MC33368D [ONSEMI]

High Voltage GreenLine Power Factor Controller; 高压绿线功率因数控制器
MC33368D
型号: MC33368D
厂家: ONSEMI    ONSEMI
描述:

High Voltage GreenLine Power Factor Controller
高压绿线功率因数控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 高压
文件: 总20页 (文件大小:478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
The MC33368 is an active power factor controller that functions as a  
boost preconverter in off–line power supply applications. MC33368 is  
optimized for low power, high density power supplies requiring a  
minimum board area, reduced component count and low power  
dissipation. The narrow body SOIC package provides a small  
footprint. Integration of the high voltage startup saves approximately  
0.7 W of power compared to resistor bootstrapped circuits.  
http://onsemi.com  
MARKING  
DIAGRAMS  
16  
The MC33368 features a watchdog timer to initiate output  
switching, a one quadrant multiplier to force the line current to follow  
the instantaneous line voltage a zero current detector to ensure critical  
conduction operation, a transconductance error amplifier, a current  
sensing comparator, a 5.0 V reference, an undervoltage lockout  
DIP–16  
P SUFFIX  
CASE 648  
MC33368P  
AWLYYWW  
16  
1
16  
1
SO–16  
D SUFFIX  
CASE 751K  
(UVLO) circuit which monitors the V  
supply voltage and a CMOS  
CC  
MC33368D  
AWLYWW  
driver for driving MOSFETs. The MC33368 also includes a  
programmable output switching frequency clamp. Protection features  
include an output overvoltage comparator to minimize overshoot, a  
restart delay timer and cycle–by–cycle current limiting.  
Lossless Off–Line Startup  
Output Overvoltage Comparator  
Leading Edge Blanking (LEB) for Noise Immunity  
Watchdog Timer to Initiate Switching  
Restart Delay Timer  
16  
1
1
A
= Assembly Location  
WL = Wafer Lot  
YY, Y = Year  
WW = Work Week  
PIN CONNECTIONS  
Line  
16  
1
2
3
4
5
6
7
8
5.0 V  
ref  
Restart Delay  
Voltage FB  
Comp  
15 N/C  
14 N/C  
13  
12  
11  
10  
9
Frequency Clamp  
Mult  
V
CC  
Current Sense  
Zero Current  
AGnd  
Gate  
PGnd  
LEB  
(Top View)  
Line  
1
2
3
4
5
6
7
8
16  
5.0 V  
ref  
Restart Delay  
Voltage FB  
Comp  
13  
12  
11  
10  
9
Frequency Clamp  
Mult  
V
CC  
Current Sense  
Zero Current  
AGnd  
Gate  
PGnd  
LEB  
(Top View)  
ORDERING INFORMATION  
Device  
Package  
SO–16  
SO–16  
DIP–16  
Shipping  
MC33368D  
MC33368DR2  
MC33368P  
48 Units/Rail  
2500 Tape & Reel  
25 Units/Rail  
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
April, 2000 – Rev. 4  
MC33368/D  
MC33368  
Representative Block Diagram  
Line  
Restart Delay  
Restart Delay  
V
CC  
Output  
Overvoltage  
UVLO  
Internal Bias  
Generator  
V
ref  
FB  
Comp  
Mult  
Multiplier/  
Error  
Amplifier  
S
PWM  
AGnd  
S
R
Q
LEB  
Current  
Sense  
Gate  
Current Sense  
PGnd  
WatchdogTimer/  
Zero Current Detector  
Frequency  
Clamp  
Frequency  
Clamp  
ZC Det  
This device contains 240 active transistors.  
MAXIMUM RATINGS (T = 25°C, unless otherwise noted.)  
A
Rating  
Power Supply Voltage (Transient)  
Power Supply Voltage (Operating)  
Line Voltage  
Symbol  
Value  
20  
Unit  
V
V
V
V
V
V
CC  
16  
CC  
V
Line  
500  
Current Sense, Multiplier, Compensation, Voltage Feedback, Restart Delay and Zero  
Current Input Voltage  
V
in1  
–1.0 to +10  
LEB Input, Frequency Clamp Input  
Zero Current Detect Input  
Restart Diode Current  
V
–1.0 to +20  
±5.0  
V
in2  
I
mA  
mA  
in  
I
5.0  
in  
Power Dissipation and Thermal Characteristics  
P Suffix, Plastic Package Case 648  
Maximum Power Dissipation @ T = 70°C  
Thermal Resistance, Junction–to–Air  
P
1.25  
100  
mW  
°C/W  
A
D
R
θJA  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package Case 751K  
Maximum Power Dissipation @ T = 70°C  
P
450  
178  
mW  
°C/W  
A
D
Thermal Resistance, Junction–to–Air  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature Range  
R
θJA  
T
150  
°C  
°C  
°C  
J
T
A
–25 to +125  
–55 to +150  
T
stg  
NOTE: ESD data available upon request.  
http://onsemi.com  
2
MC33368  
ELECTRICAL CHARACTERISTICS (V  
= 14.5 V, for typical values T = 25°C, for min/max values T = –25 to +125°C)  
CC  
A
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ERROR AMPLIFIER  
Input Bias Current (V  
= 5.0 V)  
I
0
1.0  
50  
80  
µA  
mV  
FB  
IB  
Input Offset Voltage (V  
= 3.0 V)  
V
2.0  
51  
Comp  
IO  
Transconductance (V  
Comp  
= 3.0 V)  
g
30  
µmho  
µA  
m
Output Source (V  
FB  
= 4.6 V, V  
= 5.4 V, V  
= 3.0 V)  
= 3.0 V)  
I
I
9.0  
9.0  
17.5  
17.5  
30  
30  
Comp  
Comp  
O
O
Output Sink (V  
FB  
OVERVOLTAGE COMPARATOR  
Voltage Feedback Input Threshold  
V
1.07 V  
1.084 V  
705  
1.1 V  
V
FB(OV)  
FB  
FB  
FB  
Propagation Time to Output  
T
P
ns  
MULTIPLIER  
Input Bias Current, V  
(V  
= 0 V)  
I
–0.2  
2.1  
–1.0  
2.4  
µA  
V
Mult FB  
IB  
Input Threshold, V  
V
1.8  
Comp  
th(M)  
Dynamic Input Voltage Range  
Multiplier Input  
Compensation  
V
V
0 to 2.5  
to  
0 to 3.5  
V to  
Mult  
V
Comp  
V
th(M)  
+ 1.0) (V  
th(M)  
+ 2.0)  
(V  
th(M)  
th(M)  
Multiplier Gain (V  
V
= 0.5 V, V  
= V + 1.0 V)  
