MC34080BDR2 [ONSEMI]

OP-AMP, 4000uV OFFSET-MAX, 16MHz BAND WIDTH, PDSO8, PLASTIC, SO-8;
MC34080BDR2
型号: MC34080BDR2
厂家: ONSEMI    ONSEMI
描述:

OP-AMP, 4000uV OFFSET-MAX, 16MHz BAND WIDTH, PDSO8, PLASTIC, SO-8

放大器 光电二极管
文件: 总16页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC34080/D  
t
HIGH PERFORMANCE  
JFET INPUT  
OPERATIONAL AMPLIFIERS  
These devices are a new generation of high speed JFET input monolithic  
operational amplifiers. Innovative design concepts along with JFET  
technology provide wide gain bandwidth product and high slew rate.  
Well–matched JFET input devices and advanced trim techniques ensure low  
input offset errors and bias currents. The all NPN output stage features large  
output voltage swing, no deadband crossover distortion, high capacitive  
drive capability, excellent phase and gain margins, low open loop output  
impedance, and symmetrical source/sink AC frequency response.  
This series of devices is available in fully compensated or  
8
decompensated (A 2) and is specified over a commercial temperature  
VCL  
8
1
range. They are pin compatible with existing Industry standard operational  
amplifiers, and allow the designer to easily upgrade the performance of  
existing designs.  
1
P SUFFIX  
PLASTIC PACKAGE  
CASE 626  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
Wide Gain Bandwidth: 8.0 MHz for Fully Compensated Devices  
(SO–8)  
Wide Gain Bandwidth: 16 MHz for Decompensated Devices  
PIN CONNECTIONS  
High Slew Rate: 25 V/µs for Fully Compensated Devices  
High Slew Rate: 50 V/µs for Decompensated Devices  
12  
1
2
3
4
8
Offset Null  
Inv. Input  
NC  
High Input Impedance: 10  
+
7
6
5
V
Input Offset Voltage: 0.5 mV Maximum (Single Amplifier)  
Large Output Voltage Swing: –14.7 V to +14 V for  
CC  
Noninv. Input  
Output  
V
Offset Null  
Large Output Voltage Swing: V /V  
CC EE  
= ±15 V  
EE  
Low Open Loop Output Impedance: 30 @ 1.0 MHz  
Low THD Distortion: 0.01%  
(Single, Top View)  
1
2
3
4
8
7
6
5
V
CC  
Output 2  
Output 1  
Inputs 1  
Excellent Phase/Gain Margins: 55°/7.6 dB for Fully Compensated  
Devices  
+
+
Inputs 2  
V
EE  
ORDERING INFORMATION  
(Dual, Top View)  
Fully  
Compen-  
sated  
Operating  
Temperature  
Range  
Op Amp  
Function  
A
2  
VCL  
Compensated  
MC34080BD  
MC34080BP  
MC34083BP  
Package  
SO–8  
MC34081BD  
MC34081BP  
MC34082P  
Single  
Dual  
T
= 0° to +70°C  
T = 0° to +70°C  
A
Plastic DIP  
Plastic DIP  
SO–16L  
A
16  
14  
1
1
MC34084DW MC34085BDW  
Quad  
P SUFFIX  
DW SUFFIX  
MC34084P  
MC34085BP  
Plastic DIP  
PLASTIC PACKAGE  
CASE 646  
PLASTIC PACKAGE  
CASE 751G  
(SO–16L)  
PIN CONNECTIONS  
1
16  
Output 1  
Output 4  
Output 1  
Inputs 1  
1
2
3
4
14  
13  
12  
11  
10  
9
Output 4  
2
Inputs 1  
3
15  
+
+
Inputs 4  
+
+
Inputs 4  
14  
13  
12  
11  
10  
1
4
3
1
4
3
4
V
V
CC  
EE  
V
V
CC  
EE  
Inputs 3  
Output 3  
5
+
+
5
+
+
Inputs 2  
6
Inputs 3  
Inputs 2  
Output 2  
2
2
6
7
Output 2  
NC  
7
8
Output 3  
NC  
8
9
(Quad, Top View)  
Motorola, Inc. 1996  
Rev 0  
MC34080 thru MC34085  
MAXIMUM RATINGS  
Rating  
Supply Voltage (from V  
Symbol  
Value  
+44  
Unit  
V
to V  
)
V
S
CC  
EE  
Input Differential Voltage Range  
Input Voltage Range  
V
(Note 1)  
(Note 1)  
Indefinite  
0 to +70  
+125  
V
IDR  
V
V
IR  
Output Short Circuit Duration (Note 2)  
