MC33272A [ONSEMI]

HIGH PERFORMANCE OPERATIONAL AMPLIFIERS; 高性能运算放大器
MC33272A
型号: MC33272A
厂家: ONSEMI    ONSEMI
描述:

HIGH PERFORMANCE OPERATIONAL AMPLIFIERS
高性能运算放大器

运算放大器
文件: 总13页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC33272A/D  
HIGH PERFORMANCE  
OPERATIONAL  
AMPLIFIERS  
The MC33272/74 series of monolithic operational amplifiers are quality  
fabricated with innovative Bipolar design concepts. This dual and quad  
operational amplifier series incorporates Bipolar inputs along with a patented  
Zip–R–Trim element for input offset voltage reduction. The MC33272/74  
series of operational amplifiers exhibits low input offset voltage and high gain  
bandwidth product. Dual–doublet frequency compensation is used to  
increase the slew rate while maintaining low input noise characteristics. Its  
all NPN output stage exhibits no deadband crossover distortion, large output  
voltage swing, and an excellent phase and gain margin. It also provides a  
low open loop high frequency output impedance with symmetrical source  
and sink AC frequency performance.  
SEMICONDUCTOR  
TECHNICAL DATA  
DUAL  
8
8
1
1
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626  
The MC33272/74 series is specified over –40° to +85°C and are available  
in plastic DIP and SOIC surface mount packages.  
(SO–8)  
Input Offset Voltage Trimmed to 100 µV (Typ)  
Low Input Bias Current: 300 nA  
Low Input Offset Current: 3.0 nA  
High Input Resistance: 16 MΩ  
PIN CONNECTIONS  
Low Noise: 18 nV/ Hz @ 1.0 kHz  
1
8
7
6
5
Output 1  
V
CC  
Output 2  
2
High Gain Bandwidth Product: 24 MHz @ 100 kHz  
High Slew Rate: 10 V/µs  
Power Bandwidth: 160 kHz  
+
Inputs 1  
3
4
+
Inputs 2  
V
EE  
(Top View)  
Excellent Frequency Stability  
Unity Gain Stable: w/Capacitance Loads to 500 pF  
Large Output Voltage Swing: +14.1 V/ –14.6 V  
Low Total Harmonic Distortion: 0.003%  
QUAD  
Power Supply Drain Current: 2.15 mA per Amplifier  
Single or Split Supply Operation: +3.0 V to +36 V or ±1.5 V to ±18 V  
ESD Diodes Provide Added Protection to the Inputs  
14  
14  
1
1
D SUFFIX  
P SUFFIX  
PLASTIC PACKAGE  
CASE 751A  
PLASTIC PACKAGE  
CASE 646  
ORDERING INFORMATION  
(SO–14)  
Op Amp  
Function  
Operating  
Temperature Range  
Device  
Package  
SO–8  
PIN CONNECTIONS  
Dual  
MC33272AD  
MC33272AP  
MC33274AD  
MC33274AP  
1
2
3
4
5
14  
13  
12  
Output 1  
Inputs 1  
Output 4  
Inputs 4  
Plastic DIP  
SO–14  
T
A
= –40° to +85°C  
+
+
Quad  
1
4
3
Plastic DIP  
11  
10  
V
V
CC  
EE  
+
+
Inputs 2  
Output 2  
Inputs 3  
Output 3  
2
6
7
9
8
(Top View)  
Motorola, Inc. 1996  
Rev 0  
MC33272A MC33274A  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
+36  
Unit  
V
Supply Voltage  
V
to V  
IDR  
CC  
EE  
Input Differential Voltage Range  
Input Voltage Range  
V
(Note 1)  
(Note 1)  
Indefinite  
+150  
V
V
IR  
V
Output Short Circuit Duration (Note 2)  
Maximum Junction Temperature  
Storage Temperature  
t
sec  
°C  
°C  
mW  
SC  
T
J
T
stg  
–60 to +150  
(Note 2)  
Maximum Power Dissipation  
P
D
NOTES: 1. Either or both input voltages should not exceed V  
or V  
.
EE  
CC  
2. Power dissipation must be considered to ensure maximum junction temperature  
(T ) is not exceeded (see Figure 2).  
J
DC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Characteristics  
Figure  
Symbol  
|V  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (R = 10 , V  
= 0 V, V = 0 V)  
3
|
IO  
mV  
S
CM  
O
(V  
= +15 V, V  
= +25°C  
= –15 V)  
