MC3458DR2 [ONSEMI]

Dual, Low Power Operational Amplifiers; 双通道,低功耗运算放大器
MC3458DR2
型号: MC3458DR2
厂家: ONSEMI    ONSEMI
描述:

Dual, Low Power Operational Amplifiers
双通道,低功耗运算放大器

运算放大器
文件: 总13页 (文件大小:115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC3458, MC3358  
Dual, Low Power  
Operational Amplifiers  
Utilizing the circuit designs perfected for the quad operational  
amplifiers, these dual operational amplifiers feature: low power drain,  
a common mode input voltage range extending to ground/V , and  
Single Supply or Split Supply operation.  
EE  
http://onsemi.com  
MARKING  
These amplifiers have several distinct advantages over standard  
operational amplifier types in single supply applications. They can  
operate at supply voltages as low as 3.0 V or as high as 36 V with  
quiescent currents about one–fifth of those associated with the  
MC1741C (on a per amplifier basis). The common mode input range  
includes the negative supply, thereby eliminating the necessity for  
external biasing components in many applications. The output voltage  
range also includes the negative power supply voltage.  
Short Circuit Protected Outputs  
True Differential Input Stage  
Single Supply Operation: 3.0 V to 36 V  
Low Input Bias Currents  
Internally Compensated  
DIAGRAMS  
8
MC3x58P1  
AWL  
PDIP–8  
P1 SUFFIX  
CASE 626  
YYWW  
8
1
1
8
SO–8  
3x58  
D SUFFIX  
CASE 751  
ALYW  
8
1
1
Common Mode Range Extends to Negative Supply  
Class AB Output Stage for Minimum Crossover Distortion  
Single and Split Supply Operations Available  
Similar Performance to the Popular MC1458  
x
A
WL, L  
YY, Y  
= 3 or 4  
= Assembly Location  
= Wafer Lot  
= Year  
WW, W = Work Week  
PIN CONNECTIONS  
1
2
3
4
8
7
6
5
Output A  
VCC  
Output B  
Inputs A  
+
+
Inputs B  
VEE/Gnd  
(Top View)  
ORDERING INFORMATION  
Device  
Package  
SO–8  
Shipping  
MC3358D  
98 Units/Rail  
2500 Tape & Reel  
50 Units/Rail  
MC3358DR2  
MC3358P1  
MC3458D  
SO–8  
PDIP–8  
SO–8  
98 Units/Rail  
MC3458DR2  
MC3458P1  
SO–8  
2500 Tape & Reel  
50 Units/Rail  
PDIP–8  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2001 – Rev. 1  
MC3458/D  
MC3458, MC3358  
Bias Circuitry  
Common to Both  
Amplifiers  
V
CC  
Output  
Q19  
Q18  
Q27  
Q20  
Q17  
40 k  
Q16  
Q23  
Q29  
Q28  
5.0 pF  
31 k  
Q1  
Q15  
+
Q22  
Q24  
ă2.0 k  
Q9  
Q13  
25  
Inputs  
37k  
Q11  
Q25  
Q21  
Q12  
-
Q6  
Q30  
2.4 k  
Q2  
Q5  
Q10  
Q7  
Q3  
Q4  
Q8  
60 k  
V
EE  
(Gnd)  
Figure 1. Representative Schematic Diagram  
(1/2 of Circuit Shown)  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Power Supply Voltages  
Single Supply  
Vdc  
V
CC  
36  
Split Supplies  
V
CC  
, V  
EE  
±18  
Input Differential Voltage Range (Note 1.)  
Input Common Mode Voltage Range (Note 2.)  
Junction Temperature  
V
±30  
±15  
150  
Vdc  
Vdc  
°C  
IDR  
ICR  
V
T
J
Storage Temperature Range  
T
stg  
–55 to +125  
°C  
Operating Ambient Temperature Range  
T
A
°C  
MC3458  
MC3358  
0 to +70  
–40 to +85  
1. Split Power Supplies.  
2. For supply voltages less than ±18 V, the absolute maximum input voltage is equal to the supply voltage.  
http://onsemi.com  
2
MC3458, MC3358  
ELECTRICAL CHARACTERISTICS (For MC3458, V = +15 V, V = 15 V, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
(For MC3358, V = +14 V, V = Gnd, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