Operating Ambient Temperature Range  
Operating Junction Temperature  
Storage Temperature Range  
t
sec  
°C  
°C  
°C  
SC  
T
A
T
J
T
– 65 to +165  
stg  
NOTES: 1. Either or both input voltages must not exceed the magnitude of V  
or V  
.
EE  
CC  
2. Power dissipation must be considered to ensure maximum junction temperature  
(T ) is not exceeded.  
J
Representative Schematic Diagram  
(Each Amplifier)  
V
CC  
200  
µA  
50  
µA  
850  
µA  
Q1  
D1  
Q6  
R1  
240  
18  
+
J1  
J2  
Output  
R
Inputs  
SC  
700  
R2  
5.0  
pF  
D2  
C
C
+
Q7  
20  
pF  
C
M
C
F
Q8  
+
3.0  
pF  
Q5  
Q2  
Q3  
R3  
1.0 k  
R4  
1.0 k  
Q4  
Q10  
Q9  
D3  
500  
R6  
500  
50 µA  
Q11  
R7  
66 k  
D4  
100  
µA  
300 µA  
V
EE  
RM  
1
5
Null Adjust  
(MC34080, 081)*  
*Pins 1 & 5 (MC34080,081) should not be directly grounded or connected to V  
.
CC  
2
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
DC ELECTRICAL CHARACTERISTICS (V  
CC  
= +15 V, V  
= – 15 V, T = T  
to T  
[Note 3], unless otherwise noted.)  
EE  
A
low  
high  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (Note 4)  
Single  
V
IO  
mV  
T
= +25°C  
0.5  
2.0  
4.0  
A
T
= 0° to +70°C (MC34080B, MC34081B)  
A
Dual  
T
= +25°C  
1.0  
3.0  
5.0  
A
T
= 0° to +70°C (MC34082, MC34083)  
A
Quad  
T
T
A
= +25°C  
6.0  
12  
14  
A
= 0° to +70°C (MC34084, MC34085)  
Average Temperature Coefficient of Offset Voltage  
V /T  
IO  
10  
µV/°C  
Input Bias Current (V = 0 Note 5)  
I
IB  
CM  
0.06  
T
T
= +25°C  
= 0° to +70°C  
0.2  
4.0  
nA  
A
A
Input Offset Current (V  
= 0 Note 5)  
I
IO  
CM  
0.02  
0.1  
2.0  
T
T
= +25°C  
= 0° to +70°C  
nA  
A
A
Large Signal Voltage Gain (V = ±10 V, R = 2.0 k)  
A
VOL  
V/mV  
O
L
T
T
A
= +25°C  
25  
15  
80  
A
= T  
to T  
low  
high  
Output Voltage Swing  
V
OH  
V
13.2  
13.4  
13.4  
13.7  
13.9  
R
R
R
= 2.0 k, T = +25°C  
A
L
L
L
= 10 k, T = +25°C  
A
= 10 k, T = T  
T
A
low to high  
R
R
R
= 2.0 k, T = +25°C  
V
OL  
–14.1 –13.5  
–14.7 –14.1  
L
L
L
A
= 10 k, T = +25°C  
A
= 10 k, T = T  
T
–14.0  
A
low to high  
Output Short Circuit Current (T = +25°C)  
Input Overdrive = 1.0 V, Output to Ground  
I
mA  
V
A
SC  
20  
20  
31  
28  
Source  
Sink  
Input Common Mode Voltage Range  
V
(V  
+4.0) to  
– 2.0)  
ICR  
EE  
T
A
= +25°C  
(V  
CC  
Common Mode Rejection Ratio (R 10 k, T = +25°C)  
CMRR  
PSRR  
70  
70  
90  
dB  
dB  
S
A
Power Supply Rejection Ratio (R = 100 , T = 25°C)  
86  
S
A
Power Supply Current  
Single  
I
D
mA  
T
= +25°C  
2.5  
3.4  
4.2  
A
T
= T  
to T  
A
low  
high  
high  
high  
Dual  
T
= +25°C  
4.9  
6.0  
7.5  
A
T
= T  
to T  
A
low  
Quad  
T
= +25°C  
9.7  
11  
13  
A
T
= T  
to T  
low  
A
NOTES: (continued)  
3. T  
=
0°C for MC34080B  
0°C for MC34081B  
0°C for MC34084  
0°C for MC34085  
T
= +70°C for MC34080B  
+70°C for MC34081B  
+70°C for MC34084  
+70°C for MC34085  
low  
high  
4. See application information for typical changes in input offset voltage due to solderability and temperature cycling.  
5. Limits at T = +25°C are guaranteed by high temperature (T  
) testing.  
A
high  
3
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
AC ELECTRICAL CHARACTERISTICS (V  
CC  
= +15 V, V  
= – 15 V, T = +25°C, unless otherwise noted.)  
EE A  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Slew Rate (V = –10 V to +10 V, R = 2.0 k, C = 100 pF)  
