MC33161 [ONSEMI]

Universal Voltage Monitors; 通用电压监测器
MC33161
型号: MC33161
厂家: ONSEMI    ONSEMI
描述:

Universal Voltage Monitors
通用电压监测器

文件: 总16页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MC34161/MC33161 are universal voltage monitors intended  
for use in a wide variety of voltage sensing applications. These devices  
offer the circuit designer an economical solution for positive and  
negative voltage detection. The circuit consists of two comparator  
channels each with hysteresis, a unique Mode Select Input for channel  
programming, a pinned out 2.54 V reference, and two open collector  
outputs capable of sinking in excess of 10 mA. Each comparator  
channel can be configured as either inverting or noninverting by the  
Mode Select Input. This allows over, under, and window detection of  
positive and negative voltages. The minimum supply voltage needed  
for these devices to be fully functional is 2.0 V for positive voltage  
sensing and 4.0 V for negative voltage sensing.  
Applications include direct monitoring of positive and negative  
voltages used in appliance, automotive, consumer, and industrial  
equipment.  
Unique Mode Select Input Allows Channel Programming  
Over, Under, and Window Voltage Detection  
Positive and Negative Voltage Detection  
http://onsemi.com  
MARKING  
DIAGRAMS  
8
PDIP–8  
P SUFFIX  
CASE 626  
MC3x161P  
AWL  
YYWW  
8
1
1
8
1
3x161  
ALYW  
SO–8  
D SUFFIX  
CASE 751  
8
1
Fully Functional at 2.0 V for Positive Voltage Sensing and 4.0 V for  
Negative Voltage Sensing  
x
A
= 3 or 4  
= Assembly Location  
Pinned Out 2.54 V Reference with Current Limit Protection  
Low Standby Current  
Open Collector Outputs for Enhanced Device Flexibility  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
PIN CONNECTIONS  
V
1
2
3
4
8
7
6
5
V
CC  
Simplified Block Diagram  
(Positive Voltage Window Detector Application)  
ref  
Input 1  
Input 2  
Gnd  
Mode Select  
Output 1  
V
CC  
Output 2  
8
(TOP VIEW)  
1
7
2
2.54V  
Reference  
V
S
ORDERING INFORMATION  
+
Device  
Package  
SO–8  
Shipping  
98 Units/Rail  
2500 Tape & Reel  
50 Units/Rail  
98 Units/Rail  
6
5
+
2.8V  
+
MC34161D  
MC34161DR2  
MC34161P  
MC33161D  
+
+
SO–8  
1.27V  
PDIP–8  
SO–8  
+
+
3
0.6V  
+
MC33161DR2  
MC33161P  
SO–8  
2500 Tape & Reel  
50 Units/Rail  
1.27V  
PDIP–8  
4
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
April, 2000 – Rev. 2  
MC34161/D  
MC34161, MC33161  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Power Supply Input Voltage  
V
CC  
40  
– 1.0 to +40  
20  
Comparator Input Voltage Range  
V
in  
V
Comparator Output Sink Current (Pins 5 and 6) (Note 1.)  
Comparator Output Voltage  
I
mA  
V
Sink  
V
out  
40  
Power Dissipation and Thermal Characteristics (Note 1.)  
P Suffix, Plastic Package, Case 626  
Maximum Power Dissipation @ T = 70°C  
Thermal Resistance, Junction–to–Air  
D Suffix, Plastic Package, Case 751  
P
800  
100  
mW  
°C/W  
A
D
R
θJA  
Maximum Power Dissipation @ T = 70°C  
Thermal Resistance, Junction–to–Air  
P
450  
178  
mW  
°C/W  
A
D
R
θJA  
Operating Junction Temperature  
T
+150  
°C  
°C  
J
Operating Ambient Temperature (Note 3.)  
MC34161  
MC33161  
T
A
0 to +70  
– 40 to +85  
Storage Temperature Range  
T
stg  
– 55 to +150  
°C  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 5.0 V, for typical values T = 25°C, for min/max values T is the operating ambient  
A A  
temperature range that applies [Notes 2. and 3.], unless otherwise noted.)  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
COMPARATOR INPUTS  
Threshold Voltage, V Increasing (T = 25°C)  
V
th  
