240  
4.45 0.155  
0.51 0.015  
1.78 0.040  
NOTE 2  
L
G
H
J
K
L
2.54 BSC  
0.100 BSC  
C
0.76  
0.20  
2.92  
1.27 0.030  
0.30 0.008  
3.43  
0.050  
0.012  
0.135  
J
0.115  
–T–  
SEATING  
PLANE  
7.62 BSC  
0.300 BSC  
N
M
N
–––  
0.76  
10  
–––  
10  
0.040  
1.01 0.030  
M
D
K
G
H
M
M
M
0.13 (0.005)  
T A  
B
D SUFFIX  
(SO–8)  
PLASTIC PACKAGE  
CASE 751–05  
ISSUE R  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
D
A
E
C
8
1
5
4
M
M
0.25  
B
H
MILLIMETERS  
h X 45  
DIM MIN  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
B
C
e
A
A1  
B
C
D
E
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
A
SEATING  
PLANE  
e
H
h
1.27 BSC  
L
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
0.10  
A1  
B
L
M
S
S
0.25  
C B  
A
http://onsemi.com  
18  
MC34071,2,4,A MC33071,2,4,A  
PACKAGE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
14  
1
8
7
B
INCHES  
DIM MIN MAX  
0.770 18.16  
MILLIMETERS  
A
F
MIN  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
A
B
C
D
F
0.715  
0.240  
0.145  
0.015  
0.040  
0.260  
0.185  
0.021  
0.070  
6.10  
3.69  
0.38  
1.02  
L
C
G
H
J
K
L
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
0.300 BSC  
7.62 BSC  
SEATING  
PLANE  
K
M
N
0
10  
0.039  
0
0.39  
10  
1.01  
0.015  
H
G
D
M
D SUFFIX  
(SO–14)  
PLASTIC PACKAGE  
CASE 751A–03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–A–  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
14  
1
8
7
–B–  
P 7 PL  
M
M
0.25 (0.010)  
B
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
–T–  
SEATING  
PLANE  
J
M
G
J
K
M
P
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T B  
A
7
0
5.80  
0.25  
6.20 0.228  
0.50 0.010  
0.244  
0.019  
R
http://onsemi.com  
19  
MC34071,2,4,A MC33071,2,4,A  
PACKAGE DIMENSIONS  
DTB SUFFIX  
(TSSOP–14)  
PLASTIC PACKAGE  
CASE 948G–01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
14X K REF  
M
S
S
Y14.5M, 1982.  
0.10 (0.004)  
T U  
V
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS. MOLD  
FLASH OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
–U–  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
L
N
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE W.  
S
K
0.15 (0.006) T U  
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
K1  
MIN  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
–V–  
A
B
C
4.90  
4.30  
–––  
5.10 0.193  
4.50 0.169  
1.20  
J J1  
–––  
D
F
0.05  
0.50  
0.15 0.002  
0.75 0.020  
SECTION N–N  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
0.50  
0.09  
0.09  
0.19  
0.19  
0.60 0.020  
0.20 0.004  
0.16 0.004  
0.30 0.007  
0.25 0.007  
0.024  
0.008  
0.006  
0.012  
0.010  
–W–  
C
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
M
0
8
0
8
SEATING  
PLANE  
–T–  
H
G
DETAIL E  
D
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
USA/EUROPE Literature Fulfillment:  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Email: ONlit–asia@hibbertco.com  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5487–8345  
Fax Response Line*: 303–675–2167  
800–344–3810 Toll Free USA/Canada  
*To receive a Fax of our publications  
Email: r14153@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local Sales Representative.  
N. America Technical Support: 800–282–9855 Toll Free USA/Canada  
MC34071/D  

相关型号:

MC33074DTBR2G

Single Supply 3.0 V to 44 V Operational Amplifiers
ONSEMI

MC33074P

High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers
ONSEMI

MC33074P

HIGH BANDWIDTH SINGLE SUPPLY OPERATIONAL AMPLIFIERS
MOTOROLA

MC33074P

High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers
FREESCALE

MC33074PG

Single Supply 3.0 V to 44 V Operational Amplifiers
ONSEMI

MC33074U

High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers
MOTOROLA

MC33074U

High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers
FREESCALE

MC33076

DUAL HIGH OUTPUT CURRENT OPERATIONAL AMPLIFIER
ONSEMI

MC33076

Amplifiers and Comparators
MOTOROLA

MC33076D

DUAL HIGH OUTPUT CURRENT OPERATIONAL AMPLIFIER
MOTOROLA

MC33076D

DUAL HIGH OUTPUT CURRENT OPERATIONAL AMPLIFIER
ONSEMI

MC33076DR2

Dual High Output Current, Low Power, Low Noise Bipolar Operational Amplifier
ONSEMI