SR  
V/µs  
in  
L
L
Compensated  
A
A
V
V
A
= +1.0  
= –1.0  
V
20  
35  
25  
30  
50  
50  
Decompensated A = +2.0  
= –1.0  
V
Settling Time (10 V Step, A = –1.0)  
t
s
µs  
V
1
To 0.10% (± / LSB of 9–Bits)  
0.72  
1.6  
2
2
1
To 0.01% (± / LSB of 12–Bits)  
Gain Bandwidth Product (f = 200 kHz)  
Compensated  
Decompensated  
GBW  
BWp  
MHz  
kHz  
6.0  
12  
8.0  
16  
Power Bandwidth (R = 2.0 k, V = 20 V , THD = 5.0%)  
L
O
pp  
Compensated A = +1.0  
V
400  
800  
Decompensated A = – 1.0  
V
Phase Margin (Compensated)  
φ
m
De-  
grees  
R
R
= 2.0 k  
= 2.0 k, C = 100 pF  
55  
39  
L
L
L
Gain Margin (Compensated)  
A
m
dB  
R
R
= 2.0 k  
= 2.0 k, C = 100 pF  
7.6  
4.5  
L
L
L
Equivalent Input Noise Voltage  
= 100 , f = 1.0 kHz  
e
I
30  
nV/Hz  
n
R
S
Equivalent Input Noise Current (f = 1.0 kHz)  
0.01  
5.0  
pA/Hz  
n
Input Capacitance  
C
pF  
i
12  
10  
Input Resistance  
r
i
Total Harmonic Distortion  
THD  
0.05  
%
A
V
= +10, R = 2.0 k, 2.0 V 20 V , f = 10 kHz  
L
O
pp  
Channel Separation (f = 10 kHz)  
Open Loop Output Impedance (f = 1.0 MHz)  
120  
35  
dB  
Z
o
Figure 1. Input Common Mode Voltage Range  
versus Temperature  
Figure 2. Input Bias Current  
versus Temperature  
0
100 k  
10 k  
1.0 k  
100  
10  
V
/V  
=
±
3.0 V to  
±22 V  
V
/V = ±15 V  
CC EE  
CC EE  
V
CC  
V
= 5.0 mA  
V
= 0 V  
IO  
CM  
–1.0  
3.0  
2.0  
1.0  
0
V
EE  
1.0  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
4
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
Figure 3. Input Bias Current versus  
Input Common Mode Voltage  
Figure 4. Output Voltage Swing  
versus Supply Voltage  
50  
40  
140  
120  
V
T
/V = ±15 V  
= 25°C  
CC EE  
A
R
T
Connected to Ground  
L
A
= 25  
°C  
100  
80  
30  
R
= 2.0 k  
R
= 10 k  
L
L
20  
10  
0
60  
40  
20  
–12  
–8.0  
V
–4.0  
0
4.0  
8.0  
12  
0
±5.0  
±
10  
|V |, SUPPLY VOLTAGE (V)  
CC EE  
±
15  
±20  
±25  
, INPUT COMMON MODE VOLTAGE (V)  
V
IC  
Figure 5. Output Saturation versus  
Load Current  
Figure 6. Output Saturation vesus  
Load Resistance to Ground  
0
0
–2.0  
–4.0  
2.0  
1.0  
0
V
V
CC  
CC  
–1.0  
Source  
V
T
/V = ±15 V  
= 25°C  
CC EE  
A
V
T
/V = +15 V to +22 V  
= 25°C  
CC EE  
A
–2.0  
–3.0  
Sink  
1.0  
0
V
V
EE  
EE  
0
4.0  
8.0  
I , LOAD CURRENT (  
12  
16  
300  
3.0 k  
30 k  
300 k  
±mA)  
R , LOAD RESISTANCE TO GROUND ()  
L
L
Figure 7. Output Saturation versus  
Load Resistance to V  
Figure 8. Output Short Circuit Current  
versus Temperature  
CC  
40  
0
V
CC  
–0.4  
Source  
Sink  
30  
–0.8  
2.0  
1.0  
0
20  
10  
V
R
T
/V  
= +15 V  
to V  
CC  
CC EE  
L
A
V
R
/V  
=
±
15 V  
CC EE  
0.1  
= 1.0 V  
L
= 25°C  
V
in  
V
EE  
0
–55  
300  
3.0 k  
30 k  
300 k  
–25  
0
25  
50  
75  
C)  
100  
125  
R , LOAD RESISTANCE TO V  
CC  
(
)  
T , AMBIENT TEMPERATURE (  
°
L
A
5
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
Figure 9. Output Impedance versus Frequency  
Figure 10. Output Impedance versus Frequency  
80  
60  
40  
80  
60  
V
V
V
/V = ±15 V  
V
V
V
/V  
=
±
15 V  
CC EE  
CC EE  
= 0  
= 0  
= 0  
CM  
CM  
= 0  
O
O
I
= ±0.5 mA  
= 25°C  
I
= ±0.5 mA  
O
O
T
T
= 25°C  
A
A
Compensated  
Units Only  
Decompensated  
Units Only  
40  
20  
0
20  
0
A
= 1.0  
V
A
= 1000  
A = 100  
V
V
A
= 10  
A
= 100  
A
= 1000  
A
= 10  
V
V
V
V