1.245  
1.235  
1.27  
1.295  
1.295  
V
in  
A
Threshold Voltage, V Increasing (T = T  
to T  
)
max  
in  
A
min  
Threshold Voltage Variation (V  
= 2.0 V to 40 V)  
V  
th  
15  
7.0  
25  
15  
35  
mV  
mV  
mV  
V
CC  
Threshold Hysteresis, V Decreasing  
in  
V
H
Threshold Difference |V  
– V  
|
V
D
1.0  
1.27  
15  
th1  
th2  
Reference to Threshold Difference (V – V ), (V – V  
)
V
RTD  
1.20  
1.32  
ref in1 ref in2  
Input Bias Current (V = 1.0 V)  
Input Bias Current (V = 1.5 V)  
in  
I
IB  
40  
85  
200  
400  
nA  
in  
MODE SELECT INPUT  
Mode Select Threshold Voltage (Figure 5) Channel 1  
Mode Select Threshold Voltage (Figure 5) Channel 2  
V
V
V
+0.15  
0.3  
V
+0.23  
0.63  
V
+0.30  
0.9  
V
th(CH 1)  
th(CH 2)  
ref  
ref  
ref  
COMPARATOR OUTPUTS  
Output Sink Saturation Voltage (I  
Output Sink Saturation Voltage (I  
Output Sink Saturation Voltage (I  
= 2.0 mA)  
= 10 mA)  
= 0.25 mA, V  
V
OL  
0.05  
0.22  
0.02  
0.3  
0.6  
0.2  
V
Sink  
Sink  
Sink  
= 1.0 V)  
CC  
Off–State Leakage Current (V  
= 40 V)  
I
0
1.0  
µA  
OH  
OH  
REFERENCE OUTPUT  
Output Voltage (I = 0 mA, T = 25°C)  
V
2.48  
2.54  
0.6  
5.0  
2.60  
15  
V
O
A
ref  
Reg  
Load Regulation (I = 0 mA to 2.0 mA)  
mV  
mV  
V
O
load  
Line Regulation (V  
CC  
= 4.0 V to 40 V)  
Reg  
15  
line  
Total Output Variation over Line, Load, and Temperature  
Short Circuit Current  
V  
2.45  
2.60  
30  
ref  
I
8.5  
mA  
SC  
TOTAL DEVICE  
Power Supply Current (V  
Power Supply Current (V  
, V , V  
= Gnd) (V  
= 5.0 V)  
= 40 V)  
I
CC  
450  
560  
700  
900  
µA  
Mode in1 in2  
CC  
CC  
, V 1, V 2 = Gd) (V  
Mode in in  
Operating Voltage Range (Positive Sensing)  
Operating Voltage Range (Negative Sensing)  
V
CC  
2.0  
4.0  
40  
40  
V
1. Maximum package power dissipation must be observed.  
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
3. T  
=
0°C for MC34161  
–40°C for MC33161  
T
high  
=
+70°C for MC34161  
+85°C for MC33161  
low  
http://onsemi.com  
2
MC34161, MC33161  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
500  
400  
300  
200  
V
= 5.0 V  
CC  
R = 10 k to V  
L
CC  
V
= 5.0 V  
= Gnd  
CC  
T
A = 25°C  
V
Mode  
T = 25°C  
A
T = 85°C  
A
T = 85°C  
A
T = 25°C  
A
T = 25°C  
100  
0
A
T = –40°C  
A
T = –40°C  
A
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
0
1.0  
2.0  
3.0  
4.0  
5.0  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 1. Comparator Input Threshold Voltage  
Figure 2. Comparator Input Bias Current  
versus Input Voltage  
3600  
3000  
2400  
8.0  
V
= 5.0 V  
Undervoltage Detector  
Programmed to trip at 4.5 V  
R = 1.8 k, R = 4.7 k  
CC  
1. V  
Mode  
= Gnd, Output Falling  
= V , Output Rising  
= V , Output Falling  
T = 25°C  
A
2. V  
Mode CC  
3. V  
4. V  
1
2
Mode CC  
Mode  
6.0  
4.0  
2.0  
0
R = 10 k to V  
= Gnd, Output Rising  
L
CC  
Refer to Figure 16  
1800  
1200  
600  
1
2
T = –40°C  
A
3
T = –25°C  
A
T = –85°C  
4
A
0
2.0  
4.0  
6.0  
8.0  
10  
0
2.0  
4.0  
V , SUPPLY VOLTAGE (V)  
CC  
6.0  
8.0  
PERCENT OVERDRIVE (%)  
Figure 3. Output Propagation Delay Time  
versus Percent Overdrive  
Figure 4. Output Voltage versus Supply Voltage  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
40  
35  
30  
25  
20  
15  
10  
V
A
= 5.0 V  
Channel 2 Threshold  
Channel 1 Threshold  
CC  
T = 25°C  
V
L
= 5.0 V  
CC  
R = 10 k to V  
CC  
T = 85°C  
A
T = 85°C  
A
T = 25°C  
T = –40°C  
A
A
T = 25°C  
A
T = –40°C  
A
5.0  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
1.0  
2.0  
3.0  
4.0  
5.0  
V
Mode  
, MODE SELECT INPUT VOLTAGE (V)  
V
Mode  