EE  
CC  
T
0.1  
1.0  
1.8  
A
T
= –40° to +85°C  
A
(V  
= 5.0 V, V  
= +25°C  
= 0)  
CC  
EE  
T
2.0  
A
Average Temperature Coefficient of Input Offset Voltage  
= 10 , V = 0 V, V = 0 V, T = 40° to +85°C  
3
V /T  
IO  
µV/°C  
R
2.0  
S
CM  
O
A
Input Bias Current (V  
= 0 V, V = 0 V)  
4, 5  
I
IB  
nA  
CM  
O
T
T
= +25°C  
= –40° to +85°C  
300  
650  
800  
A
A
Input Offset Current (V  
= 0 V, V = 0 V)  
|I  
|
nA  
CM  
O
IO  
T
T
= +25°C  
= –40° to +85°C  
3.0  
65  
80  
A
A
Common Mode Input Voltage Range (V = 5.0 mV, V = 0 V)  
IO  
6
7
V
V
O
ICR  
T
= +25°C  
V
to (V  
–1.8)  
CC  
A
EE  
Large Signal Voltage Gain (V = 0 V to 10 V, R = 2.0 k)  
A
VOL  
dB  
O
L
T
T
A
= +25°C  
= –40° to +85°C  
90  
86  
100  
A
Output Voltage Swing (V = ±1.0 V)  
ID  
8, 9, 12  
10, 11  
V
(V  
= +15 V, V  
= 2.0 kΩ  
= 2.0 kΩ  
= 10 kΩ  
= –15 V)  
CC  
EE  
R
L
R
L
R
L
R
L
V
V
V
V
+
+
13.4  
13.4  
13.9  
–13.9  
14  
–13.5  
O
O
O
O
= 10 kΩ  
–14.7  
–14.1  
(V  
= 5.0 V, V  
= 2.0 kΩ  
= 2.0 kΩ  
= 0 V)  
CC  
L
L
EE  
R
R
V
3.7  
0.2  
5.0  
OL  
V
OH  
Common Mode Rejection (V = +13.2 V to –15 V)  
in  
13  
CMR  
PSR  
80  
100  
dB  
dB  
Power Supply Rejection  
14, 15  
V /V = +15 V/ –15 V, +5.0 V/ –15 V, +15 V/ –5.0 V  
CC EE  
80  
105  
Output Short Circuit Current (V = 1.0 V, Output to Ground)  
ID  
16  
17  
I
mA  
mA  
SC  
Source  
Sink  
+25  
–25  
+37  
–37  
Power Supply Current Per Amplifier (V = 0 V)  
I
O
CC  
(V  
= +15 V, V  
= +25°C  
= –40° to +85°C  
= –15 V)  
CC  
EE  
T
2.15  
2.75  
3.0  
A
T
A
(V  
= 5.0 V, V  
= +25°C  
= 0 V)  
CC  
EE  
T
2.75  
A
2
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
AC ELECTRICAL CHARACTERISTICS (V  
= +15 V, V  
= –15 V, T = 25°C, unless otherwise noted.)  
EE A  
CC  
Characteristics  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Slew Rate  
18, 33  
SR  
8.0  
10  
V/µs  
(V = –10 V to +10 V, R = 2.0 k, C = 100 pF, A = +1.0 V)  
in  
L
L
V
Gain Bandwidth Product (f = 100 kHz)  
AC Voltage Gain (R = 2.0 k, V = 0 V, f = 20 kHz)  
19  
GBW  
17  
24  
65  
MHz  
dB  
20, 21, 22  
A
VO  
L
O
Unity Gain Frequency (Open Loop)  
Gain Margin (R = 2.0 k, C = 0 pF)  
f
U
5.5  
MHz  
dB  
23, 24, 26  
23, 25, 26  
27  
A
m
12  
L
L
Phase Margin (R = 2.0 k, C = 0 pF)  
φ
m
55  
Degrees  
dB  
L
L
Channel Separation (f = 20 Hz to 20 kHz)  
CS  
–120  
160  
0.003  
Power Bandwidth (V = 20 V  
O
R
L
= 2.0 k, THD 1.0%)  
BW  
P
kHz  
%
pp,  
Total Harmonic Distortion  
28  
29  
THD  
(R = 2.0 k, f = 20 Hz to 20 kHz, V = 3.0 V  
, A = +1.0)  
V
L
O
rms  
Open Loop Output Impedance (V = 0 V, f = 6.0 MHz)  
|Z  
|
O
35  
16  
O
Differential Input Resistance (V  
CM  
= 0 V)  
= 0 V)  
R
C
MΩ  
pF  
IN  
IN  
Differential Input Capacitance (V  
3.0  
18  
CM  
Equivalent Input Noise Voltage (R = 100 , f = 1.0 kHz)  
30  
31  
e
n
nV/Hz  
pA/Hz  
S
Equivalent Input Noise Current (f = 1.0 kHz)  
i
n
0.5  
Figure 1. Equivalent Circuit Schematic  
(Each Amplifier)  
V
CC  
+
V
V
in  
in  
+
Sections  
C
V
O
B
D
+
V
EE  
3
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
Figure 2. Maximum Power Dissipation  
Figure 3. Input Offset Voltage versus  
Temperature for Typical Units  
versus Temperature  
2400  
2000  
5.0  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
3.0  
1.0  
MC33272P & MC33274P  
1600  
1200  
800  
400  
0
3
1
MC33274D  
2
2
1
3
–1.0  
–3.0  
–5.0  
1. V > 0 @ 25  
IO  
°C  
°C  
°C  
MC33272D  
2. V = 0 @ 25  
IO  
IO  
3. V < 0 @ 25  