th(M)  
K
0.25  
0.51  
0.75  
1/V  
Mult  
Comp  
Threshold  
CS  
K
V
V
– V  
Comp  
Mult  
VOLTAGE REFERENCE  
th(M)  
Voltage Reference (I = 0 mA, T = 25°C)  
V
ref  
4.95  
5.0  
5.0  
5.0  
5.05  
100  
100  
5.2  
V
mV  
mV  
V
O
J
Line Regulation (V  
CC  
= 10 V to 16 V)  
Reg  
line  
Load Regulation (I = 0 – 5.0 mA)  
Reg  
O
load  
Total Output Variation Over Line, Load and Temperature  
Maximum Output Current  
V
ref  
4.8  
5.0  
I
O
10  
4.5  
mA  
V
Reference Undervoltage Lockout Threshold  
ZERO CURRENT DETECTOR  
V
th  
Input Threshold Voltage (V Increasing)  
in  
V
1.0  
100  
1.2  
200  
127  
1.4  
300  
V
th  
Hysteresis (V Decreasing)  
in  
V
mV  
ns  
H
Delay to Output  
T
pd  
CURRENT SENSE COMPARATOR  
Input Bias Current (V  
= 0 to 2.0 V)  
I
0.2  
4.0  
1.5  
1.0  
50  
µA  
mV  
V
CS  
IB  
Input Offset Voltage (V  
= –0.2 V)  
V
Mult  
IO  
Maximum Current Sense Input Threshold (V  
= 5.0 V,  
V
1.3  
1.8  
Comp  
th(max)  
V
Mult  
= 5.0 V)  
Delay to Output (V  
(V  
= 12 V, V  
Comp  
= 5.0 V, V  
= 5.0 V)  
t
PHL(in/out)  
50  
270  
425  
ns  
LEB  
CS  
Mult  
= 0 to 5.0 V Step, C = 1.0 nF)  
L
FREQUENCY CLAMP  
Frequency Clamp Input Threshold  
V
1.9  
0.5  
2.0  
1.7  
7.3  
2.1  
4.0  
8.0  
V
mA  
V
th(FC)  
Frequency Clamp Capacitor Reset Current (V  
Frequency Clamp Disable Voltage  
= 0.5 V)  
I
reset  
FC  
V
DFC  
http://onsemi.com  
3
MC33368  
ELECTRICAL CHARACTERISTICS (continued) (V  
= 14.5 V, for typical values T = 25°C, for min/max values T = –25 to +125°C)  
A J  
CC  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
DRIVE OUTPUT  
Source Resistance (Current Sense = 0 V, V  
Gate  
= V  
CC  
= 1.0 V)  
– 1.0 V)  
R
R
OL  
4.0  
4.0  
8.6  
7.2  
20  
20  
OH  
Sink Resistance (Current Sense = 3.0 V, V  
Gate  
Output Voltage Rise Time (25% – 75%) (C = 1.0 nF)  
t
55  
70  
200  
200  
0.25  
ns  
ns  
V
L
r
Output Voltage Fall Time (75% – 25%) (C = 1.0 nF)  
t
f
L
Output Voltage in Undervoltage (V  
= 7.0 V, I  
= 1.0 mA)  
V
O(UV)  
0.01  
CC  
Sink  
LEADING EDGE BLANKING  
Input Bias Current  
I
0.1  
2.25  
270  
0.5  
2.75  
500  
µA  
V
bias  
Threshold (as Offset from V ) (V  
CC LEB  
Increasing)  
V
1.0  
100  
LEB  
Hysteresis (V  
LEB  
Decreasing)  
V
H
mV  
UNDERVOLTAGE LOCKOUT  
Startup Threshold (V Increasing)  
V
11.5  
7.0  
13  
8.5  
4.5  
14.5  
10  
V
V
V
CC  
th(on)  
Minimum Operating Voltage After Turn–On (V  
Decreasing)  
V
V
CC  
Shutdown  
Hysteresis  
V
H
TIMER  
Watchdog Timer  
t
180  
1.5  
3.1  
385  
2.3  
5.2  
800  
3.0  
7.1  
µs  
V
DLY  
Restart Timer Threshold  
th(restart)  
Restart Pin Output Current (V  
= 0 V, V = 5.0 V)  
ref  
I
mA  
restart  
restart  
TOTAL DEVICE  
Line Startup Current (V  
= 0 V, V  
= 50 V)  
I
5.0  
3.0  
16  
25  
20  
mA  
mA  
mA  
CC  
Line  
, V = 50 V)  
th(on) Line  
SU  
OP  
CC  
Line Operating Current (V  
= V  
I
I
12.9  
CC  
V
CC  
V
CC  
Dynamic Operating Current (50 kHz, C = 1.0 nF)  
Static Operating Current (I = 0)  
5.3  
3.0  
8.5  
L
O
Line Pin Leakage (V  
Line  
= 500 V)  
I
30  
80  
µA  
Line  
http://onsemi.com  
4
MC33368  
0.08  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
A
= 14 V  
CC  
T = 25°C  
V
Pin 4  
= 4.0 V  
V
= 4.0 V  
Pin 4  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
= 3.0 V  
= 2.75 V  
= 3.75 V  
= 3.0 V  
= 2.75 V  
= 2.5 V  
= 3.5 V  
= 3.25 V  
= 2.5 V  
= 2.25 V  
= 2.0 V  
= 2.25 V  
= 2.0 V  
0
–0.2  
0.6  
1.4  
2.2  
3.0  
–0.12  
–0.06  
0
0.06  
0.12  
0.20  
V , MULTIPLIER PIN 5 INPUT VOLTAGE (V)  
M
V , MULTIPLIER PIN 5 INPUT VOLTAGE (V)  
M
Figure 2. Current Sense Input Threshold  
versus Multiplier Input, Expanded View  
Figure 1. Current Sense Input Threshold  
versus Multiplier Input  
16  
12  
110  
109  
108  
107  
V
CC  
= 14 V  
V
CC  
= 14 V  
8.0  
4.0  
0
–4.0  
–55  
106  
–55  
–25  
0
25  
50  
75  
100  
125  
–25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 3. Reference Voltage versus Temperature  
Figure 4. Overvoltage Comparator Input  
Threshold versus Temperature  
6.0 V  
4.0 V  
2.0 V  
0 V  
100  
80  
60  
40  
20  
0
Phase  
V
A
= 14 V  
CC  
T = 25°C  
30  
60  
90  
120  
Transconductance  
V
O
L
A
= 14 V  
V = 2.0 to 4.0 V  
R = 10 kΩ  
T = 25°C  
CC  
0
150  
180  
–20  
10  
–1.0 V  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
f, FREQUENCY (Hz)  
5.0 µs/DIV  
Figure 5. Error Amplifier Transconductance  
and Phase versus Frequency  
Figure 6. Error Amplifier Transient Response  
http://onsemi.com  
5
MC33368  
1.80  
1.76  
1.72  
1.68  
1.64  
1.50  
1.30  
1.10  
0.90  
0.70  
500  
V
CC  
= 14 V  
V
CC  
= 14 V  
Voltage  
Current  
460  
420  
380  
340  
–55  
–25  
0
25  
50  
75  
100  
125  
–55  
–25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 7. Quickstart Charge Current  
versus Temperature  
Figure 8. Watchdog Timer Delay  
versus Temperature  
6.0  
4.0  
2.0  
20  
15  
Pulse tested with a 4.0 V peak, 50 kHz square  
wave through a 22 k resistance into Pin 7.  
V
= 14 V  
CC  
C = 1000 pF  
L
T = 25°C  
A
10  
C
= 1000 pF  
O
5.0  
Pin 3, 6, 8= Gnd  
Pin 5 = 1.0 k to Gnd  