MC3458  
Typ  
MC3358  
Typ  
Min  
Max  
Min  
Max  
Characteristic  
Input Offset Voltage  
T = T to T  
Symbol  
Unit  
V
IO  
2.0  
10  
12  
2.0  
8.0  
10  
mV  
(Note 3.)  
low  
A
high  
Input Offset Current  
T = T to T  
I
IO  
30  
50  
200  
30  
75  
250  
nA  
A
high  
low  
Large Signal Open Loop Voltage Gain  
= ±10 V, R = 2.0 k,  
A
VOL  
V/mV  
V
O
20  
15  
200  
20  
15  
200  
L
T = T  
to T  
low  
A
high  
Input Bias Current  
T = T to T  
low  
I
IB  
–200  
–500  
–800  
–200  
–500  
–1000  
nA  
A
high  
Output Impedance, f = 20 Hz  
Input Impedance, f = 20 Hz  
Output Voltage Range  
z
75  
75  
MΩ  
V
O
z
0.3  
1.0  
0.3  
1.0  
I
V
OR  
R = 10 kΩ  
±12  
±10  
±10  
±13.5  
±13  
12  
10  
10  
12.5  
12  
L
R = 2.0 kΩ  
L
R = 2.0 k, T = T  
L
to T  
low  
A
high  
Input Common Mode Voltage Range  
V
ICR  
+13  
+13.5  
+13  
+13.5  
V
–V  
EE  
–V  
EE  
–V  
EE  
–V  
EE  
Common Mode Rejection Ratio, R 10 kΩ  
CMR  
, I  
70  
90  
70  
90  
3.7  
±45  
150  
dB  
mA  
S
Power Supply Current (V = 0) R = ∞  
I
±10  
1.6  
±20  
30  
3.7  
±45  
150  
150  
±10  
1.6  
±30  
30  
O
L
CC EE  
Individual Output Short Circuit Current (Note 4.)  
Positive Power Supply Rejection Ratio  
Negative Power Supply Rejection Ratio  
Average Temperature Coefficient of Input  
I
mA  
SC  
PSRR+  
PSRR–  
µV/V  
µV/V  
pA/°C  
30  
I /T  
IO  
50  
50  
Offset Current, T = T  
to T  
low  
A
high  
Average Temperature Coefficient of Input  
V /T  
10  
9.0  
1.0  
0.6  
0.35  
0.35  
20  
10  
9.0  
1.0  
0.6  
0.35  
0.35  
20  
µV/°C  
kHz  
MHz  
V/µs  
µs  
IO  
Offset Current, T = T  
to T  
low  
A
high  
Power Bandwidth  
BWp  
BW  
SR  
A = 1, R = 2.0 k, V = 20 V , THD = 5%  
V
L
O
pp  
Small Signal Bandwidth  
A = 1, R = 10 k, V = 50 mV  
V
L
O
Slew Rate  
A = 1, V = –10 V to +10 V  
V
I
Rise Time  
t
t
TLH  
A = 1, R = 10 k, V = 50 mV  
V
L
O
Fall Time  
µs  
THL  
A = 1, R = 10 k, V = 50 mV  
V
L
O
Overshoot  
os  
%
A = 1, R = 10 k, V = 50 mV  
V
L
O
Phase Margin  
A = 1, R = 2.0 k, C = 200 pF  
φm  
60  
60  
Degrees  
%
V
L
L
Crossover Distortion  
1.0  
1.0  
(V = 30 mV , V = 2.0 V , f = 10 kHz)  
in  
pp out  
pp  
3. MC3358: T = –40°C, T  
= +85°C  
low  
high  
MC3458: T = 0°C, T  
= +70°C  
low  
high  
4. Not to exceed maximum package power dissipation.  
http://onsemi.com  
3
MC3458, MC3358  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V = Gnd, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
MC3458  
Typ  
MC3358  
Min  
Max  
5.0  
50  
Min  
Typ  
2.0  
Max  
10  
Characteristic  
Input Offset Voltage  
Symbol  
Unit  
mV  
V
IO  
2.0  
Input Offset Current  
I
IO  
30  
75  
nA  
Input Bias Current  
I
–200  
200  
–500  
–500  
nA  
IB  
Large Signal Open Loop Voltage Gain  
A
VOL  
20  
20  
200  
V/mV  
R = 2.0 k,  
L
Power Supply Rejection Ratio  
PSRR  
150  
150  
µV/V  
Output Voltage Range (Note 5.)  
V
OR  
V
pp  
R = 10 k, V = 5.0 V  
3.3  
3.5  
3.3  
3.5  
V
CC  
L
CC  
R = 10 k, 5.0 V V 30 V  
V
CC  
L
CC  
–1.7  
–1.7  
Power Supply Current  
Channel Separation  
I
2.5  
7.0  
2.5  
4.0  
mA  
dB  
CC  
CS  
–120  
–120  
f = 1.0 kHz to 20 kHz (Input Referenced)  
5. Output will swing to ground with a 10 kpull down resistor.  
stage performs not only the first stage gain function but also  