A
= 2.0  
V
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 11. Output Voltage Swing  
versus Frequency  
Figure 12. Output Distortion versus Frequency  
28  
24  
0.5  
0.4  
0.3  
0.2  
V
R
/V = ±15 V  
= 2.0 k  
CC EE  
L
A
= 1000  
V
THD = 1.0%  
= 25  
V
V
R
T
/V  
= 2.0 V  
= 2.0 k  
= ±15 V  
20  
T
°C  
CC EE  
O
L
A
A
Compensated  
pp  
Units A = +1.0  
V
Decompensated  
Units A = –1.0  
16  
12  
= 25°C  
V
*Compensated  
Units Only  
A
= 100  
V
8.0  
0.1  
0
A
= 10  
4.0  
0
V
A
= 1.0*  
1.0 k  
V
10 k  
100 k  
1.0 M  
10 M  
10  
100  
10 k  
100 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 13. Open Loop Voltage Gain  
versus Temperature  
1.08  
1.04  
1.00  
0.96  
0.92  
V
/V = ±15 V  
= –10 V to +10 V  
= 10 k  
CC EE  
V
R
O
L
f
10 Hz  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
A
6
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
Figure 14. Open Loop Voltage Gain and  
Phase versus Frequency  
Figure 15. Open Loop Voltage Gain and  
Phase versus Frequency  
100  
80  
20  
10  
V
V
R
T
/V = ±15 V  
= 0 V  
= 2.0 k  
= 25°C  
100  
120  
140  
160  
180  
200  
CC EE  
O
L
A
0
Gain  
Margin  
= 7.6 dB  
45  
90  
135  
180  
V
V
T
/V = ±15 V  
= 0 V  
= 25°C  
CC EE  
O
A
0
Phase  
Gain  
60  
40  
Phase  
Margin  
–10  
–20  
–30  
–40  
1
2
= 54  
°
1 — Gain, R = 2.0 k  
2 — Gain, R = 2.0 k, C = 100 pF  
3 — Phase, R = 2.0 k  
4 — Phase, R = 2.0 k, C = 100 pF  
Compensated Units Only  
2.0 3.0 5.0 7.0 10  
f, FREQUENCY (Hz)  
L
L
L
20  
0
L
Solid Line Curves — Compensated Units  
Dashed Line Curves — Decompensated Units  
3
L
L
4
1.0  
10  
100 1.0 k  
10 k 100 k 1.0 M 10 M 100 M  
1.0  
20  
30  
50  
f, FREQUENCY (Hz)  
Figure 16. Open Loop Voltage Gain and  
Phase versus Frequency  
Figure 17. Normalized Gain Bandwidth  
Product versus Temperature  
20  
10  
1.20  
1.10  
1.00  
100  
120  
140  
160  
180  
200  
Gain  
Margin  
= 5.5 dB  
V
R
/V = ±15 V  
= 2.0 k  
CC EE  
L
V
V
T
/V = ±15 V  
= 0 V  
= 25°C  
CC EE  
O
A
0
Phase  
Margin  
–10  
= 43  
°
–20  
–30  
–40  
1 — Gain, R = 2.0 k  
2 — Gain, R = 2.0 k, C = 100 pF  
3 — Phase, R = 2.0 k  
4 — Phase, R = 2.0 k, C = 100 pF  
Decompensated Units Only  
2.0 3.0 5.0 7.0 10  
f, FREQUENCY (Hz)  
L
0.90  
0.80  
L
L
L
L
L
1.0  
20  
30  
50  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
A
Figure 18. Percent Overshoot versus  
Load Capacitance  
Figure 19. Phase Margin versus  
Load Capacitance  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
V
R
/V = ±15 V  
= 2.0 k to  
CC EE  
Compensated  
Decompensated  
L
Units A = +1.0  
Units A = +2.0  
V
V
V
= 100 mV  
= –10 V to +10 V  
O
pp  
V
T
O
A
= 25°C  
60  
Compensated  
Units A = +1.0  
V
40  
V
R
/V = ±15 V  
CC EE  
= 2.0 k  
L
Decompensated  
Units A = +2.0  
20  
0
V
= 100 mV  
= –10 V to +10 V  
O
pp  
V
V
T
O
A
= 25°C  
10  
100  
C , LOAD CAPACITANCE (pF)  
1.0k  
10  
100  
1.0k  
C , LOAD CAPACITANCE (pF)  
L
L
7
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
Figure 20. Gain Margin versus Load Capacitance  
Figure 21. Phase Margin versus Temperature  
60  
50  
40  
30  
20  
10  
0
10  
V
R
/V = ±15 V  
= 2.0 k to ∞  
CC EE  
Compensated  
L
Solid Line Curves–Compensated Units A = +1.0  
V
Units A = +1.0  
V
8.0  
V
= 100 mV  
= –10 V to +10 V  
O
pp  
C
= 10 pF  
Dashed Line Curves–Decompensated Units A = +2.0  
