MC3425 [ONSEMI]

POWER SUPPLY SUPERVISORY/ OVER AND UNDERVOLTAGE PROTECTION CIRCUIT; 电源监控/过压和欠压保护电路
MC3425
型号: MC3425
厂家: ONSEMI    ONSEMI
描述:

POWER SUPPLY SUPERVISORY/ OVER AND UNDERVOLTAGE PROTECTION CIRCUIT
电源监控/过压和欠压保护电路

监控
文件: 总12页 (文件大小:174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by MC3425/D  
POWER SUPPLY SUPERVISORY/  
OVER AND UNDERVOLTAGE  
PROTECTION CIRCUIT  
The MC3425 is a power supply supervisory circuit containing all the  
necessary functions required to monitor over and undervoltage fault  
conditions. These integrated circuits contain dedicated over and  
undervoltage sensing channels with independently programmable time  
delays. The overvoltage channel has a high current Drive Output for use in  
conjunction with an external SCR Crowbar for shutdown. The undervoltage  
channel input comparator has hysteresis which is externally programmable,  
and an open–collector output for fault indication.  
SEMICONDUCTOR  
TECHNICAL DATA  
Dedicated Over and Undervoltage Sensing  
Programmable Hysteresis of Undervoltage Comparator  
Internal 2.5 V Reference  
300 mA Overvoltage Drive Output  
30 mA Undervoltage Indicator Output  
Programmable Time Delays  
8
1
P1 SUFFIX  
PLASTIC PACKAGE  
CASE 626  
4.5 V to 40 V Operation  
MAXIMUM RATINGS  
Rating  
Power Supply Voltage  
Symbol  
Value  
40  
Unit  
Vdc  
Vdc  
mA  
V
CC  
Comparator Input Voltage Range (Note 1)  
Drive Output Short Circuit Current  
V
IR  
–0.3 to +40  
I
Internally  
Limited  
OS(DRV)  
Indicator Output Voltage  
V
0 to 40  
30  
Vdc  
mA  
IND  
Indicator Output Sink Current  
I
IND  
PIN CONNECTIONS  
Power Dissipation and Thermal Characteristics  
Maximum Power Dissipation @ T = 70°C  
P
1000  
80  
mW  
°C/W  
A
D
Thermal Resistance, Junction–to–Air  
Operating Junction Temperature  
Operating Ambient Temperature Range  
Storage Temperature Range  
R
θJA  
T
+150  
°C  
°C  
°C  
O.V. DRV  
Output  
J
1
8
V
CC  
T
A
0 to +70  
O.V. DLY  
2
3
4
7
6
5
Gnd  
T
stg  
–55 to +150  
U.V. IND  
Output  
NOTE: 1. The input signal voltage should not be allowed to go negative by more than 300 mV  
O.V. Sense  
U.V. Sense  
NOTE: 1. or positive by more than 40 V, independent of V , without device destruction.  
CC  
U.V. DLY  
Simplified Application  
(Top View)  
Overvoltage Crowbar Protection, Undervoltage Indication  
V
V
out  
in  
DC  
Power  
Supply  
MC3425  
+
Undervoltage  
Indication  
ORDERING INFORMATION  
Operating  
C
out  
Temperature Range  
Device  
Package  
MC3425P1  
T
A
= 0° to +70°C  
Plastic DIP  
Motorola, Inc. 1996  
Rev 2  
MC3425  
ELECTRICAL CHARACTERISTICS (4.5 V V  
40 V; T = T  
to T  
[Note 2], unless otherwise noted.)  
CC  
A
low  
high  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
REFERENCE SECTION  
Sense Trip Voltage (Referenced Voltage)  
V
Vdc  
Sense  
V
= 15 V  
CC  
T = 25°C  
T
2.4  
2.33  
2.5  
2.5  
2.6  
2.63  
A
to T  
(Note 2)  
low  
high  
Line Regulation of V  
Reg  
line  
7.0  
15  
40  
mV  
Sense  
40 V; T = 25°C  
4.5 V V  
CC  
J
Power Supply Voltage Operating Range  
V
CC  
4.5  
Vdc  
Power Supply Current  
V
= 40 V; T = 25°C; No Output Loads  
A
CC  
O.V. Sense (Pin 3) = 0 V;  
U.V. Sense (Pin 4) = V  
I
I
8.5  
10  
19  
mA  
mA  
CC(off)  
CC  
O.V. Sense (Pin 3) = V  
CC  
U.V. Sense (Pin 4) = 0 V  
;
16.5  
CC(on)  
INPUT SECTION  
Input Bias Current, O.V. and U.V. Sense  
I
IB  
1.0  
2.0  
µA  
Hysteresis Activation Voltage, U.V. Sense  
V
V
H(act)  
V
= 15 V; T = 25°C;  
= 10%  
= 90%  
CC  
I
I
A
0.6  
0.8  
H
H
Hysteresis Current, U.V. Sense  
= 15 V; T = 25°C; U.V. Sense (Pin 4) = 2.5 V  
I
H
9.0  
12.5  
16  
µA  
V
CC  
A
Delay Pin Voltage (I  
Low State  
High State  
= 0 mA)  
V
DLY  
V
V
0.2  
0.5  
OL(DLY)  
OH(DLY)  
V
CC  
–0.5  
V
–0.15  