–60 –40 –20  
0
20 40 60 80 100 120 140 160 180  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (  
°
A
A
Figure 4. Input Bias Current versus  
Common Mode Voltage  
Figure 5. Input Bias Current  
versus Temperature  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
300  
200  
100  
V
V
= +15 V  
= –15 V  
CC  
EE  
T
= 25  
°C  
A
0
0
–16  
–12  
–8.0  
–4.0  
0
4.0  
8.0  
12  
16  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
V
, COMMON MODE VOLTAGE (V)  
T , AMBIENT TEMPERATURE (  
°
CM  
A
Figure 6. Input Common Mode Voltage  
Range versus Temperature  
Figure 7. Open Loop Voltage Gain  
versus Temperature  
V
180  
CC  
V
V
–0.5  
CC  
CC  
V
V
V
–1.0  
–1.5  
–2.0  
160  
140  
120  
100  
CC  
CC  
CC  
V
V
R
= +15 V  
= –15 V  
= 2.0 kΩ  
CC  
EE  
L
V
V
= +5.0 V to +18 V  
= –5.0 V to –18 V  
= 5.0 mV  
CC  
EE  
IO  
V
+1.0  
+0.5  
EE  
f = 10 Hz  
= –10 V to +10 V  
V
V
V
EE  
EE  
V
O
V
= 0 V  
O
V
EE  
–55  
–25  
0
25  
50  
75  
100  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (  
°
A
A
4
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
Figure 8. Split Supply Output Voltage Swing  
versus Supply Voltage  
Figure 9. Split Supply Output Saturation  
Voltage versus Load Current  
V
40  
30  
CC  
Source  
T
= 25°C  
A
V
V
–1.0  
–2.0  
T
= –55°C  
CC  
A
T
= 125°C  
A
R
= 10 kΩ  
L
T
= 25°C  
CC  
A
20  
R = 2.0 kΩ  
L
V
V
+2.0  
+1.0  
Sink  
EE  
T
= 25°C  
A
T
= –55°C  
A
10  
0
T
= 125°C  
EE  
A
V
V
= +5.0 V to +18 V  
= –5.0 V to –18 V  
CC  
EE  
V
EE  
0
5.0  
10  
15  
20  
0
5.0  
10  
I , LOAD CURRENT (±mA)  
15  
20  
V
, V  
SUPPLY VOLTAGE (V)  
CC EE  
L
Figure 10. Single Supply Output Saturation  
Voltage versus Load Resistance to Ground  
Figure 11. Single Supply Output Saturation  
Voltage versus Load Resistance to V  
CC  
V
15  
14.6  
14.2  
CC  
T
= 125°C  
A
V
CC  
T
= 125°C  
V
–4.0  
–8.0  
–12  
A
CC  
V
R
= +5.0 V to +18 V  
CC  
L
T
= 55°C  
A
T
A
= 25°C  
to Gnd  
= Gnd  
V
CC  
V
EE  
T
= 55°C  
A
V
CC  
V
= +15 V  
8.0  
4.0  
+0.2  
+0.1  
0
T
A
= 125  
°C  
CC  
L
T
= 25  
°
C
C
A
R
V
to V  
= Gnd  
T
= 125  
= +25  
= –55  
°C  
°C  
°C  
CC  
A
T
T
= –55  
°
EE  
A
A
R
= 100 kΩ  
T
Fdbk  
A
Gnd  
100  
0
1.0 k  
10 k  
100 k  
1.0 M  
10  
100  
1.0 k  
10 k  
100 k  
R
, LOAD RESISTANCE TO GROUND (k  
)  
R , LOAD RESISTANCE TO V ()  
CC  
L
L
Figure 13. Common Mode Rejection  
versus Frequency  
Figure 12. Output Voltage versus Frequency  
28  
24  
120  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
CM  
100  
80  
T
= –55°C  
T
= 125°C  
A
A
20  
16  
12  
8
V
= ±1.5 V  
CM  
60  
V
V
R
= +15 V  
= –15 V  
CC  
EE  
L
A
V  
DM  
V  
CM  
O
40  
20  
0
+
= 2.0 kΩ  
A
= +1.0  
V
V  
CM  
THD =  
1.0%  
4
CMR = 20Log  
X A  
DM  
T
= 25°C  
V  
A
O
0
1.0 k  
10 k  
100 k  
1.0 M  
1 0M  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
5
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
Figure 14. Positive Power Supply Rejection  
versus Frequency  
Figure 15. Negative Power Supply Rejection  
versus Frequency  
120  
100  
80  
120  
100  
80  
V
V
= +15 V  
= –15 V  
V
= ±1.5 V  
= +15 V  
= –15 V  
T
= 125  
°C  
CC  
EE  
CC  
A
V
CC  
EE  
V
=
±1.5 V  
V
CC  
T
= –55°C  
A
T
= –55  
°C  
A
60  
40  
20  
0
V
60  
40  
20  
0
V
CC  
CC  
A
A
V
DM  
V  
O
DM  
T
= 125°C  
O
A
+
+
V
V
EE  
EE  
V
/A  
DM  
V
/A  
DM  
O
V
O
V
+PSR = 20Log  
–PSR = 20Log  
CC  
EE  
10  
100  
1.0 k  
10 k  
100 k  