V
L
V
T
O
A
= 25°C  
6.0  
4.0  
2.0  
0
C
= 100 pF  
L
C
= 360 pF  
L
Decompensated  
Units A = +2.0  
V
V
= 100 mV  
V
R
/V  
=
±
15 V  
O
pp  
= –10 V to +10 V  
CC EE  
L
C
= 200 pF  
V
= 2.0 k to  
L
O
10  
100  
10 k  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
C , LOAD CAPACITANCE (pF)  
T , AMBIENT TEMPERATURE (  
°
L
A
Figure 23. Normalized Slew Rate  
versus Temperature  
Figure 22. Gain Margin versus Temperature  
10  
1.40  
1.20  
Solid Line Curves–Compensated Units A = +1.0  
V
V
/V = ±15 V  
CC EE  
Dashed Line Curves–Decompensated Units A = +2.0  
V
A
= +1.0 for Compensated Units  
= –1.0 for Decompensated Units  
= 2.0 k  
= 100 pF  
= –10 V to +10 V  
V
8.0  
A
V
R
C
L
L
C
= 10 pF  
6.0  
4.0  
V
= 100 mV  
L
V
R
/V  
=
±
15 V  
O
pp  
= –10 V to +10 V  
CC EE  
L
V
O
V
= 2.0 k to  
O
1.00  
0.80  
0.60  
C
= 100 pF  
C = 200 pF  
L
L
2.0  
0
C
= 360 pF  
100  
L
–55  
–25  
0
25  
50  
75  
C)  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
8
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
MC34084 Transient Response  
A = +1.0, R = 2.0 k, V /V  
= ±15 V, T = 25°C  
A
V
L
CC EE  
Figure 24. Small Signal  
Figure 25. Large Signal  
C
L
= 100 pF  
C
= 10 pF  
L
0
0
0.2  
µs/Div  
0.5 µs/Div  
MC34085 Transient Response  
A = +2.0, R = 2.0 k, V /V = ±15 V, T = 25°C  
V
L
CC EE  
A
Figure 26. Small Signal  
Figure 27. Large Signal  
C
L
= 100 pF  
C
= 10 pF  
L
0
0
0.2  
µs/Div  
0.5 µs/Div  
9
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
Figure 28. Common Mode Rejection Ratio  
versus Frequency  
Figure 29. Power Supply Rejection Ratio  
versus Frequency  
100  
80  
120  
T
= –55°C  
T
= 25°C  
A
V
V
/V = ±15 V  
A
V
V
T
/V = ±15 V  
CC EE  
CC EE  
V = 3.0 V  
V = 3.0 V  
S
S
100  
80  
T
= 125°C  
= 0 V  
A
= 0 V  
O
O
A
= 25°C  
60  
40  
20  
0
Positive  
Supply  
60  
V
± V  
CC  
V
± V  
CC  
CC  
CC  
+
40  
20  
0
+
V
V
O
O
Negative  
Supply  
Compensated Units A = +1.0  
V
V
± V  
Decompensated Units A = +2.0  
V
V
± V  
EE  
EE  
EE  
EE  
0.1  
1.0  
10  
100  
1.0 k  
10 k  
100 k 1.0 M  
10 M  
0.1  
1.0  
10  
100  
1.0 k  
10 k  
100 k 1.0 M  
10 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 30. Power Supply Rejection Ratio  
versus Temperature  
Figure 31. Normalized Supply Current  
versus Supply Voltage  
110  
100  
90  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
T
= 125°C  
A
Negative  
Supply  
V
V
f
/V = ±15 V  
CC EE  
V = 3.0 V  
S
= 0 V  
O
10 Hz  
T
= 25°C  
A
Supply Current  
Normalized to  
V
± V  
CC  
CC  
Positive  
Supply  
+
V
/V  
=
±
15 V, T = 25  
°C  
V
CC EE  
A
O
80  
70  
R
= ∞  
= 0  
L
V
O
Compensated Units A = +1.0  
V
Decompensated Units A = +2.0  
V
V
± V  
EE  
EE  
T
= –55°C  
A
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
0
±
5.0  
±
10  
, SUPPLY VOLTAGE (V)  
S
±
15  
±20  
±25  
T , AMBIENT TEMPERATURE (  
°
V
A
Figure 32. Channel Separation versus Frequency  
Figure 33. Spectral Noise Density  
100  
80  
120  
100  
V
V
T
/V = ±15 V  
CC EE  
= 0  
CM  
= 25°C  
80  
60  
40  
20  
A
60  
40  
V
T
/V = ±15 V  
= 25°C  
CC EE  
A
20  
0
0
10  
100  
1.0 k  
10 k  
100 k  
10 k  
100 k  
1.0 M  
10 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
APPLICATIONS INFORMATION  
The bandwidth and slew rate of the MC34080 series is  