T = 25°C  
A
0
–5.0  
2.0  
4.0  
6.0  
8.0  
V , SUPPLY VOLTAGE (V)  
CC  
10  
12  
14  
5.0 µs/DIV  
0
Figure 9. Drive Output Waveform  
Figure 10. Supply Current versus  
Supply Voltage  
1000  
400  
200  
0
3.0  
Output  
Voltage  
2.0  
1.0  
0
100  
10  
Load  
Current  
0.01  
0.1  
1.0  
10  
100  
t, TIME (s)  
200 ms/DIV  
Figure 11. Transient Thermal Resistance  
Figure 12. Low Load Detection  
Response Waveform  
http://onsemi.com  
6
MC33368  
FUNCTIONAL DESCRIPTION  
INTRODUCTION  
input circuits operate at a frequency much higher than that  
of the ac line, they are smaller, lighter in weight, and more  
efficient than a passive circuit that yields similar results.  
With proper control ofthepreconverter, almostanycomplex  
load can be made to appear resistive to the ac line, thus  
significantly reducing the harmonic current content.  
With the goal of exceeding the requirements of legislation  
on line current harmonic content, there is an ever increasing  
demand for an economical method of obtaining a unity  
power factor. This data sheet describes a monolithic control  
IC that was specifically designed for power factor control  
with minimal external components. It offers the designer a  
simple cost effective solution to obtain the benefits of active  
power factor correction.  
Operating Description  
The MC33368 contains many of the building blocks and  
protection features that are employed in modern high  
performance current mode power supply controllers.  
Referring to the block diagram in Figure 15, note that a  
multiplier has been added to the current sense loop and that  
this device does not contain an oscillator. A description of  
each of the functional blocks is given below.  
Most electronic ballasts and switching power supplies use  
a bridge rectifier and a bulk storage capacitor to derive raw  
dc voltage from the utility ac line, Figure 13.  
Converter  
Rectifiers  
Bulk  
Storage  
Capacitor  
Error Amplifier  
AC  
Line  
Load  
An Error Amplifier with access to the inverting input and  
output is provided. The amplifier is a transconductance type,  
meaning that it has high output impedance with controlled  
Figure 13. Uncorrected Power Factor Circuit  
voltage–to–currentgain(g  
50µmhos). Thenoninverting  
m
input is internally biased at 5.0 V ±2.0%. The output voltage  
of the power factor converter is typically divided down and  
monitored by the inverting input. The maximum input bias  
current is –1.0 µA which can cause an output voltage error  
that is equal to the product of the input bias current and the  
value of the upper divider resistor R2. The Error Amplifier  
output is internally connected to the Multiplier and is pinned  
out (Pin 4) for external loop compensation. Typically, the  
bandwidth is set below 20 Hz so that the amplifier’s output  
voltage is relatively constant over a given ac line cycle. In  
effect, the error amplifier monitors the average output voltage  
of the converter over several line cycles resulting in a fixed  
Drive Output on–time. The amplifier output stage can sink  
andsource 11.5 µA of current and is capable of swinging from  
1.7 to 5.0 V, assuring that the Multiplier can be driven over its  
entire dynamic range.  
This simple rectifying circuit draws power from the line  
when the instantaneous ac voltage exceeds the capacitor  
voltage. This occurs near the line voltage peak and results in  
a high charge current spike, Figure 14. Since power is only  
taken near the line voltage peaks, the resulting spikes of  
current are extremely nonsinusoidal with a high content of  
harmonics. This results in a poor power factor condition  
where the apparent input power is much higher than the real  
power. Power factor ratios of 0.5 to 0.7 are common.  
V
pk  
Rectified  
DC  
0
Line Sag  
Note that by using a transconductance type amplifier, the  
input is allowed to move independently with respect to the  
output, since the compensation capacitor is connected to  
ground. This allows dual usage of the Voltage Feedback pin  
by the Error Amplifier and Overvoltage Comparator.  
AC Line  
Voltage  
0
Overvoltage Comparator  
AC Line  
Current  
An Overvoltage Comparator is incorporated to eliminate  
the possibility of runaway output voltage. This condition  
can occur during initial startup, sudden load removal, or  
during output arcing and is the result of the low bandwidth  
that must be used in the Error Amplifier control loop. The  
Overvoltage Comparator monitors the peak output voltage  
of the converter, and when exceeded, immediately  
terminates MOSFET switching. The comparator threshold  
Figure 14. Uncorrected Power Factor Input Waveforms  
Power factor correction can be achieved with the use of  
either a passive or active input circuit. Passive circuits  
usuallycontain a combination of large capacitors, inductors,  
and rectifiers that operate at the ac line frequency. Active  
circuits incorporate some form of a high frequency  
switching converter for the power processing with the boost  
converter being the most popular topology. Since active  