, MODE SELECT INPUT VOLTAGE (V)  
Figure 5. Mode Select Thresholds  
Figure 6. Mode Select Input Current  
versus Input Voltage  
http://onsemi.com  
3
MC34161, MC33161  
2.8  
2.610  
2.578  
2.546  
2.514  
V
ref  
Max = 2.60 V  
2.4  
2.0  
1.6  
1.2  
0.8  
V
ref  
Typ = 2.54 V  
V
V
Mode  
= 5.0 V  
= Gnd  
CC  
2.482  
2.450  
V
= Gnd  
Mode  
0.4  
0
T = 25°C  
A
V
ref  
Min = 2.48 V  
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
40  
–55  
–25  
0
25  
50  
75  
100  
125  
V
CC  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Reference Voltage  
versus Supply Voltage  
Figure 8. Reference Voltage  
versus Ambient Temperature  
0
–2.0  
–4.0  
–6.0  
0.5  
0.4  
0.3  
V
V
Mode  
= 5.0 V  
= Gnd  
CC  
T = 85°C  
A
T = 25°C  
A
V
V
Mode  
= 5.0 V  
= Gnd  
CC  
0.2  
0.1  
0
T = –40°C  
A
–8.0  
–10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0
4.0  
8.0  
12  
16  
I , REFERENCE SOURCE CURRENT (mA)  
ref  
I , OUTPUT SINK CURRENT (mA)  
out  
Figure 9. Reference Voltage Change  
versus Source Current  
Figure 10. Output Saturation Voltage  
versus Output Sink Current  
1.6  
0.8  
V
= V  
Mode CC  
Pins 2, 3 = Gnd  
V
= Gnd  
Mode  
Pins 2, 3 = 1.5 V  
0.6  
0.4  
1.2  
0.8  
V
= V  
Mode ref  
Pin 1 = 1.5 V  
Pin 2 = Gnd  
V
= 5.0 V  
= Gnd  
CC  
0.2  
0
V
0.4  
0
Mode  
I
measured at Pin 8  
CC  
A
T = 25°C  
A
T = 25°C  
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
40  
0
4.0  
I
out  
8.0  
12  
16  
V
CC  
, OUTPUT SINK CURRENT (mA)  
Figure 11. Supply Current versus  
Supply Voltage  
Figure 12. Supply Current  
versus Output Sink Current  
http://onsemi.com  
4
MC34161, MC33161  
V
CC  
8
2.54V  
Reference  
V
ref  
1
Channel 1  
Channel 2  
Mode Select  
Input 1  
7
2
+
+
Output 1  
Output 2  
2.8V  
+
6
5
+
+
1.27V  
+
+
0.6V  
Input 2  
+
3
1.27V  
4
Gnd  
Figure 13. MC34161 Representative Block Diagram  
Mode Select  
Pin 7  
Input 1  
Pin 2  
Output 1  
Pin 6  
Input 2  
Pin 3  
Output 2  
Pin 5  
Comments  
GND  
0
1
0
1
0
1
0
1
Channels 1 & 2: Noninverting  
V
ref  
0
1
0
1
0
1
1
0
Channel 1: Noninverting  
Channel 2: Inverting  
V
CC  
(>2.0 V)  
0
1
1
0
0
1
1
0
Channels 1 & 2: Inverting  
Figure 14. Truth Table  
http://onsemi.com  
5
MC34161, MC33161  
FUNCTIONAL DESCRIPTION  
Reference  
Introduction  
Tobecompetitiveintoday’selectronicequipmentmarket,  
new circuits must be designed to increase system reliability  
with minimal incremental cost. The circuit designer can take  
a significant step toward attaining these goals by  
implementing economical circuitry that continuously  
monitors critical circuit voltages and provides a fault signal  
in the event of an out–of–tolerance condition. The  
MC34161, MC33161 series are universal voltage monitors  
intended for use in a wide variety of voltage sensing  
applications. The main objectives of this series was to  
configure a device that can be used in as many voltage  
sensing applications as possible while minimizing cost. The  
flexibilityobjectiveisachievedbytheutilizationofaunique  
Mode Select input that is used in conjunction with  
traditional circuit building blocks. The cost objective is  
achieved by processing the device on a standard Bipolar  
Analog flow, and by limiting the package to eight pins. The  
device consists of two comparator channels each with  
hysteresis, a mode select input for channel programming, a  
pinned out reference, and two open collector outputs. Each  
comparator channel can be configured as either inverting or  
noninverting by the Mode Select input. This allows a single  
device to perform over, under, and window detection of  