CC  
Delay Pin Source Current  
= 15 V; V = 0 V  
I
140  
200  
3.0  
260  
µA  
DLY(source)  
V
CC  
Delay Pin Sink Current  
= 15 V; V = 2.5V  
DLY  
I
1.8  
mA  
DLY(sink)  
V
CC  
DLY  
OUTPUT SECTION  
Drive Output Peak Current (T = 25°C)  
I
200  
300  
mA  
V
A
DRV(peak)  
Drive Output Voltage  
V
V
CC  
–2.5  
V
–2.0  
OH(DRV)  
CC  
I
= 100 mA; T = 25° C  
DRV  
Drive Output Leakage Current  
= 0 V  
A
I
15  
200  
nA  
DRV(leak)  
V
DRV  
Drive Output Current Slew Rate (T = 25°C)  
di/dt  
2.0  
1.0  
A/µs  
A
Drive Output V  
Transient Rejection  
I
mA  
(Peak)  
CC  
= 0 V to 15 V at dV/dt = 200 V µs;  
DRV(trans)  
V
CC  
O.V. Sense (Pin 3) = 0 V; T = 25°C  
A
Indicator Output Saturation Voltage  
V
560  
25  
800  
200  
2.63  
mV  
nA  
V
IND(sat)  
I
= 30 mA; T = 25°C  
IND  
Indicator Output Leakage Current  
= 40 V  
A
I
IND(leak)  
V
OH(IND)  
Output Comparator Threshold Voltage (Note 3)  
V
2.33  
2.5  
th(OC)  
Propagation Delay Time  
(V  
CC  
= 15 V; T = 25°C)  
A
Input to Drive Output or Indicator Output  
t
1.7  
µs  
PLH(IN/OUT)  
100 mV Overdrive, C  
= 0 µF  
DLY  
Input to Delay  
2.5 V Overdrive (0 V to 5.0 V Step)  
t
700  
ns  
PLH(IN//DLY)  
NOTES: 2. T  
low  
to T  
= 0° to +70°C  
limits are approximately the V  
high  
3. The V  
limits over the applicable temperature range.  
Sense  
th(OC)  
2
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
Figure 1. Hysteresis Current versus  
Hysteresis Activation Voltage  
Figure 2. Hysteresis Activation Voltage  
versus Temperature  
1.2  
14  
12  
V
= Voltage Level at  
H(act)  
which Hysteresis Current  
(I ) is 90% of full value.  
T
= 25  
°
C
A
V
= 5.0 V  
1.0  
0.8  
0.6  
CC  
H
10  
V
= 15 V  
CC  
8.0  
V
= 40 V  
CC  
V
= 40 V  
CC  
6.0  
4.0  
2.0  
0
V
CC  
0.4  
0.2  
0
= 15 V  
V
= 5.0 V  
1.0  
CC  
0
0.2  
0.4  
0.6  
0.8  
1.2  
1.4  
1.6  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
V
, HYSTERESIS ACTIVATION VOLTAGE (V)  
T
AMBIENT TEMPERATURE (  
°
H(act)  
A,  
Figure 3. Hysteresis Current  
versus Temperature  
Figure 4. Sense Trip Voltage Change  
versus Temperature  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
V
* = 2.400 V  
* = 2.500 V  
* = 2.600 V  
Sense  
0
–10  
–20  
–30  
–40  
–50  
U.V. Sense = 2.5 V  
V
= 15 V  
CC  
*V  
at T = 25°C  
Sense  
A
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
T , AMBIENT TEMPERATURE (  
°
T , AMBIENT TEMPERATURE (  
°
A
A
Figure 5. Output Delay Time versus  
Delay Capacitance  
Figure 6. Delay Pin Source Current  
versus Temperature  
260  
240  
220  
200  
180  
160  
100  
V
= 15 V  
CC  
= 25°C  
T
A
10  
1.0  
0.1  
V
= 40 V  
= 15 V  
CC  
V
CC  
2.5 C  
200  
DLY  
t
=
DLY  
µA  
V
= 5.0 V  
CC  
0.01  
0.001  
0.0001  
0.001  
0.01  
0.1  
1.0  
10  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
C
, DELAY PIN CAPACITANCE (  
µ
F)  
T , AMBIENT TEMPERATURE (  
°
DLY  
A
3
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
Figure 7. Drive Output Saturation Voltage  
versus Output Peak Current  
Figure 8. Indicator Output Saturation Voltage  
versus Output Sink Current  
5.0  
4.0  
3.0  
2.0  
1.0  
0
0.4  
0.3  
V
= 15 V  
CC  
1.0% Duty Cycle @ 300 Hz  
= 25  
T
°C  
A
0.2  
0.1  
V
= 15 V  
= 25°C  
CC  
T
A
0
0
100  
200  
300  
400  
0
10  
20  
30  
40  
I
, DRIVE OUTPUT PEAK CURRENT (mA)  
I
, INDICATOR OUTPUT SINK CURRENT (mA)  
DRV(peak)  
IND  
Figure 9. Drive Output Saturation Voltage  
versus Temperature  
Figure 10. Power Supply Current  
versus Voltage  
2.500  
2.460  
2.420  
2.380  
2.340  
2.300  
28  
24  
20  
16  
12  
8.0  
4.0  
0
Curve O.V. Sense U.V. Sense  
V
I
= 15 V  
CC  
A
B
V
Gnd  
= 200 mA  
CC  
Gnd  
DRV(peak)  
1.0% Duty Cycle @ 300 Hz  
V
CC  
A
B
T
= 25°C  
A
0
5.0  
10  
15  