performs the level shifting and transconductance reduction  
functions. By reducing the transconductance, a smaller  
compensation capacitor (only 5.0 pF) can be employed, thus  
saving chip area. The transconductance reduction is  
accomplished by splitting the collectors of Q24 and Q22.  
Another feature of this input stage is that the input Common  
Mode range can include the negative supply or ground, in  
single supply operation, without saturating either the input  
devices or the differential to single–ended converter. The  
second stage consists of a standard current source load  
amplifier stage.  
20 µs/DIV  
The output stage is unique because it allows the output to  
swing to ground in single supply operation and yet does not  
exhibit any crossover distortion in split supply operation.  
This is possible because Class AB operation is utilized.  
Each amplifier is biased from an internal voltage regulator  
which has a low temperature coefficient thus giving each  
amplifier good temperature characteristics as well as  
excellent power supply rejection.  
Figure 2. Inverter Pulse Response  
CIRCUIT DESCRIPTION  
The MC3458/3358 is made using two internally  
compensated, two–stage operational amplifiers. The first  
stage of each consists of differential input devices Q24 and  
Q22 with input buffer transistors Q25 and Q21 and the  
differential to single ended converter Q3 and Q4. The first  
http://onsemi.com  
4
MC3458, MC3358  
120  
A = 100  
V
V
V
= +15 V  
= -15 V  
CC  
EE  
100  
80  
60  
40  
20  
0
T = 25°C  
A
-20  
*Note Class A B output stage produces distortion less sinewave.  
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
50 µs/DIV  
f, FREQUENCY (Hz)  
Figure 3. Sine Wave Response  
Figure 4. Open Loop Frequency Response  
30  
25  
T = 25°C  
A
30  
20  
10  
0
+15 V  
-
V
O
20  
+
10 k  
-15 V  
15  
10  
5.0  
0
T = 25°C  
A
-5.0  
1.0 k  
10 k  
100 k  
1.0 M  
0
2.0 4.0  
6.0 8.0 10  
12  
14  
16  
18 20  
f, FREQUENCY (Hz)  
V
CC  
AND (V ), POWER SUPPLY VOLTAGES (V)  
EE  
Figure 5. Power Bandwidth  
Figure 6. Output Swing versus Supply Voltage  
V
V
= +15 V  
= -15 V  
300  
200  
100  
CC  
EE  
170  
160  
150  
T = 25°C  
A
-75 -55 -35 -15 5.0  
25  
45  
65  
85 105 125  
0
2.0 4.0  
6.0 8.0 10  
12  
14  
16  
18 20  
T, TEMPERATURE (°C)  
V
CC  
AND (V ), POWER SUPPLY VOLTAGES (V)  
EE  
Figure 7. Input Bias Current  
versus Temperature  
Figure 8. Input Bias Current  
versus Supply Voltage  
http://onsemi.com  
5
MC3458, MC3358  
V
CC  
50 k  
V
CC  
5.0 k  
-
10 k  
R2  
-
1/2  
MC3458  
V
CC  
10 k  
V
O
V
1
ret  
+
1/2  
V
O
MC3458  
+
1
f =  
o
10 k  
R1  
2πRC  
R1  
R1 +R2  
V
ref  
=
ă V  
CC  
V
V
=
=
2
O
For:  
= 1.0 kHz  
f
o
R
C
R
C
R
C
1
V
O
CC  
= 16 kΩ  
2
= 0.01 µF  
Figure 9. Voltage Reference  
Figure 10. Wien Bridge  
Oscillator  
1
Hysteresis  
R
C
R2  
e
1
+
R
1/2  
MC3458  
V
OH  
R1  
-
V
+
V
ret  
O
1/2  
MC3458  
V
O
-
a R1  
b R1  
1/2  
MC3458  
V
-
V
OL  
in  
R1  
e
o
V
inL  
V
inH  
+
R1  
R1 +R2  
V
ref  
V
V
=
=
(V - V ) +V  
OL ref ref  
inL  
1
C
R
-
1/2  
MC3458  
R1  
R1 +R2  
(V - V ) +V  
ref  
inH  
OH  
ref  
e
2
+
R
R1  
R1 +R2  
V =  
h
(V - V )  
OH OL  
e = C (1 +a +b) (e –e )  
o
2
1
Figure 11. High Impedance Differential  
Amplifier  
Figure 12. Comparator with Hysteresis  
R
1
R
f =  
o
100 k  
2πRC  
R1 = QR  