is internally set to 1.08V .Inordertopreventfalsetripping  
ref  
during normal operation, the value of the output filter  
capacitorC3 must be largeenoughtokeepthepeak–to–peak  
ripple less than 16% of the average dc output.  
http://onsemi.com  
7
MC33368  
Multiplier  
Sense Comparator threshold will be internally clamped to  
1.5 V. Therefore, the maximum peak switch current is:  
A single quadrant, two input multiplier is the critical  
element that enables this device to control power factor. The  
ac haversines are monitored at Pin 5 with respect to ground  
while the Error Amplifier output at Pin 4 is monitored with  
respect to the Voltage Feedback Input threshold. A graph of  
the Multiplier transfer curve is shown in Figure 1. Note that  
both inputs are extremely linear over a wide dynamic range,  
0 to 3.2 V for Pin 5 and 2.5 to 4.0 V for Pin 4. The Multiplier  
output controls the Current Sense Comparator threshold as  
the ac voltage traverses sinusoidally from zero to peak line.  
This has the effect of forcing the MOSFET on–time to track  
the input line voltage, thus making the preconverter load  
appear to be resistive.  
1.5 V  
R7  
I
pk(max)  
With the component values shown in Figure 15, the  
Current Sense Comparator threshold, at the peak of the  
haversine, varies from 110 mV at 90 Vac to 100 mV at  
268 Vac. The Current Sense Input to Drive Output  
propagation delay is typically 200 ns.  
Timer  
A watchdog timer function was added to the IC to  
eliminate the need for an external oscillator when used in  
stand alone applications. The Timer provides a means to  
automatically start or restart the preconverter if the Drive  
Output has been off for more than 385 µs after the inductor  
current reaches zero.  
Pin 6 Threshold  
0.55  
V
– V  
V
Pin 4  
Pin 3  
Pin 5  
Zero Current Detector  
The MC33368 operates as a critical conduction current  
mode controller, whereby output switch conduction is  
initiated by the Zero Current Detector and terminated when  
the peak inductor current reaches the threshold level  
established by the Multiplier output. The Zero Current  
Undervoltage Lockout and Quickstart  
The MC33368 has a 5.0 V internal reference brought out  
to Pin 1 and capable of sourcing 10 mA typically. It also  
contains an Undervoltage Lockout (UVLO) circuit which  
suppresses the Gate output at Pin 11 if the V  
voltage drops below 8.5 V typical.  
supply  
CC  
Detector initiates the next on–time by setting the R Latch  
S
at the instant the inductor current reaches zero. This critical  
conduction mode of operation has two significant benefits.  
First, since the MOSFET cannot turn–on until the inductor  
current reaches zero, the output rectifier’s reverse recovery  
timebecomeslesscriticalallowingtheuseofaninexpensive  
rectifier. Second, since there are no deadtime gaps between  
cycles, the ac line current is continuous thus limiting the  
peak switch to twice the average input current  
The Zero Current Detector indirectly senses the inductor  
current by monitoring when the auxiliary winding voltage  
falls below 1.2 V. To prevent false tripping, 200 mV of  
hysteresis is provided. The Zero Current Detector input is  
internally protected by two clamps. The upper 10 V clamp  
prevents input overvoltage breakdown while the lower  
–0.7 V clamp prevents substrate injection. An external  
resistor must be used in series with the auxiliary winding to  
limit the current through the clamps to 5.0 mA or less.  
A Quickstart circuit has been incorporated to optimize  
converter startup. During initial startup, compensation  
capacitorC1 will bedischarged, holding the Error Amplifier  
output below the Multiplier’s threshold. This will prevent  
Drive Output switching and delay bootstraping of capacitor  
C4 by diode D6. If Pin 4 does not reach the multiplier  
threshold before C4 discharges below the lower SMPS  
UVLO threshold, the converter will hiccup and experience  
a significant startup delay. The Quickstart circuit is designed  
to precharge C1 to 1.7 V. This level is slightly below the  
Pin 4 Multiplier threshold, allowing immediate Drive  
Output switching.  
Restart Delay  
A restart delay pin is provided to allow hiccup mode fault  
protection in case of a short circuit condition and to prevent  
the SMPS from repeatedly trying to restart after the input  
line voltage has been removed. When power is first applied,  
Current Sense Comparator and RS Latch  
The Current Sense Comparator R Latch configuration  
S
there is no startup delay, but subsequent cycling of the V  
CC  
voltage will result in delay times that are programmed by an  
external resistor and capacitor. The Restart Delay, Pin 2, is  
a high impedance, so that an external capacitor can provide  
delay times as long as several seconds.  
used ensures that only a single pulse appears at the Drive  
Output during a given cycle. The inductor current is  
converted to a voltage by inserting a ground–referenced  
sense resistor R7 in series with the source of output switch.  