, POWER SUPPLY VOLTAGE (V)  
CC  
20  
25  
30  
35  
40  
–55  
–25  
0
25  
50  
75  
C)  
100  
125  
V
T , AMBIENT TEMPERATURE (  
°
A
4
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
APPLICATIONS INFORMATION  
Figure 11. Overvoltage Protection and  
Undervoltage Fault Indication with  
Programmable Delay  
Figure 12. Overvoltage Protection of 5.0 V  
Supply with Line Loss Detector  
V
V
= 5.0 V  
O
+V  
O
+5.0V  
Power  
Supply  
= 6.25 V  
V
O(trip)  
in  
8
1.0k  
V
CC  
15k  
R1A  
R1B  
4
3
6
1
Line Loss  
Output  
U.V.  
Sense  
U.V.  
IND  
8
V
AC Line  
+
CC  
U.V. Fault  
Indicator  
MC3425  
Power  
Supply  
4.5V to 40V  
4
6
1
U.V.  
Sense  
U.V.  
IND  
O.V.  
Sense  
O.V.  
DRV  
I
H
MC3425  
10k  
O.V.  
DLY  
U.V.  
DLY  
3
O.V.  
Sense  
O.V.  
DRV  
Gnd  
2
7
5
100  
U.V.  
DLY  
O.V.  
DLY  
2
0.33µF  
0.01  
µ
F
Gnd  
7
5
R2A  
R2B  
U.V. Sense  
Pin 4  
C
C
DLY  
DLY  
Gnd  
2.5V  
2.5V  
U.V. DLY  
Pin 5  
R1B R2B  
R1B + R2B  
R1A  
R2A  
U.V. Hysteresis = I  
, V  
– 2.5 V 1 +  
O(trip)  
H
U.V. IND  
Pin 6  
OFF  
ON  
t
= 12500 C  
DLY  
DLY  
Figure 13. Overvoltage Audio Alarm Circuit  
Figure 14. Programmable Frequency Switch  
12V  
8
Input Signal 5.0  
µF  
+V  
O
Output Pulse when:  
8
V
CC  
I.V. p–p  
12k  
Alarm On when:  
1
V
10k  
CC  
f
<
(input)  
V
= 13.6 V  
25000 C  
O
DLY  
3
4
1
O.V.  
DRV  
O.V.  
Sense  
O.V.  
Sense  
O.V.  
DRV  
3
4
1
+
1.0k  
10k  
MC3425  
2.7k  
MC3425  
12V  
Power  
Supply  
U.V.  
Sense  
U.V.  
100Ω  
U.V.  
Sense  
O.V.  
DLY  
82k  
DLY  
Gnd  
7
U.V. O.V.  
DLY DLY  
Gnd  
7
5
F
2
5
2
6.8k  
C
0.1  
µ
DLY  
0.1µF  
Gnd  
O.V. Sense  
Pin 3  
2.5V  
O.V. DLY  
Pin 2  
2.5V  
ON  
O.V. DRV  
Pin 1  
OFF  
5
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
CIRCUIT DESCRIPTION  
The MC3425 is a power supply supervisory circuit  
containing all the necessary functions required to monitor  
over and undervoltage fault conditions. The block diagram  
is shown below in Figure 15. The Overvoltage (O.V.) and  
Undervoltage (U.V.) Input Comparators are both  
referenced to an internal 2.5 V regulator. The U.V. Input  
Comparator has a feedback activated 12.5 µA current sink  
source, I  
, charging the external delay capacitor  
DLY(source)  
(C  
) to 2.5 V.  
DLY  
V
C
2.5 C  
DLY  
ref DLY  
= 12500 C  
t
=
=
DLY  
DLY  
I
200 µA  
DLY(source)  
Figure 5 provides C  
delays. The Delay pins are pulled low when the respective  
input comparator’s noninverting input is less than the  
values for a wide range of time  
(I ) which is used for programming the input hysteresis  
DLY  
H
voltage (V ). The source resistance feeding this input (R )  
H
H
H H  
determines the amount of hysteresis voltage by V = I R  
H
–6  
= 12.5 × 10 R .  
inverting input. The sink current, I  
, capability of the  
DLY(sink)  
H
Delay pins is 1.8 mA and is much greater than the typical  
200 µA source current, thus enabling a relatively fast delay  
capacitor discharge time.  
Separate Delay pins (O.V. DLY, U.V. DLY.) are provided for  
each channel to independently delay the Drive and Indicator  
outputs, thus providing greater input noise immunity. The two  
Delay pins are essentially the outputs of the respective input  
comparators, and provide a constant current source,  
The Overvoltage Drive Output is a current–limited  
emitter–follower capable of sourcing 300 mA at a turn–on  
slew rate at 2.0 A/µs, ideal for driving “Crowbar” SCR’s. The  
Undervoltage Indicator Output is an open–collector, NPN  
transistor, capable of sinking 30 mA to provide sufficient drive  
for LED’s, small relays or shut–down circuitry. These current  
capabilities apply to both channels operating simultaneously,  
providing device power dissipation limits are not exceeded.  