input stage also allows a differential up to ±44 V, provided the  
maximum input voltage range is not exceeded. The supply  
voltage operating range is from ±5.0 V to ±22 V.  
nearly double that of currently available general purpose  
JFET op–amps. This improvement in AC performance is due  
to the P–channel JFET differential input stage driving a  
compensated miller integration amplifier in conjunction with  
an all NPN output stage.  
The all NPN output stage offers unique advantages over  
the more conventional NPN/PNP transistor Class AB output  
stage. With a 10 k load resistance, the op amp can typically  
For optimum frequency performance and stability, careful  
component placement and printed circuit board layout should  
be exercised. For example, long unshielded input or output  
leads may result in unwanted input–output coupling. In order  
to reduce the input capacitance, resistors connected to the  
input pins should be physically close to these pins. This not  
only minimizes the input pole for optimum frequency  
response, but also minimizes extraneous “pickup” at  
this node.  
swing within 1.0 V of the positive rail (V ), and within 0.3 V  
CC  
of the negative rail (V ), providing a 28.7 p–p swing from  
EE  
±15 V supplies. This large output swing becomes most  
noticeable at lower supply voltages. If the load resistance is  
Supply decoupling with adequate capacitance close to the  
supply pin is also important, particularly over temperature,  
since many types of decoupling capacitors exhibit large  
impedance changes over temperature.  
referenced to V  
instead of ground, the maximum possible  
CC  
output swing can be achieved for a given supply voltage. For  
light load currents, the load resistance will pull the output to  
V
during the positive swing and the NPN output transistor  
Primarily due to the JFET inputs of the op amp, the input  
offset voltage may change due to temperature cycling and  
board soldering. After 20 temperature cycles (– 55° to  
165°C), the typical standard deviation for input offset voltage  
is 559 µV in the plastic packages. With respect to board  
soldering (260°C, 10 seconds), the typical standard deviation  
for input offset voltage is 525 µV in the plastic package.  
Socketed devices should be used over a minimal  
temperature range for optimum input offset voltage  
performance.  
CC  
will pull the output very near V  
during the negative swing.  
EE  
The load resistance value should be much less than that of  
the feedback resistance to maximize pull–up capability.  
The all NPN transistor output stage is also inherently  
fast, contributing to the operation amplifier’s high  
gain–bandwidth product and fast settling time. The  
associated high frequency output impedance is 50 (typical)  
at 8.0 MHz. This allows driving capacitive loads from 0 pF to  
300 pF without oscillations over the military temperature  
range, and over the full range of output swing. The 55°C  
phase margin and 7.6 dB gain margin as well as the general  
gain and phase characteristics are virtually independent of  
the sink/source output swing conditions. The high frequency  
characteristics of the MC34080 series is especially useful for  
active filter applications.  
Figure 34. Offset Nulling Circuit  
V
CC  
3
2
7
+
The common mode input range is from 2.0 V below the  
6