This voltage is monitored by the Current Sense Input and  
compared to a level derived from the Multiplier output. The  
peak inductor current under normal operating conditions is  
controlled by the threshold voltage of Pin 6 where:  
If the SMPS output is short circuited, the transformer  
winding, which provides the V  
and the MC33368, will be unable to sustain V  
CC  
voltage to the control IC  
to the  
CC  
control circuits. The restart delay capacitor at Pin 2 of the  
MC33368prevents the high voltage startup transistor within  
the IC from maintaining the voltage on C4. After V drops  
CC  
Pin 6 Threshold  
I
below the UVLO threshold in the SMPS, the SMPS  
switching transistors are held off for the time programmed  
by the values of the restart capacitor (C9) and resistor (R8).  
In this manner, the SMPS switching transistors are operated  
pk  
R7  
Abnormal operating conditions occur when the  
preconverter is running at extremely low line or if output  
voltage sensing is lost. Under these conditions, the Current  
http://onsemi.com  
8
MC33368  
at very low duty cycles, preventing their destruction. If the  
Forbestresults, theminimumoff–time, determinedbythe  
valuesofR10andC7,shouldbechosensothatt =t  
short circuit fault is removed, the power supply system will  
turn on by itself in a normal startup mode after the restart  
delay has timed out.  
s(min) (on)  
. Output drive is inhibited when the voltage at the  
+ t  
(off)fc  
frequency clamp input is less than 2.0 V. When the output  
drive is high, C7 is discharged through an internal 100 µA  
current source. When the output drive switches low, C7 is  
charged through R10. The drive output is inhibited until the  
voltage across C7 reaches 2.0 V, establishing a minimum  
off–time where:  
Output Switching Frequency Clamp  
In normal operation, the MC33368 operates the boost  
inductor in the critical mode. That is, the inductor current  
ramps to a peak value, ramps down to zero, then  
immediately begins ramping positive again. The peak  
current is programmed by the multiplier output within the  
IC. As the input voltage haversine declines to near zero, the  
output switch on–time becomes constant, rather than going  
to zero because of the small integrated dc voltage at Pin 5  
caused by C2, R3 and R5. Because of this, the average line  
current does not exactly follow the line voltage near the zero  
crossings. The Output Switching Frequency Clamp  
remedies this situation to improve power factor and  
minimize EMI generated in this operating region. The  
values of R10 and C7, as shown in Figure 15, program a  
minimum off–time in the frequency clamp which overrides  
the zero current detect signal, forcing a minimum off–time.  
This allows discontinuous conduction operation of the boost  
inductor in the zero crossing region, and the average line  
current more nearly follows the voltage. The Output  
Switching Frequency Clamp function can be disabled by  
2
t
R10 C7 log  
1
e
(off)fc  
V
CC  
Output  
The IC contains a CMOS output driver that was  
specifically designed for direct drive of power MOSFETs.  
The Gate Output is capable of up to ±1500 mA peak current  
with a typical rise and fall time of 50 ns with a 1.0 nF load.  
Additionalinternal circuitryhas beenaddedtokeepthe Gate  
Output in a sinking mode whenever the Undervoltage  
Lockout is active. This characteristic eliminates the need for  
an external gate pull–down resistor. The totem–pole output  
has been optimized to minimize cross–conduction current  
during high speed operation.  
connecting the FC input, Pin 13, to the V  
supply Pin 12.  
CC  
http://onsemi.com  
9
MC33368  
Table 1. Design Equations  
Calculation  
Formula  
Notes  
Converter Output Power  
Calculate the maximum required output power.  
P
V
I
O
O O  
2 P  
Peak Indicator Current  
Inductance  
Calculated at the minimum required ac line voltage for  
output regulation. Let the efficiency η = 0.92 for low line  
operation.  
2
O
I
L(pk)  
Vac  
(LL)  
Let the switching cycle t = 40 µs for universal input (85  
to 265 Vac) operation and 20 µs for fixed input (92 to  
138 Vac, or 184 to 276 Vac) operation.  
V
O
2
2
t
–Vac  
Vac  
(LL)  
(LL)  
L
P
2 V  
P
O
O
Switch On–Time  
Switch Off–Time  
In theory, the on–time t  
(on)  
is constant. In practice, t  
(on)  
2 P  
L
tends to increase at the ac line zero crossings due to  
the charge on capacitor C5. Let Vac = Vac for initial  
O
P
t
(on)  
(LL)  
2
Vac  
t
and t  
calculations.  
(on)  
(off)  
The off–time t  
(off)  
is greatest at the peak of the ac line  
t
(on)  
t
voltage and approaches zero at the ac line zero  
crossings. Theta (θ) represents the angle of the ac line  
voltage.  
(off)  
t
V
O
–1  
2 Vac Sin  
Minimum Switch  
Off–Time  
The off–time is at a minimum at ac line crossings. This  
equation is used to calculate t  
zero.  
L
I
P L(pk)  
as Theta approaches  
(off)  
(off)  
min  
V
O
Delay Time  
The delay time is used to override the minimum  
off–time at the ac line zero crossings by programming  
the Frequency Clamp with C7 and R10.  
V
– 2  
CC  
t
– R10 C7 ln  
d
V
CC  