1 .0 M  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 16. Output Short Circuit Current  
versus Temperature  
Figure 17. Supply Current versus  
Supply Voltage  
11  
10  
60  
50  
V
V
V
= +15 V  
= –15 V  
CC  
EE  
ID  
T
= +125°C  
A
=
±
1.0 V  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
R
< 100  
Sink  
L
T
= +25°C  
A
40  
30  
20  
Source  
T
= –55°C  
Sink  
A
Source  
10  
0
–55  
–25  
0
25  
50  
75  
100  
125  
0
2.0  
4.0  
6.0 8.0  
V , |V | , SUPPLY VOLTAGE (V)  
CC EE  
10  
12  
14  
16  
18  
20  
T , AMBIENT TEMPERATURE (  
°
C)  
A
Figure 18. Normalized Slew Rate  
versus Temperature  
Figure 19. Gain Bandwidth Product  
versus Temperature  
50  
1.15  
1.1  
V
V
= +15 V  
= –15 V  
CC  
EE  
V
O
f = 100 kHz  
40  
30  
20  
10  
+
2.0 kΩ  
100 pF  
R
C
= 2.0 k  
= 0 pF  
V  
L
L
in  
1.05  
1.0  
V
V
= +15 V  
= –15 V  
= 20 V  
CC  
EE  
in  
0.95  
0.9  
V
0
0.85  
–55  
–25  
0
25  
50  
75  
100  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°C)  
T , AMBIENT TEMPERATURE (  
°
A
A
6
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
Figure 20. Voltage Gain and Phase  
Figure 21. Gain and Phase  
versus Frequency  
versus Frequency  
80  
80  
25  
20  
25  
20  
100  
100  
120  
140  
160  
180  
200  
220  
Gain  
120  
140  
160  
180  
200  
220  
240  
260  
15  
10  
15  
1A  
T
C
= 25°C  
= 0 pF  
A
L
10  
Phase  
5.0  
0
5.0  
0
2A  
1B  
–5.0  
–10  
–15  
–20  
–5.0  
–10  
–15  
–20  
V
V
R
= +15 V  
= –15 V  
= 2.0 kΩ  
= 25°C  
CC  
EE  
L
1A — Phase V  
2A — Phase V  
1B — Gain V  
2B — Gain V  
= 18 V, V  
= 1.5 V, V  
= –18 V  
= –1.5 V  
= –18 V  
= –1.5 V  
CC  
CC  
CC  
CC  
EE  
EE  
240  
2B  
T
A
= 18 V, V  
= 1.5 V, V  
EE  
EE  
280  
–25  
–25  
100 k  
1.0 M  
10 M  
100 M  
100 k  
1.0 M  
10 M  
100 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 22. Open Loop Voltage Gain and  
Phase versus Frequency  
Figure 23. Open Loop Gain Margin and Phase  
Margin versus Output Load Capacitance  
12  
10  
0
100  
120  
140  
160  
20  
10  
0
Gain Margin  
10  
20  
30  
40  
50  
V
V
V
= +15 V  
= –15 V  
= 0 V  
1A  
CC  
EE  
O
8.0  
6.0  
2A  
180  
V
V
V
= +15 V  
= –15 V  
= 0 V  
CC  
EE  
out  
+
200  
220  
V
V
L
in  
1B  
O
–10  
2.0 k  
C
4.0  
2.0  
0
T
= 25°C  
A
240  
260  
1A — Phase (R = 2.0 k)  
L
L
2B  
–20 2A — Phase (R = 2.0 k  
, C = 300 pF)  
L
1B — Gain (R = 2.0 k)  
2B — Gain (R = 2.0 k  
L
L
280  
Phase Margin  
100  
, C = 300 pF)  
L
–30  
3.0  
4.0  
6.0  
8.0 10  
20  
30  
1.0  
10  
1000  
f, FREQUENCY (MHz)  
C , OUTPUT LOAD CAPACITANCE (pF)  
L
Figure 24. Open Loop Gain Margin  
versus Temperature  
Figure 25. Phase Margin versus Temperature  
12  
10  
60  
50  
40  
30  
20  
C
= 10 pF  
L
C
= 10 pF  
L
C
= 100 pF  
= 300 pF  
L
L
8.0  
C
C
= 100 pF  
= 300 pF  
L
6.0  
4.0  
C
L
C
= 500 pF  
L
C
L
= 500 pF  
V
V
= +15 V  
CC  
2.0  
0
V
V
= +15 V  
= –15 V  
10  
0
CC  
EE  
EE = –15 V  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
7
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
Figure 26. Phase Margin and Gain Margin  
versus Differential Source Resistance  
Figure 27. Channel Separation  
versus Frequency  
160  
150  
15  
12  
60  
50  
40  
Gain Margin  
Driver Channel  
V
V
R
= +15 V  
= –15 V  
= 2.0 kΩ  
CC  
EE  
Phase Margin  
L
9.0  
140  
130  
V
= 20 V  
OD  
= 25  
pp  
T
°C  
V
V
R
= +15 V  
= –15 V  
A
CC  
EE  
T
30  
20  
10  
6.0  
3.0  
0
= R +R  
1
2
V
= 0 V  
O
120  
110  
T
= 25°C  
A
+
R
1
V
O
V
in  
R
2
0
100  
1.0  