positive and negative voltages. A detailed description of  
each section of the device is given below with the  
representative block diagram shown in Figure 13.  
The 2.54 V reference is pinned out to provide a means for  
the input comparators to sense negative voltages, as well as  
a means to program the Mode Select input for window  
detection applications. The reference is capable of sourcing  
in excess of 2.0 mA output current and has built–in short  
circuit protection. The output voltage has a guaranteed  
tolerance of ±2.4% at room temperature.  
The 2.54 V reference is derived by gaining up the internal  
1.27 V reference by a factor of two. With a power supply  
voltage of 4.0 V, the 2.54 V reference is in full regulation,  
allowing the device to accurately sense negative voltages.  
Mode Select Circuit  
The key feature that allows this device to be flexible is the  
Mode Select input. This input allows the user to program  
each of the channels for various types of voltage sensing  
applications. Figure 14 shows that the Mode Select inputhas  
three defined states. These states determine whether  
Channel 1 and/or Channel 2 operate in the inverting or  
noninverting mode. The Mode Select thresholds are shown  
in Figure 5. The input circuitry forms a tristate switch with  
thresholdsat0.63 VandV +0.23V.Themodeselectinput  
ref  
current is 10µAwhenconnectedtothereferenceoutput, and  
42 µA when connected to a V  
of 5.0 V, refer to Figure 6.  
CC  
Output Stage  
The output stage uses a positive feedback base boost  
circuit for enhanced sink saturation, while maintaining a  
relatively low device standby current. Figure 10 shows that  
the sink saturation voltage is about 0.2 V at 8.0 mA over  
temperature. By combining the low output saturation  
characteristics with low voltage comparator operation, this  
Input Comparators  
The input comparators of each channel are identical, each  
having an upper threshold voltage of 1.27 V ±2.0% with  
25 mV of hysteresis. The hysteresis is provided to enhance  
output switching by preventing oscillations as the  
comparatorthresholdsarecrossed. Thecomparatorshavean  
input bias current of 60 nA at their threshold which  
approximates a 21.2 Mresistor to ground. This high  
impedance minimizes loading of the external voltage  
divider for well defined trip points. For all positive voltage  
sensing applications, both comparator channels are fully  
device is capable of sensing positive voltages at a V  
of  
CC  
1.0 V. These characteristics are important in undervoltage  
sensing applications where the output must stay in a low  
state as V approaches ground. Figure 4 shows the Output  
CC  
Voltage versus Supply Voltage in an undervoltage sensing  
application. Note that as V  
drops below the programmed  
CC  
4.5 V trip point, the output stays in a well defined active low  
state until V drops below 1.0 V.  
functional at a V  
of 2.0 V. In order to provide enhanced  
CC  
CC  
device ruggedness for hostile industrial environments,  
additional circuitry was designed into the inputs to prevent  
device latch–up as well as to suppress electrostatic  
discharges (ESD).  
APPLICATIONS  
The following circuit figures illustrate the flexibility of  
this device. Included are voltage sensing applications for  
over, under, and window detectors, as well as three unique  
configurations. Many of the voltage detection circuits are  
shown with the open collector outputs of each channel  
connected together driving a light emitting diode (LED).  
This ‘ORed’ connection is shown for ease of explanation  