Switching Frequency  
The minimum switching frequency occurs at the peak of  
the ac line voltage. As the ac line voltage traverses  
1
f
t
t
from peak to zero, t  
approaches zero producing an  
(off)  
(on)  
(off)  
increase in switching frequency.  
Peak Switch Current  
Set the current sense threshold V  
universal input (85 to 265 Vac) operation and to 0.5 V  
for fixed input (92 to 138 Vac, or 184 to 276 Vac)  
to 1.0 V for  
CS  
V
CS  
R7  
I
L(pk)  
operation. Note that V  
must be less than 1.4 V.  
CS  
Multiplier Input Voltage  
Set the multiplier input voltage V to 3.0 V at high line.  
M
Vac  
2
1
Empirically adjust V for the lowest distortion over the  
M
V
V
M
R5  
R3  
ac line voltage range while guaranteeing startup at  
minimum line.  
Converter Output  
Voltage  
The I R1 error term can be minimized with a divider  
IB  
current in excess of 100 µA.  
R2  
R1  
V
– I R1  
IB  
1
O
ref  
Converter Output  
Peak–to–Peak  
Ripple Voltage  
The calculated peak–to–peak ripple must be less than  
16% of the average dc output voltage to prevent false  
tripping of the Overvoltage Comparator. Refer to the  
Overvoltage Comparator Text. ESR is the equivalent  
series resistance of C3.  
2
1
2
V
I
ESR  
O(pp)  
L(pk)  
2
f
C3  
ac  
Error Amplifier  
Bandwidth  
The bandwidth is typically set to 20 Hz. When operating  
at high ac line, the value of C1 may need to be  
increased.  
g
m
C1  
BW  
2
NOTE: The following converter characteristics must be chosen:  
= Desired output voltage. Vac = AC RMS minimum required operating line voltage for output regulation.  
V
O
(LL)  
O
I
O
= Desired output current.  
V = Converter output peak–to–peak ripple voltage.  
Vac = AC RMS operating line voltage.  
http://onsemi.com  
10  
MC33368  
1N4006  
D4  
C5  
1.0  
D2  
D1  
92 to  
270  
Vrms  
EMI  
Filter  
D3  
16 Line  
V
ref  
MC33368  
V
ref  
D8 R13 D6  
1N4744  
15 V  
R8  
10 k  
V
51 1N4934  
CC  
RD  
UVLO  
Q
Timer  
R
12  
C9  
330 µF  
2
C4  
100  
Zero  
Current  
Detect  
AGnd  
13/8.0  
7
15 V  
8
R Latch  
S
T
ZCD  
R4  
22 k  
320 µH  
MUR130  
1.2/1.0  
R
1.5 V  
R
S
Gate  
11  
V
O
D5  
S
Q1  
Q
R11  
10  
S
C3  
220  
Set Dominant  
To V  
CC  
Pin 12  
Overvoltage  
Comparator  
PGnd  
10  
MTP8N50E  
R5  
1.3 M  
R2  
470 k  
R10  
10  
C7  
10 pF  
Low  
Load Detect  
13  
Frequency  
Clamp  
1.08 x V  
ref  
FC  
9
Quickstart  
LEB  
6
Leading Edge  
Blanking  
CS  
R7  
0.1  
0.25 W  
Mult  
5
5.0 V  
Reference  
Multiplier  
C2  
R3  
20 k  
0.01  
4
Comp  
C1  
0.68  
1
V
3
FB  
ref  
V
ref  
R1  
C6  
0.1  
10 k  
T: Coilcraft N2881–A  
Not Used: D7, C8, R6, R9  
Primary = 62 turns of #22 AWG  
Secondary = 5 turns of #22 AWG  
Core = Coilcraft PT2510, EE25  
Gap = 0.072total for a primary inductance (Lp) of 320 µH  
Power Factor Controller Test Data  
DC Output  
AC Line Input  
Current Harmonic Distortion (% I  
)
fund  
V
rms  
Pin  
PF  
I
THD  
2
3
5
7
V
O(pp)  
V
O
I
O
P
O
n(%)  
fund  
90  
79.7 0.999 0.89  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.15 0.09 0.06 0.09  
0.14 0.09 0.08 0.10  
0.16 0.13 0.08 0.10  
0.15 0.12 0.08 0.13  
0.14 0.12 0.07 0.14  
0.15 0.14 0.08 0.14  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
244.4 0.31 76.01 95.4  
242.9 0.31 75.54 95.3  
242.9 0.31 75.30 95.4  
243.0 0.31 75.57 96.3  
243.0 0.31 75.57 96.7  
243.0 0.31 75.57 97.1  
100 79.3 0.998 0.79  
110 78.9 0.997 0.72  
120 78.5 0.996 0.66  
130 78.1 0.994 0.60  
138 77.8 0.991 0.57  
Heatsink = AAVID Engineering Inc., 590302B03600, or 593002B03400  
Figure 15. 80 W Power Factor Controller  
http://onsemi.com  
11  
MC33368  
1N5406  
D4  
C5  
1.0  
D2  
D1  
EMI  
92 to  
D3  
Filter  
270 Vrms  
16 Line  
V
ref  
MC33368  
V
ref  
D8 R13 D6  
1N4744  
15 V  
R8  
1.0 M  
V
51 1N4934  
CC  
RD  
UVLO  
Q
Timer  
R
12  
C9  
2.2  
2
C4  
100  
Zero  
Current  
Detect  
AGnd  
13/8.0  
7
8
15 V  
R Latch  
S
T
ZCD  
6.9 V  
R4  
22 k  
R
1.2/1.0  
1.5 V  
MUR460  
D5  
R
S
S
S
Gate  
11  
V
O
Q
Q1  
R11  
10  
C3  
330  
Set Dominant  
To V  
CC  
Pin 12  
Overvoltage  
Comparator  
PGnd  
10  
MTW20N50E  
R5  
1.3 M  
R2  
820 k  
Low  
Load Detect  
13  
Frequency  
Clamp  
1.08 x V  
ref  
FC  
9
Quickstart  
LEB  
6
Leading Edge  
Blanking  
CS  
Mult  
5
R7  
0.1  
5.0 V  
Reference  
Multiplier  
C2  
R3  
10 k  
0.01  
4
Comp  
1
V
ref  
3
FB  
C1  
2.2  
V
ref  
T: Coilcraft N2880–A  
L = 870 µHy  
Primary: 78 turns of #16 AWG  
Secondary: 6 turns of #18 AWG  
R1  
10 k  
C6  
0.1  
Core: Coilcraft PT4215, EE42–15  
Gap: 0.104total  
Not Used: D7, C7, C8, R6, R9, R10  
Power Factor Controller Test Data  
DC Output  
AC Line Input  
Current Harmonic Distortion (% I  
)
fund  
V
rms  
Pin  
PF  
I
THD  
2
3
5
7
V
O(pp)  
V
O
I
O
P
O
n(%)  
fund  
90 190.4 0.995 2.11  
120 192.1 0.997 1.60  
138 192.7 0.997 1.40  
180 194.3 0.995 1.08  
240 189.3 0.983 0.80  
268 186.3 0.972 0.71  
5.8  
3.2  
0.9  
0.9  
0.7  
0.6  
0.16 0.32 0.24 0.80  
0.08 0.17 0.07 0.30  
0.08 0.24 0.03 0.15  
0.04 0.18 0.04 0.08  
0.08 0.21 0.08 0.06  
0.11 0.32 0.10 0.10  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