The MC3425 has an internal 2.5 V bandgap reference  
regulator with an accuracy of ± 4.0% for the basic device.  
I
, of typically 200 µA when the noninverting input  
DLY(source)  
voltage is greater than the inverting input level. A capacitor  
connected from these Delay pins to ground, will establish a  
predictable delay time (t  
) for the Drive and Indicator  
DLY  
outputs. The Delay pins are internally connected to the  
noninverting inputs of the O.V. and U.V. Output Comparators,  
which are referenced to the internal 2.5 V regulator.  
Therefore, delay time (t  
) is based on the constant current  
DLY  
Figure 15. Representative Block Diagram  
V
CC  
8
+
+
O.V.  
Sense  
200µA  
+
+
+
Input  
Comparator  
Output  
Comparator  
O.V.  
3
O.V.  
O.V.  
DRV  
1
6
+
U.V.  
IND  
Output  
Comparator  
200  
µA  
+
U.V.  
Input  
+
U.V.  
Sense  
Comparator  
U.V.  
+
4
2.5V  
Reference  
Regulator  
I
H
12.5µA  
5
2
7
Gnd  
Output Section  
Input Section  
U.V. O.V.  
DLY DLY  
Note: All voltages and currents are nominal.  
6
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
CROWBAR SCR CONSIDERATIONS  
Referring to Figure 16, it can be seen that the crowbar  
SCR, when activated, is subject to a large current surge from  
current flows through this turned–on gate region, very high  
current densities can occur in the gate region if high anode  
currents appear quickly (di/dt). This can result in immediate  
destruction of the SCR or gradual degradation of its forward  
blocking voltage capabilities – depending on the severity of  
the occasion.  
The value of di/dt that an SCR can safely handle is  
influenced by its construction and the characteristics of the  
gate drive signal. A center–gate–fire SCR has more di/dt  
capability than a corner–gate–fire type, and heavily  
the output capacitance, C . This capacitance consists of  
out  
the power supply output capacitors, the load’s decoupling  
capacitors, and in the case of Figure 16A, the supply’s input  
filter capacitors. This surge current is illustrated in Figure 17,  
and can cause SCR failure or degradation by any one of  
2
three mechanisms: di/dt, absolute peak surge, or I t. The  
interrelationship of these failure methods and the breadth of  
the applications make specification of the SCR by the  
semiconductor manufacturer difficult and expensive.  
Therefore, the designer must empirically determine the SCR  
and circuit elements which result in reliable and effective OVP  
operation. However, an understanding of the factors which  
influence the SCR’s di/dt and surge capabilities simplifies  
this task.  
overdriving ( 3 to 5 times I ) the SCR gate with a fast < 1.0  
GT  
µs rise time signal will maximize its di/dt capability. A typical  
maximum number in phase control SCRs of less than 50  
A(RMS) rating might be 200 A/µs, assuming a gate current of  
five times I  
and < 1.0 µs rise time. If having done this, a di/dt  
GT  
problem is seen to still exist, the designer can also decrease  
the di/dt of the current waveform by adding inductance in  
series with the SCR, as shown in Figure 18. Of course, this  
reduces the circuit’s ability to rapidly reduce the dc bus  
voltage and a tradeoff must be made between speedy  
voltage reduction and di/dt.  
1. di/dt  
As the gate region of the SCR is driven on, its area of  
conduction takes a finite amount of time to grow, starting as a  
very small region and gradually spreading. Since the anode  
Figure 16. Typical Crowbar Circuit Configurations  
(A) SCR Across Input of Regulator  
Series  
Regulator  
V
V
out  
in  
MC3425  
+
+
C
C
out  
in  
(B) SCR Across Output of Regulator  
*
Series  
Regulator  
V
V
out  
in  
+
+
C
C
out  
in  
MC3425  
*Needed if supply is not current limited.  
7
