MC54HC4051 [ONSEMI]

Analog Multiplexers/Demultiplexers; 模拟多路复用器/多路解复用器
MC54HC4051
型号: MC54HC4051
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexers/Demultiplexers
模拟多路复用器/多路解复用器

解复用器
文件: 总15页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SEMICONDUCTOR TECHNICAL DATA  
High–Performance Silicon–Gate CMOS  
The MC54/74HC4051, MC74HC4052 and MC54/74HC4053 utilize sili-  
con–gate CMOS technology to achieve fast propagation delays, low ON  
resistances, and low OFF leakage currents. These analog multiplexers/  
demultiplexers control analog voltages that may vary across the complete  
J SUFFIX  
CERAMIC PACKAGE  
CASE 620–10  
power supply range (from V  
to V ).  
CC  
EE  
16  
16  
The HC4051, HC4052 and HC4053 are identical in pinout to the  
metal–gate MC14051B, MC14052B and MC14053B. The Channel–Select  
inputs determine which one of the Analog Inputs/Outputs is to be connected,  
by means of an analog switch, to the Common Output/Input. When the  
Enable pin is HIGH, all analog switches are turned off.  
1
N SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
The Channel–Select and Enable inputs are compatible with standard  
CMOS outputs; with pullup resistors they are compatible with LSTTL  
outputs.  
1
D SUFFIX  
SOIC PACKAGE  
CASE 751B–05  
16  
These devices have been designed so that the ON resistance (R ) is  
on  
of metal–gate CMOS analog  
1
more linear over input voltage than R  
switches.  
on  
DW SUFFIX  
SOIC PACKAGE  
CASE 751G–02  
16  
16  
For multiplexers/demultiplexers with channel–select latches, see  
HC4351, HC4352 and HC4353.  
1
1
Fast Switching and Propagation Speeds  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
DT SUFFIX  
TSSOP PACKAGE  
CASE 948F–01  
Analog Power Supply Range (V  
– V ) = 2.0 to 12.0 V  
CC  
EE  
ORDERING INFORMATION  
Digital (Control) Power Supply Range (V  
CC  
Improved Linearity and Lower ON Resistance Than Metal–Gate  
– GND) = 2.0 to 6.0 V  
MC54HCXXXXJ  
Ceramic  
Plastic  
SOIC  
SOIC Wide  
TSSOP  
MC74HCXXXXN  
MC74HCXXXXD  
MC74HCXXXXDW  
MC74HCXXXXDT  
Counterparts  
Low Noise  
In Compliance With the Requirements of JEDEC Standard No. 7A  
Chip Complexity: HC4051 — 184 FETs or 46 Equivalent Gates  
HC4052 — 168 FETs or 42 Equivalent Gates  
HC4053 — 156 FETs or 39 Equivalent Gates  
FUNCTION TABLE – MC54/74HC4051  
Control Inputs  
LOGIC DIAGRAM  
MC54/74HC4051  
Select  
Single–Pole, 8–Position Plus Common Off  
Enable  
C
B
A
ON Channels  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
X0  
X1  
X2  
X3  
X4  
X5  
X6  
X7  
NONE  
13  
X0  
14  
X1  
L
15  
X2  
H
H
H
H
X
ANALOG  
12  
1
MULTIPLEXER/  
DEMULTIPLEXER  
X3  
X4  
X5  
X6  
X7  
A
3
COMMON  
OUTPUT/  
INPUT  
L
INPUTS/  
X
V
OUTPUTS  
H
H
X
5
2
4
X = Don’t Care  
Pinout: MC54/74HC4051 (Top View)  
11  
10  
9
X2  
X1  
X0  
X3  
A
B
C
9
CC  
CHANNEL  
SELECT  
INPUTS  
B
16  
15  
14  
13  
12  
11  
10  
C
6
ENABLE  
PIN 16 = V  
CC  
PIN 7 = V  
EE  
PIN 8 = GND  
1
2
3
4
5
6
7
8
X4  
X6  
X
X7  
X5 Enable  
V
GND  
EE  
10/95  
Motorola, Inc. 1995  
REV 7  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