398.0 0.44 175.9 92.4  
398.9 0.44 177.1 92.2  
402.3 0.45 179.0 92.9  
409.1 0.45 182.9 94.1  
407.0 0.45 181.1 95.7  
406.2 0.44 180.4 96.8  
Heatsink = AAVID Engineering Inc., 590302B03600  
Figure 16. 175 W Universal Input Power Factor Controller  
http://onsemi.com  
12  
MC33368  
2X Step–up  
Isolation  
Transformer  
EMI Filter  
T
Autoformer  
Line  
AC Power  
Analyzer  
PM 1000  
HI  
HI  
0 to 270 Vac  
Output to  
1.0  
W
VA PF  
V
A
rms rms  
0.1  
115 Vrms  
Input  
Power Factor  
Correction  
Circuit  
A
V
V
D
Acf Ainst Freq HARM  
1
0
L.O.  
L.O.  
Voltech  
Neutral  
An RFI filter is required for best performance when connecting the preconverter directly to the ac line. The filter attenuates the level of high frequency switching that  
appears on the ac line current waveform. Figures 15 and 16 work well with commercially available two stage filters such as the Delta Electronics 03DPCG6. Shown  
above is a single stage test filter that can easily be constructed with four ac line rated capacitors and a common–mode transformer. Coilcraft CMT3–28–2 was used  
to test Figures 15 and 16. It has a minimum inductance of 28 mH and a maximum current rating of 2.0 A. Coilcraft CMT4–17–9 was used to test Figure 19. It has a  
minimum inductance of 17 mH and a maximum current rating of 9.0 A. Circuit conversion efficiency η (%) was calculated without the power loss of the RFI filter.  
Figure 17. Power Factor Test Setup  
D2  
D1  
D4  
C5  
1.0  
EMI  
Filter  
92 to  
270 Vrms  
D3  
16 Line  
V
ref  
V
ref  
MC33368  
R8  
10 k  
R13  
51  
15 V  
V
D6  
CC  
D8  
RD  
UVLO  
Q
Timer  
R
12  
C9  
330 µF  
2
C4  
100  
Zero  
Current  
Detect  
AGnd  
13/8.0  
7
8
15 V  
R Latch  
S
T
ZCD  
6.9 V  
R4  
22 k  
1.2/1.0  
R
1.5 V  
1N4148  
R
S
DC  
Out  
Gate  
11  
D5  
S
Q1  
Q
R11  
10  
S
C3  
330  
On/Off  
Input  
Set Dominant  
PGnd  
Overvoltage  
Comparator  
MTW14N50E  
5.0 V Off  
0 V On  
10  
13  
R5  
1.3 M  
R2  
820 k  
Frequency  
Clamp  
Low  
Load Detect  
FC  
9
1.08 x V  
ref  
LEB  
6
Quickstart  
Leading Edge  
Blanking  
CS  
Mult  
5
R7  
0.1  
5.0 V  
Reference  
Multiplier  
C2  
0.01  
R3  
10 k  
V
CC  
4
Comp  
1
V
3
FB  
ref  
V
ref  
C1  
22  
C6  
0.1  
10 k  
R1  
10 k  
1.0 k  
2N3904  
1.0 k  
Figure 18. On/Off Control  
http://onsemi.com  
13  
MC33368  
1N5406  
D4  
C5  
1.0  
D2  
D1  
92 to  
270  
Vac  
EMI  
Filter  
D3  
16 Line  
V
ref  
V
ref  
MC33368  
R8  
1.0 M  
R13  
51  
15 V  
1N4744  
V
D6  
CC  
D8  
RD  
1N4934  
UVLO  
Q
Timer  
R
12  
C9  
330 µF  
2
C4  
100  
Zero  
Current  
Detect  
AGnd  
13/8.0  
7
8
15 V  
R Latch  
S
T
ZCD  
1.5 V  
R4  
22 k  
1.2/1.0  
R
1.5 V  
R
S
MUR460  
D5  
Gate  
11  
S
Q1  
Q
S
C3  
330  
400 V  
R11  
10  
Set Dominant  
Overvoltage  
Comparator  
PGnd  
10  
MTW20N50E  
V
ref  
R5  
1.3 M  
R2  
820 k  
R10  
10 k  
Low  
Load Detect  
13  
Frequency  
Clamp  
1.08 x V  
ref  
C7  
470 pF  
FC  
9
Quickstart  
LEB  
6
R9  
10  
Leading Edge  
Blanking  
CS  
C8  
Mult  
5
R7  
0.1  
0.001  
5.0 V  
Reference  
Multiplier  
C2  
0.01  
R3  
10.5 k  
4
Comp  
1
V
ref  
3
FB  
V
ref  
C1  
1.0  
C6  
0.1  
R1  
10 k  
Figure 19. 400 W Power Factor Controller  
http://onsemi.com  
14  
MC33368  
D3  
AC Input  
DC Output  
D7  
C6  
R8  
D1  
R3  
C2  
R5  
C5  
R1  
R2  
R6  
C1  
IC1  
D2  
R7  
D4  
C4  
R4  
D6  
C9  
C8  
J
C7  
J
R13  
R10  
J
R11  
Transformer  
J
R9  
C3  
D8  
Q1  
S
D
G
D5  
J = Jumper  
(Top View)  
4.5″  
MC33368  
3.0″  
(Bottom View)  
Figure 20. Printed Circuit Board and Component Layout  
(Circuits of Figures 15 and 16)  
http://onsemi.com  
15  
MC33368  
PACKAGE DIMENSIONS  
DIP–16  
P SUFFIX  
CASE 648–08  
ISSUE R  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
16  
1
9
8
B
S
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
0.740 0.770 18.80 19.55  
MILLIMETERS  
F
C
L
MIN MAX  
A
B
C
D
F
0.250 0.270  
0.145 0.175  
0.015 0.021  
6.35  
3.69  
0.39  
1.02  
6.85  
4.44  
0.53  
1.77  
SEATING  
PLANE  
–T–  
0.040  
0.70  
G
H
J
K
L
M
S
0.100 BSC  
0.050 BSC  
0.008 0.015  
2.54 BSC  
1.27 BSC  
K
M
H
J
0.21  
0.38  
3.30  
7.74  
10  
G
0.110  
0.295 0.305  
10  
0.020 0.040  
0.130  
2.80  
7.50  
0
D 16 PL  
M
M
0
0.25 (0.010)  
T A  
0.51  
1.01  
SO–16  
D SUFFIX  
CASE 751K–01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–A–  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
16  
9
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
M
–B–  
P
F
1
8
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00 0.368  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
R X 45  
C
G
J
K
M
P
1.27 BSC  
0.050 BSC  
SEATING  
PLANE  
–T–  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
7
0.009  
0.009  
7
14 X D  
J
K
0
M
S
S
0.25 (0.010)  
T A  
B
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
R
http://onsemi.com  
16  
MC33368  
Notes  
http://onsemi.com  
17  
MC33368  
Notes  
http://onsemi.com  
18  
MC33368  
Notes  
http://onsemi.com  
19  
MC33368  
GreenLine is a trademark of Motorola, Inc.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC33368/D  