and it is only required for window detection applications.  
Note that many of the voltage detection circuits are shown  
with a dashed line output connection. This connection gives  
the inverse function of the solid line connection. For  
example, the solid line output connection of Figure 15 has  
the LED ‘ON’ when input voltage V is above trip voltage  
S
V , for overvoltage detection. The dashed line output  
2
connectionhas the LED ‘ON’ when V is below trip voltage  
S
V , for undervoltage detection.  
2
http://onsemi.com  
6
MC34161, MC33161  
V
CC  
8
V
2
2.54V  
Reference  
Input V  
V
S
Hys  
1
7
2
V
V
1
S1  
+
2.8V  
+
+
R
2
Gnd  
+
6
5
Output  
Voltage  
Pins 5, 6  
V
CC  
V
S2  
+
+
R
1
1.27V  
+
LED ‘ON’  
Gnd  
R
2
0.6V  
+
3
R
1
1.27V  
4
The above figure shows the MC34161 configured as a dual positive overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’ when  
or V exceeds V . With the dashed line output connection, the circuit becomes a dual positive undervoltage detector. As the input voltage decreases from  
V
S1  
S2  
2
the peak towards ground, the LED will turn ‘ON’ when V or V falls below V .  
S1  
S2  
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
R
R
V
R
R
V
V
2
1
2
1
2
1
1
2
1
2
V
(V  
V )  
1
V
V
th  
1
1
1
1
th  
H
2
V
V
H
th  
th  
Figure 15. Dual Positive Overvoltage Detector  
V
CC  
8
2.54V  
Reference  
V
2
1
Input V  
S
V
Hys  
V
S1  
V
+
2.8V  
1
7
2
+
+
R
2
+
6
5
Gnd  
+
+
V
S2  
R
1
Output  
Voltage  
Pins 5, 6  
V
1.27V  
CC  
+
0.6V  
LED ‘ON’  
R
2
Gnd  
+
3
R
1
1.27V  
4
The above figure shows the MC34161 configured as a dual positive undervoltage detector. As the input voltage decreases towards ground, the LED will turn ‘ON’  
when V or V falls below V . With the dashed line output connection, the circuit becomes a dual positive overvoltage detector. As the input voltage increases  
S1  
S2  
1
from ground, the LED will turn ‘ON’ when V or V exceeds V .  
S1 S2  
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
V
R
R
V
V
R
R
R
R
2
1
1
2
1
2
2
1
2
1
1
1
V
(V  
V )  
1
V
V
th  
1
1
th  
H
2
V
V
H
th  
th  
Figure 16. Dual Positive Undervoltage Detector  
http://onsemi.com  
7
MC34161, MC33161  
V
CC  
8
2.54V  
Reference  
Gnd  
1
7
2
R
2
V
1
+
2.8V  
+
+
R1  
Input –V  
V
+
S
Hys  
6
5
–V  
S1  
+
+
V
2
1.27V  
+
R
2
R1  
Output  
Voltage  
Pins 5, 6  
V
CC  
0.6V  
+
–V  
S2  
LED ‘ON’  
Gnd  
3
1.27V  
4
Theabove figure shows the MC34161 configured as a dual negative overvoltage detector. As the input voltage increases from ground, the LED will turn ‘ON’ when  
–V orV exceedsV . Withthedashedlineoutputconnection, thecircuitbecomesadualnegativeundervoltagedetector. Astheinputvoltagedecreasesfrom  
S1  
S2  
2
the peak towards ground, the LED will turn ‘ON’ when –V or –V falls below V .  
S1  
S2  
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
V
V
V
V
V
V
V
V
R
R
R
R
R
R
R
R
1
th  
2
th  
H
H
1
2
1
2
1
2
1
2
V
(V  
V
)
V
V
(V  
V
V
)
ref  
V
V
H
1
th  
th  
2
th  
H
th  
ref  
V
V
th  
th  
ref  
ref  
Figure 17. Dual Negative Overvoltage Detector  
V
CC  
8
2.54V  
Reference  
1
R
2
Gnd  
+
2.8V  
7
2
+
+
R1  
V
1
+
6
5
–V  
S1  
V
+
+
Hys  
Input –V  
S
1.27V  
V
+
0.6V  
2
R
R1  
2
Output  
Voltage  
Pins 5, 6  
V
CC  
–V  
S2  
+
3
LED ‘ON’  
1.27V  
Gnd  
4
The above figure shows the MC34161 configured as a dual negative undervoltage detector. As the input voltage decreases towards ground, the LED will turn ‘ON’  
whenV orV fallsbelowV .Withthedashedlineoutputconnection,thecircuitbecomesadualnegativeovervoltagedetector.Astheinputvoltageincreases  
S1  
S2  
1
from ground, the LED will turn ‘ON’ when –V or –V exceeds V .  