10  
100  
1.0 k  
10 k  
100  
1.0 k  
10 k  
100 k  
1.0 M  
R , DIFFERENTIAL SOURCE RESISTANCE (  
)  
f, FREQUENCY (Hz)  
T
Figure 28. Total Harmonic Distortion  
versus Frequency  
Figure 29. Output Impedance versus Frequency  
50  
40  
30  
20  
10  
0
1.0  
A
= +1000  
V
V
V
= +15 V  
= –15 V  
= 0 V  
V
CC  
EE  
O
A
= +100  
V
T
= 25°C  
A
0.1  
0.01  
A
= +10  
V
A
= 1000  
V
A
= 100  
A
= +1.0  
V
V
A
= 1.0  
A
= 10  
V
V
V
= 2.0 V  
= 25°C  
V
V
= +15 V  
= –15 V  
O
pp  
CC  
EE  
T
A
0.001  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
10 k  
100 k  
1.0 M  
10 M  
f, FREQUENCY (Hz)  
Figure 30. Input Referred Noise Voltage  
versus Frequency  
Figure 31. Input Referred Noise Current  
versus Frequency  
50  
40  
2.0  
1.8  
1.6  
Input Noise Current Circuit  
+
+
V
O
R
S
V
O
1.4  
1.2  
1.0  
0.8  
30  
20  
10  
0
Input Noise Voltage  
Test Circuit  
(R = 10 kΩ)  
S
0.6  
0.4  
V
V
T
= +15 V  
= –15 V  
CC  
EE  
A
V
= +15 V  
= –15 V  
CC  
V
EE  
= 25°C  
= 25  
°C  
0.2  
0
T
A
10  
100  
1.0 k  
10 k  
100 k  
10  
100  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
Figure 32. Percent Overshoot versus  
Load Capacitance  
60  
50  
40  
V
V
R
T
= +15 V  
= –15 V  
= 2.0 kΩ  
CC  
EE  
L
A
= 25°C  
30  
20  
10  
0
10  
100  
C , LOAD CAPACITANCE (pF)  
1.0 k  
L
Figure 33. Noninverting Amplifier Slew Rate  
for the MC33274  
Figure 34. Noninverting Amplifier Overshoot  
for the MC33274  
V
V
= +15 V  
= –15 V  
= +1.0  
CC  
EE  
A
V
C
= 100 pF  
L
R
C
= 2.0 kΩ  
L
L
= 100 pF  
= 25  
T
°C  
A
V
V
= +15 V  
= –15 V  
= +1.0  
= 2.0 kΩ  
= 25°C  
CC  
EE  
A
V
R
L
T
C
= φ  
A
L
t, TIME (2.0  
µs/DIV)  
t, TIME (2.0 ns/DIV)  
Figure 35. Small Signal Transient Response  
for MC33274  
Figure 36. Large Signal Transient Response  
for MC33274  
V
V
= +15 V  
= –15 V  
= +1.0  
CC  
EE  
V
V
= +15 V  
= –15 V  
= +1.0  
CC  
EE  
A
V
A
V
R
C
= 2.0 kΩ  
L
L
R
C
= 2.0 kΩ  
L
L
= 300 pF  
= 25  
= 300 pF  
= 25  
T
°C  
A
T
°C  
A
t, TIME (2.0  
µs/DIV)  
t, TIME (1.0 µs/DIV)  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
INCHES  
1
4
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
0.370  
0.240  
0.155  
0.015  
0.040  
F
–A–  
NOTE 2  
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
7.62 BSC  
–––  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.300 BSC  
–––  
0.050  
0.012  
0.135  
C
10  
1.01  
10  
0.040  
0.76  
0.030  
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
ISSUE R  
NOTES:  
D
A
E
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
C
8
1
5
M
M
0.25  
B
H
4
h X 45  
MILLIMETERS  
B
C
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
14  
1
8
7
B
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
C
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
0.300 BSC  
7.62 BSC  
SEATING  
PLANE  
K
0
10  
0
10  
0.015  
0.039  
0.39  
1.01  
H
G
D
M
D SUFFIX  
PLASTIC PACKAGE  
CASE 751A–03  
(SO–14)  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
0.25 (0.010)  
B
1
MILLIMETERS  
INCHES  
G
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
8.55  
3.80  
1.35  
0.35  
0.40  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
C
0.337  
0.150  
0.054  
0.014  
0.016  
–T–  
SEATING  
PLANE  
J
M
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
R
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC33272A MC33274A  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC33272A/D  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  