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
Figure 17. Crowbar SCR Surge Current Waveform  
A WORD ABOUT FUSING  
Before leaving the subject of the crowbar SCR, a few  
words about fuse protection are in order. Referring back to  
Figure 16A, it will be seen that a fuse is necessary if the  
power supply to be protected is not output current limited.  
This fuse is not meant to prevent SCR failure but rather to  
prevent a fire!  
l
l
pk  
di  
dt  
Surge Due to  
Output Capacitor  
In order to protect the SCR, the fuse would have to  
2
possess an I t rating less than that of the SCR and yet have  
a high enough continuous current rating to survive normal  
supply output currents. In addition, it must be capable of  
successfully clearing the high short circuit currents from the  
supply. Such a fuse as this is quite expensive, and may not  
even be available.  
Current Limited  
Supply Output  
t
The usual design compromise then is to use a garden  
variety fuse (3AG or 3AB style) which cannot be relied on to  
blow before the thyristor does, and trust that if the SCR does  
fail, it will fail short circuit. In the majority of the designs, this  
will be the case, though this is difficult to guarantee. Of  
course, a sufficiently high surge will cause an open. These  
comments also apply to the fuse in Figure 16B.  
2. Surge Current  
If the peak current and/or the duration of the surge is  
excessive, immediate destruction due to device overheating  
will result. The surge capability of the SCR is directly  
proportional to its die area. If the surge current cannot be  
reduced (by adding series resistance – see Figure 18) to a  
safe level which is consistent with the system’s requirements  
for speedy bus voltage reduction, the designer must use a  
higher current SCR. This may result in the average current  
capability of the SCR exceeding the steady state current  
requirements imposed by the DC power supply.  
CROWBAR SCR SELECTION GUIDE  
As an aid in selecting an SCR for crowbar use, the  
following selection guide is presented.  
Figure 18. Circuit Elements Affecting  
SCR Surge & di/dt  
Device  
I
I
TSM  
RMS  
MCR310 Series  
MCR16 Series  
MCR25 Series  
2N6501 Series  
MCR69 Series  
MCR264 Series  
MCR265 Series  
10 A  
16 A  
25 A  
25 A  
25 A  
40 A  
55 A  
100 A  
150 A  
300 A  
300 A  
750 A  
400 A  
550 A  
R
L
Lead  
Lead  
R
ESR  
ESL  
Output  
Cap  
L
To  
MC3423  
R & L EMPIRICALLY DETERMINED!  
UNDERVOLTAGE SENSING  
An undervoltage sense circuit with hysteresis may be  
designed, as shown in Figure 11, using the following  
equations:  
V
V
CCU  
12.5  
CC1  
R1  
R2  
A
2.5 R1  
V
2.5  
CC1  
where:  
V
is the designed upper trip point  
CCU  
(output indicator goes off)  
is the lower trip point  
V
CC1  
(output indicator goes on)  
8
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
OUTLINE DIMENSIONS  
P1 SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
8
5
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
–B–  
FORMED PARALLEL.  
1
4
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
F
MILLIMETERS  
INCHES  
–A–  
NOTE 2  
DIM  
A
B
C
D
F
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
L
0.370  
0.240  
0.155  
0.015  
0.040  
C
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
J
–T–  
SEATING  
N
7.62 BSC  
0.300 BSC  
PLANE  
M
M
N
–––  
0.76  
10  
1.01  
–––  
0.030  
10  
0.040  
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
9
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
NOTES  
10  
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
NOTES  
11  
MOTOROLA ANALOG IC DEVICE DATA  
MC3425  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
re registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
M3425/D  