S1  
S2  
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
V
V
V
V
V
V
V
V
R
R
R
R
R
R
R
R
1
th  
2
th  
H
H
1
2
1
2
1
2
1
2
V
(V  
V
)
V
V
(V  
V
V
)
ref  
V
V
H
1
th  
th  
2
th  
H
th  
ref  
V
V
th  
th  
ref  
ref  
Figure 18. Dual Negative Undervoltage Detector  
http://onsemi.com  
8
MC34161, MC33161  
V
CC  
8
2.54V  
Reference  
V
4
CH2  
CH1  
V
Hys2  
V
1
7
2
V
3
S
Input V  
S
V
2
V
Hys1  
+
R
+
V
1
3
2.8V  
+
6
5
+
+
Gnd  
1.27V  
R
2
V
Output  
Voltage  
Pins 5, 6  
+
+
CC  
‘ON’  
LED ‘OFF’  
LED ‘ON’ ‘OFF’  
LED ‘ON’  
0.6V  
+
3
Gnd  
R
1
1.27V  
4
TheabovefigureshowstheMC34161configuredasapositivevoltagewindowdetector.Thisisaccomplishedbyconnectingchannel1asanundervoltagedetector,  
and channel 2 as an overvoltage detector. When the input voltage V falls out of the window established by V and V , the LED will turn ‘ON’. As the input voltage  
S
2
1
4
fallswithinthewindow, V increasingfromgroundandexceedingV , or V decreasingfromthepeaktowardsgroundandfallingbelowV , the LED will turn ‘OFF’.  
S
S
3
With the dashed line output connection, the LED will turn ‘ON’ when the input voltage V is within the window.  
S
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
3
R
R
V (V  
3
V (V  
1
V
V
)
)
R
R
V (V  
V
V
)
H1  
R
R
2
3
th2  
th1  
H2  
H1  
3
1
3
1
th1  
2
1
V
V
(V  
V
)
1
V
V
(V  
V )  
H2  
1
1
1
2
th1  
H1  
3
4
th2  
R
R
R
1
V (V  
V
)
H2  
1
2
1
1
th2  
R
R
R
V
V
x V  
x V  
R
R
V (V  
V
)
R
R
3
2
3
4
2
th2  
3
1
4
2
th1  
2
1
V
1
V
1
th1  
th2  
R
R
R
V
x V  
2
th2  
1
2
1
th1  
Figure 19. Positive Voltage Window Detector  
V
CC  
8
2.54V  
Reference  
1
Gnd  
+
2.8V  
V
1
CH2  
CH1  
V
Hys2  
7
2
+
+
R
3
V
2
Input –V  
+
S
6
5
V
3
V
4
+
+
V
Hys1  
1.27V  
R
2
+
0.6V  
V
Output  
Voltage  
Pins 5, 6  
CC  
+
‘ON’  
LED ‘OFF’  
LED ‘ON’  
‘OFF’  
LED ‘ON’  
3
R
1
Gnd  
1.27V  
–V  
S
4
The above figure shows the MC34161 configured as a negative voltage window detector. When the input voltage –V falls out of the window established by V  
S
1
andV , theLEDwillturnON’. Astheinputvoltagefallswithinthewindow, –V increasingfromgroundandexceedingV , orV decreasingfromthepeaktowards  
4
S
2
S
groundand falling below V , the LED will turn ‘OFF’. With the dashedlineoutputconnection, theLEDwillturnONwhentheinputvoltageV is within the window.  
3
S
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R (V  
1
V
)
V
V
th2  
R
R
R
R
th2  
2
ref  
1
1
1
3
3
V
V
V
V
V
1
2
3
4
th2  
)
R
R
R
R
R
R
R
R
R
R
V
V
3
2
2
1
1
3
3
2
2
th2  
ref  
R (V  
1
V
V
V
V
V
H2  
th2  
R
H2  
R
ref  
2
th2  
V
V
V
th2  
H2  
V
V
V
2
3
th2  
H2  
ref  
(R  
1
R )(V  
2
V
V
)
V
V
th1  
ref  
th1  
ref  
V
th1  
)
R
V
V
th1  
3
3
(R  
1
R )(V  
V
V
V
V
2
th1  
R
H1  
th1  
H1  
ref  
ref  
V
th1  
H1  
V
V
V
th1  
3
4
H1  
Figure 20. Negative Voltage Window Detector  
http://onsemi.com  
9
MC34161, MC33161  
V
CC  
8
V
4
2.54V  
Reference  
Input V  
S2  
V
Hys2  
V
3
1
7
2
Gnd  
+
2.8V  
+
+
R
4
–V  
S1  
+
V
1
V
2
6
5
V
Hys1  
R
3
Input –V  
S1  
+
+
1.27V  
+
Output  
Voltage  
Pins 5, 6  
V
CC  
R2  
LED ‘ON’  
0.6V  
+
V
S2  
3
Gnd  
R
1
1.27V  
4
The above figure shows the MC34161 configured as a positive and negative overvoltage detector. As the input voltage increases from ground, the LED will turn  
‘ONwheneitherV exceedsV , orV exceedsV .Withthedashedlineoutputconnection,thecircuitbecomesapositiveandnegativeundervoltagedetector.  
S1  
2
S2  
4
As the input voltage decreases from the peak towards ground, the LED will turn ‘ON’ when either V falls below V , or –V falls below V .  
S2 S1  
3
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