相关型号:

MC33272AD

HIGH PERFORMANCE OPERATIONAL AMPLIFIERS
ONSEMI

MC33272AD

Operational Amplifier,
ROCHESTER

MC33272ADG

Single Supply, High Slew Rate, Low Input Offset Voltage Operational Amplifiers
ONSEMI

MC33272ADG

DUAL OP-AMP, 1800uV OFFSET-MAX, 5.5MHz BAND WIDTH, PDSO8, LEAD FREE, SOIC-8
ROCHESTER

MC33272ADR2

Single Supply, High Slew Rate, Low Input Offset Voltage Operational Amplifiers
ONSEMI

MC33272ADR2G

Single Supply, High Slew Rate, Low Input Offset Voltage Operational Amplifiers
ONSEMI

MC33272ADR2G

DUAL OP-AMP, 1800uV OFFSET-MAX, 5.5MHz BAND WIDTH, PDSO8, LEAD-FREE, SOIC-8
ROCHESTER

MC33272AP

HIGH PERFORMANCE OPERATIONAL AMPLIFIERS
ONSEMI

MC33272AP

DUAL OP-AMP, 1800uV OFFSET-MAX, 5.5MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8
ROCHESTER

MC33272APG

Single Supply, High Slew Rate, Low Input Offset Voltage Operational Amplifiers
ONSEMI

MC33272APG

DUAL OP-AMP, 1800uV OFFSET-MAX, 5.5MHz BAND WIDTH, PDIP8, LEAD FREE, PLASTIC, DIP-8
ROCHESTER

MC33272A_04

Single Supply, High Slew Rate, Low Input Offset Voltage Operational Amplifiers
ONSEMI