相关型号:

MC34250

HARD DISK DRIVE READ CHANNEL
MOTOROLA

MC34250FTA

HARD DISK DRIVE READ CHANNEL
MOTOROLA

MC3425AP1D

Power Management Circuit, Adjustable, BIPolar, PDIP8
MOTOROLA

MC3425AU

Power Management Circuit, Adjustable, BIPolar, CDIP8
MOTOROLA

MC3425AUD

Power Management Circuit, Adjustable, BIPolar, CDIP8
MOTOROLA

MC3425AUDS

IC,VOLT DETECTOR,ADJUSTABLE,BIPOLAR,DIP,8PIN,CERAMIC
MOTOROLA

MC3425P1

POWER SUPPLY SUPERVISORY/ OVER AND UNDERVOLTAGE PROTECTION CIRCUIT
ONSEMI

MC3425P1

POWER SUPPLY SUPERVISORY/ OVER AND UNDERVOLTAGE PROTECTION CIRCUIT
MOTOROLA

MC3425P1D

Power Management Circuit, Adjustable, BIPolar, PDIP8
MOTOROLA

MC3425P1DS

暂无描述
MOTOROLA

MC3425P1G

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDIP8, GREEN, PLASTIC, DIP-8
ONSEMI

MC3425UD

Power Management Circuit, Adjustable, BIPolar, CDIP8
MOTOROLA