(V  
V
)
th1  
R
3
R
R
R
R
V
4
3
4
1
2
1
2
1
V
V
(V  
(V  
V
V
)
V
V
V
(V  
V
V
)
1
1
1
2
th1  
th1  
th1  
ref  
3
4
th2  
H2  
(V  
(V  
V
)
R
V
th1  
ref  
4
th2  
R
R
(V  
V
V
)
H1  
R
R
V
3
R
R
R
R
3
4
2
th1  
3
4
2
2
1
V
)
V
V
1
1
H1  
ref  
th1  
H1  
th2  
V
V
)
V
V
th1  
H1  
ref  
1
th2  
H2  
Figure 21. Positive and Negative Overvoltage Detector  
V
CC  
8
V
V
1
2
2.54V  
Reference  
V
Input V  
S1  
Hys1  
1
7
Gnd  
+
2.8V  
+
+
R
4
V
3
+
6
Input –V  
S2  
V
2
V
Hys2  
+
+
S1  
R
3
1.27V  
V
4
+
R
2
0.6V  
V
CC  
Output  
Voltage  
Pins 5, 6  
+
5
LED ‘ON’  
3
R
1
1.27V  
Gnd  
–V  
S2  
4
The above figure shows the MC34161 configured as a positive and negative undervoltage detector. As the input voltage decreases toward ground, the LED will  
turn ‘ON’ when either V falls below V , or –V falls below V . With the dashed line output connection, the circuit becomes a positive and negative overvoltage  
S1  
1
S2  
3
detector. As the input voltage increases from the ground, the LED will turn ‘ON’ when either V exceeds V , or –V exceeds V .  
S1 S1  
2
1
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
V
V
V
th2  
R
R
R
R
R
R
V
R
R
4
H2  
4
3
1
2
4
3
2
1
2
V
V
(V  
V
)
1
V
V
(V  
(V  
V
V
)
V
1
1
2
th1  
H1  
3
4
th  
th  
ref  
th2  
)
V
V
V
V
V
H2  
V
th1  
th2  
ref  
V
V
th2  
V
R
R
R
R
R
R
V
R
R
3
4
1
2
4
3
1
1
2
V
1
V
V
V
H2  
1
th1  
H2  
ref  
th2  
V
3
th1  
H1  
th2  
ref  
Figure 22. Positive and Negative Undervoltage Detector  
http://onsemi.com  
10  
MC34161, MC33161  
V
CC  
8
R
A
2.54V  
Reference  
V
2
Piezo  
1
7
2
V
Hys  
Input V  
V
S
S
V
1
+
2.8V  
R
+
+
2
+
Gnd  
6
5
+
+
R
1
Output  
Voltage  
Pins 5, 6  
V
CC  
1.27V  
+
Osc ON’  
Gnd  
0.6V  
+
3
1.27V  
4
R
B
C
T
TheabovefigureshowstheMC34161configuredasanovervoltagedetectorwithanaudioalarm.Channel1monitorsinputvoltageV whilechannel2isconnected  
S
as a simple RC oscillator. As the input voltage increases from ground, the output of channel 1 allows the oscillator to turn ‘ON’ when V exceeds V .  
S
2
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
R
R
V
R
R
V
V
2
1
2
1
2
1
1
2
1
2
V
(V  
V )  
1
V
V
th  
1
1
1
1
th  
H
2
V
V
H
th  
th  
Figure 23. Overvoltage Detector with Audio Alarm  
V
CC  
8
2.54V  
Reference  
1
V
V
1
2
Input V  
V
S
Hys  
R
3
7
+
2.8V  
+
+
Gnd  
+
6
5
2
V
+
+
S
Output  
Voltage  
Pin 5  
V
CC  
1.27V  
+
R
DLY  
Gnd  
R
2
0.6V  
+
t
DLY  
3
R
Output  
Voltage  
Pin 6  
V
CC  
1
1.27V  
Reset LED ‘ON’  
Gnd  
4
C
DLY  
The above figure shows the MC34161 configured as a microprocessor reset with a time delay. Channel 2 monitors input voltage V while channel 1 performs the  
S
timedelay function. As the input voltage decreases towards ground, the output of channel 2 quickly discharges C  
when V falls below V . As the input voltage  
S 1  
DLY  
increases from ground, the output of channel 2 allows R  
to charge C when V exceeds V .  
DLY  
DLY S 2  
For known resistor values, the voltage trip points are:  
For a specific trip voltage, the required resistor ratio is:  
R
R
R
R
R
R
V
R
R
V
V
2
1
2
1
2
1
1
2
1
2
V
(V  
V )  
H
1
V
V
th  
1
1
1
1
th  
2
V
V
H
th  
th  
1
V
For known R  
C
values, the reset time delay is:  
t
= R  
C
In  
DLY DLY  
DLY  
DLY DLY  
th  
1 –  
V
CC  
Figure 24. Microprocessor Reset with Time Delay  
http://onsemi.com  
11  
MC34161, MC33161  
B+  
+
+
220  
250V  
75k  
75k  
MAC  
228A6FP  
MR506  
T
Input  
92 Vac to  
276 Vac  
8
220  
250V  
10k  
3.0A  
2.54V  
RTN  
Reference  
1.2k  
1
10k  
7
2
+
+
+
2.8V  
+
6
5
+
+
1.27V  
100k  
+
0.6V  
1.6M  
+
3
1.27V  
+
10  
+
1N  
4742  
47  
4
10k  
3W  