相关型号:

MC33368DG

High Voltage GreenLine TM Power Factor Controller
ONSEMI

MC33368DR2

High Voltage GreenLine Power Factor Controller
ONSEMI

MC33368DR2G

High Voltage GreenLine TM Power Factor Controller
ONSEMI

MC33368P

High Voltage GreenLine Power Factor Controller
ONSEMI

MC33368PG

High Voltage GreenLine TM Power Factor Controller
ONSEMI

MC33368_05

High Voltage GreenLine TM Power Factor Controller
ONSEMI

MC33369P

IC,SMPS CONTROLLER,VOLTAGE-MODE,CMOS,DIP,8PIN,PLASTIC
ONSEMI

MC33369T

0.5A SWITCHING REGULATOR, 115kHz SWITCHING FREQ-MAX, PSFM5, TO-220, 5 PIN
MOTOROLA

MC33369TV

IC,SMPS CONTROLLER,VOLTAGE-MODE,CMOS,ZIP,5PIN,PLASTIC
ONSEMI

MC33369TV

Switching Regulator, Voltage-mode, 0.5A, 115kHz Switching Freq-Max, CMOS, PZFM5, TO-220, 5 PIN
MOTOROLA

MC33370P

IC,SMPS CONTROLLER,VOLTAGE-MODE,CMOS,DIP,8PIN,PLASTIC
ONSEMI

MC33370T

IC,SMPS CONTROLLER,VOLTAGE-MODE,CMOS,ZIP,5PIN,PLASTIC
ONSEMI