R1  
C
C
C1  
1
2
R2  
V
ref  
=
V
CC  
-
1/2  
MC3458  
V
in  
R2 =  
-
100 k  
1/2  
MC3458  
ăR = 160 kΩ  
ăC = 0.001 µF  
R1 = 1.6 MΩ  
R2 = 1.6 MΩ  
R3 = 1.6 MΩ  
T
BP  
R3 = T R2  
-
+
1/2  
MC3458  
N
C1 = 10 C  
+
V
+
ref  
For: f = 1.0 kHz  
o
Q = 10  
V
ref  
Bandpass  
Output  
V
ref  
R3  
T
T
= 1  
= 1ă ā  
BP  
R1  
R2  
N
-
C1  
1/2  
MC3458  
Notch Output  
+
Where:  
T
T
= center frequency gain  
BP  
= passband notch gain  
N
V
ref  
Figure 13. Bi–Quad Filter  
http://onsemi.com  
6
MC3458, MC3358  
1
2
V
ref  
=
V
CC  
R2  
Triangle Wave  
Output  
300 k  
V
ref  
+
R3  
1/2  
MC3458  
+
Square Wave  
Output  
1/2  
MC3458  
75 k  
R1  
100 k  
-
-
V
ref  
C
R
f
R1 +R  
C
R2 R1  
R2 +R1  
f =  
if, R3 =  
4 CR R1  
f
Figure 14. Function Generator  
V
CC  
R3  
C
C
R1  
V
in  
-
1/2  
MC3458  
V
O
C
O
+
R2  
C
O
= 10 C  
1
2
V
ref  
V
ref  
=
V
CC  
Given:  
f = center frequency  
o
A(f ) = gain at center frequency  
o
Choose value f , C.  
o
Q
π f C  
o
R3  
2 A(f )  
R1 R5  
2
Then: R3 =  
R1 =  
R2 =  
4Q R1 - R3  
o
Q f  
o
o
For less than 10% error from operational amplifier  
where, f and BW are expressed in Hz.  
< 0.1  
BW  
o
If source impedance varies, filter may be preceded with  
voltage follower buffer to stabilize filter parameters.  
Figure 15. Multiple Feedback Bandpass Filter  
http://onsemi.com  
7
MC3458, MC3358  
PACKAGE DIMENSIONS  
PDIP–8  
P1 SUFFIX  
CASE 626–05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
INCHES  
MIN  
1
4
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
–A–  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
---  
0.76  
10  
_
1.01  
---  
0.030  
10  
0.040  
_
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T
A
SO–8  
D SUFFIX  
CASE 751–07  
ISSUE W  
–X–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
8
5
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
S
M
M
B
0.25 (0.010)  
Y
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
1
4
K
–Y–  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
0.050 BSC  
0.004  
0.007  
0.016  
0
0.010  
0.228  
C
N X 45  
_
SEATING  
PLANE  
–Z–  
1.27 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.010  
0.010  
0.050  
8
M
J
H
D
K
M
N
S
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
http://onsemi.com  
8
MC3458, MC3358  
Notes  
http://onsemi.com  
9
MC3458, MC3358  
Notes  
http://onsemi.com  
10  
MC3458, MC3358  
Notes  
http://onsemi.com  
11  
MC3458, MC3358  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
MC3458/D  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MC3458P1

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
MOTOROLA

MC3458P1

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS
ONSEMI

MC3458U

Dual, Low Power Operational Amplifiers
MOTOROLA

MC3458_07

Dual, Low Power Operational Amplifiers
ONSEMI

MC34603

1.25mm Receptacle Housing - W2B
ETC

MC3460L

Clock Driver, TTL, CDIP16
MOTOROLA

MC3460P

Clock Driver, TTL, PDIP16
MOTOROLA

MC3463

DC-DC CONVERTER CONTROL CIRCUITS
STMICROELECTR

MC3463ABD

IC,SMPS CONTROLLER,VOLTAGE-MODE,BIPOLAR,SOP,8PIN,PLASTIC
STMICROELECTR

MC3463ABD-TR

IC,SMPS CONTROLLER,VOLTAGE-MODE,BIPOLAR,SOP,8PIN,PLASTIC
STMICROELECTR

MC3463ACD

IC,SMPS CONTROLLER,VOLTAGE-MODE,BIPOLAR,SOP,8PIN,PLASTIC
STMICROELECTR

MC3463ACD-TR

IC,SMPS CONTROLLER,VOLTAGE-MODE,BIPOLAR,SOP,8PIN,PLASTIC
STMICROELECTR