The above circuit shows the MC34161 configured as an automatic line voltage selector. The IC controls the triac, enabling the circuit to function  
as a fullwave voltage doubler or a fullwave bridge. Channel 1 senses the negative half cycles of the AC line voltage. If the line voltage is less  
than150 V, the circuit will switch from bridge mode to voltage doubling mode after a preset time delay. The delay is controlled by the 100 kresistor  
and the 10 µF capacitor. If the line voltage is greater than 150 V, the circuit will immediately return to fullwave bridge mode.  
Figure 25. Automatic AC Line Voltage Selector  
http://onsemi.com  
12  
MC34161, MC33161  
470µH  
MPS750  
V
in  
12V  
V
O
+
5.0V/250mA  
+
8
330  
1000  
1N5819  
470  
2.54V  
Reference  
1.8k  
0.01  
1
7
2
+
+
+
0.01  
4.7k  
1.6k  
2.8V  
+
6
5
+
+
1.27V  
+
0.6V  
+
3
1.27V  
47k  
4
0.005  
Figure 26. Step–Down Converter  
Test  
Conditions  
Results  
40 mV = ±0.1%  
Line Regulation  
Load Regulation  
Output Ripple  
Efficiency  
V
in  
V
in  
V
in  
V
in  
= 9.5 V to 24 V, I = 250 mA  
O
= 12 V, I = 0.25 mA to 250 mA  
2.0 mV = ±0.2%  
50 mVpp  
O
= 12 V, I = 250 mA  
O
= 12 V, I = 250 mA  
87.8%  
O
The above figure shows the MC34161 configured as a step–down converter. Channel 1 monitors the output voltage while Channel  
2 performs the oscillator function. Upon initial power–up, the converters output voltage will be below nominal, and the output of  
Channel 1 will allow the oscillator to run. The external switch transistor will eventually pump–up the output capacitor until its voltage  
exceeds the input threshold of Channel 1. The output of Channel 1 will then switch low and disable the oscillator. The oscillator will  
commence operation when the output voltage falls below the lower threshold of Channel 1.  
http://onsemi.com  
13  
MC34161, MC33161  
PACKAGE DIMENSIONS  
PDIP  
P SUFFIX  
CASE 626–05  
ISSUE K  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
DIM MIN MAX  
9.40 10.16 0.370 0.400  
INCHES  
MIN MAX  
1
4
A
B
C
D
F
6.10  
3.94  
0.38  
1.02  
6.60 0.240 0.260  
4.45 0.155 0.175  
0.51 0.015 0.020  
1.78 0.040 0.070  
F
–A–  
NOTE 2  
L
G
H
J
K
L
2.54 BSC  
0.100 BSC  
1.27 0.030 0.050  
0.30 0.008 0.012  
0.76  
0.20  
2.92  
3.43  
0.115  
0.135  
C
7.62 BSC  
0.300 BSC  
M
N
–––  
0.76  
10  
–––  
10  
1.01 0.030 0.040  
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T A  
B
SO–8  
D SUFFIX  
CASE 751–06  
ISSUE T  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
2. DIMENSIONS ARE IN MILLIMETER.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
8
1
5
4
M
M
0.25  
B
H
E
h X 45  
MILLIMETERS  
B
e
DIM MIN  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
A1  
B
C
D
E
1.35  
0.10  
0.35  
0.19  
4.80  
3.80  
A
C
SEATING  
PLANE  
L
e
1.27 BSC  
0.10  
H
h
L
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
M
S
S
0.25  
C B  
A
http://onsemi.com  
14  
MC34161, MC33161  
Notes  
http://onsemi.com  
15  
MC34161, MC33161  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC34161/D  

相关型号:

MC33161D

Universal Voltage Monitors
ONSEMI

MC33161D

UNIVERSAL VOLTAGE MONITORS
MOTOROLA

MC33161DG

Universal Voltage Monitors
ONSEMI

MC33161DMR2

Universal Voltage Monitors
ONSEMI

MC33161DMR2G

Universal Voltage Monitors
ONSEMI

MC33161DR2

Universal Voltage Monitors
ONSEMI

MC33161DR2G

Universal Voltage Monitors
ONSEMI

MC33161P

Universal Voltage Monitors
ONSEMI

MC33161P

UNIVERSAL VOLTAGE MONITORS
MOTOROLA

MC33161PG

Universal Voltage Monitors
ONSEMI

MC33162

Radial Leaded PTC Resettable Fuse
ETC

MC33163

POWER SWITCHING REGULATORS
MOTOROLA