positive rail (V ) to 4.0 V above the negative rail (V ). The  
CC EE  
5
amplifier remains active if the inputs are biased at the positive  
rail. This may be useful for some applications in that single  
supply operation is possible with a single negative supply.  
However, a degradation of offset voltage and voltage gain  
may result.  
1
4
5.0 k  
Phase reversal does not occur if either the inverting or  
noninverting input (or both) exceeds the positive common  
mode limit. If either input (or both) exceeds the negative  
common mode limit, the output will be in the high state. The  
V
EE  
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
8
5
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
–B–  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
1
4
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
–A–  
NOTE 2  
0.370  
0.240  
0.155  
0.015  
0.040  
L
C
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
7.62 BSC  
–––  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.300 BSC  
–––  
0.050  
0.012  
0.135  
J
–T–  
SEATING  
PLANE  
N
10  
1.01  
10  
0.040  
M
D
0.76  
0.030  
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
(SO–8)  
ISSUE R  
NOTES:  
D
A
E
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. DIMENSIONS ARE IN MILLIMETERS.  
3. DIMENSION D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
C
8
1
5
M
M
0.25  
B
H
4
h X 45  
MILLIMETERS  
B
C
e
DIM  
A
A1  
B
C
D
E
e
H
h
MIN  
1.35  
0.10  
0.35  
0.18  
4.80  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
5.00  
4.00  
A
SEATING  
PLANE  
L
1.27 BSC  
0.10  
5.80  
0.25  
0.40  
0
6.20  
0.50  
1.25  
7
A1  
B
L
M
S
S
0.25  
C
B
A
12  
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 646–06  
ISSUE L  
NOTES:  
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE  
POSITION AT SEATING PLANE AT MAXIMUM  
MATERIAL CONDITION.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
4. ROUNDED CORNERS OPTIONAL.  
14  
1
8
7
B
INCHES  
MILLIMETERS  
A
F
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
MAX  
0.770  
0.260  
0.185  
0.021  
0.070  
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
19.56  
6.60  
4.69  
0.53  
1.78  
0.715  
0.240  
0.145  
0.015  
0.040  
L
C
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.095  
0.015  
0.135  
1.32  
0.20  
2.92  
2.41  
0.38  
3.43  
J
N
0.300 BSC  
7.62 BSC  
SEATING  
PLANE  
K
0
10  
0
10  
0.015  
0.039  
0.39  
1.01  
H
G
D
M
DW SUFFIX  
PLASTIC PACKAGE  
CASE 751G–02  
(SO–16L)  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–A–  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
16  
9
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
–B–  
8X P  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
M
M
0.010 (0.25)  
B
1
8
MILLIMETERS  
INCHES  
J
16X D  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
M
S
S
0.010 (0.25)  
T
A
B
F
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
R X 45  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
C
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
–T–  
M
SEATING  
14X G  
K
PLANE  
13  
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
NOTES  
14  
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
NOTES  
15  
MOTOROLA ANALOG IC DEVICE DATA  
MC34080 thru MC34085  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC34080/D  

相关型号:

MC34080BP

HIGH SLEW RATE WIDE BANDWIDTH JFET INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC34080D

HIGH SLEW RATE, WIDE BANDWIDTH, JEFT INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC34080P

HIGH SLEW RATE, WIDE BANDWIDTH, JEFT INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC34081

HIGH SLEW RATE WIDE BANDWIDTH JFET INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC34081AD

HIGH SLEW RATE, WIDE BANDWIDTH, JEFT INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC34081AP

HIGH SLEW RATE, WIDE BANDWIDTH, JEFT INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC34081B

Amplifiers and Comparators
MOTOROLA

MC34081BD

HIGH PERFORMANCE JFET INPUT OPERATIONAL AMPLIFIERS
ONSEMI

MC34081BD

HIGH SLEW RATE WIDE BANDWIDTH JFET INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC34081BDR2

OP-AMP, 4000uV OFFSET-MAX, 8MHz BAND WIDTH, PDSO8, PLASTIC, SO-8
ONSEMI

MC34081BP

HIGH PERFORMANCE JFET INPUT OPERATIONAL AMPLIFIERS
ONSEMI

MC34081BP

HIGH SLEW RATE WIDE BANDWIDTH JFET INPUT OPERATIONAL AMPLIFIERS
MOTOROLA