FUNCTION TABLE – MC74HC4052  
LOGIC DIAGRAM  
MC74HC4052  
Double–Pole, 4–Position Plus Common Off  
Control Inputs  
Select  
Enable  
B
A
ON Channels  
12  
X0  
L
L
L
L
H
L
L
H
H
X
L
H
L
H
X
Y0  
Y1  
Y2  
Y3  
X0  
X1  
X2  
X3  
14  
X1  
X2  
X3  
13  
X SWITCH  
Y SWITCH  
X
Y
15  
11  
COMMON  
OUTPUTS/INPUTS  
ANALOG  
NONE  
INPUTS/OUTPUTS  
1
5
Y0  
Y1  
Y2  
Y3  
A
X = Don’t Care  
3
2
4
Pinout: MC74HC4052 (Top View)  
10  
9
V
X2  
15  
X1  
14  
X
X0  
12  
X3  
11  
A
B
CHANNEL-SELECT  
INPUTS  
CC  
PIN 16 = V  
CC  
B
16  
13  
10  
9
PIN 7 = V  
EE  
PIN 8 = GND  
6
ENABLE  
1
2
3
4
5
6
7
8
Y0  
Y2  
Y
Y3  
Y1 Enable  
V
GND  
EE  
FUNCTION TABLE – MC54/74HC4053  
Control Inputs  
LOGIC DIAGRAM  
MC54/74HC4053  
Triple Single–Pole, Double–Position Plus Common Off  
Select  
Enable  
C
B
A
ON Channels  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
Z0  
Y0  
Y0  
Y1  
Y1  
Y0  
Y0  
Y1  
Y1  
NONE  
X0  
12  
Z0  
Z0  
Z0  
Z1  
Z1  
Z1  
Z1  
X1  
X0  
X1  
X0  
X1  
X0  
X1  
X0  
X1  
14  
X
13  
X SWITCH  
L
H
H
H
H
X
2
1
L
Y0  
Y1  
15  
4
COMMON  
OUTPUTS/INPUTS  
ANALOG  
INPUTS/OUTPUTS  
Y
Z
H
H
X
Y SWITCH  
Z SWITCH  
5
3
Z0  
Z1  
X = Don’t Care  
11  
10  
9
A
B
C
PIN 16 = V  
PIN 7 = V  
PIN 8 = GND  
CHANNEL-SELECT  
INPUTS  
CC  
EE  
Pinout: MC54/74HC4053 (Top View)  
6
V
Y
X
X1  
13  
X0  
12  
A
B
C
9
CC  
ENABLE  
16  
15  
14  
11  
10  
NOTE: This device allows independent control of each switch.  
Channel–Select Input A controls the X–Switch, Input B controls  
the Y–Switch and Input C controls the Z–Switch  
1
2
3
4
Z
5
6
7
8
Y1  
Y0  
Z1  
Z0 Enable  
V
GND  
EE  
MOTOROLA  
2
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
MAXIMUM RATINGS*  
Symbol  
Parameter  
(Referenced to GND)  
Value  
Unit  
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high–impedance cir-  
V
CC  
Positive DC Supply Voltage  
– 0.5 to + 7.0  
– 0.5 to + 14.0  
V
(Referenced to V  
)
EE  
V
Negative DC Supply Voltage (Referenced to GND)  
Analog Input Voltage  
– 7.0 to + 5.0  
V
V
EE  
V
V
V
– 0.5 to  
IS  
EE  
+ 0.5  
CC  
cuit. For proper operation, V and  
in  
V
should be constrained to the  
V
Digital Input Voltage (Referenced to GND)  
DC Current, Into or Out of Any Pin  
– 0.5 to V  
+ 0.5  
V
out  
in  
CC  
range GND (V or V  
)
V
CC  
.
in out  
I
± 25  
mA  
mW  
Unused inputs must always be  
tied to an appropriate logic voltage  
P
D
Power Dissipation in Still Air, Plastic or Ceramic DIP†  
SOIC Package†  
750  
500  
450  
level (e.g., either GND or V ).  
CC  
Unused outputs must be left open.  
TSSOP Package†  
T
Storage Temperature Range  
– 65 to + 150  
C
C
stg  
T
Lead Temperature, 1 mm from Case for 10 Seconds  
Plastic DIP, SOIC or TSSOP Package  
Ceramic DIP  
L
260  
300  
* Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — Plastic DIP: – 10 mW/ C from 65 to 125 C  
Ceramic DIP: – 10 mW/ C from 100 to 125 C  
SOIC Package: – 7 mW/ C from 65 to 125 C  
TSSOP Package: – 6.1 mW/ C from 65 to 125 C  
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Positive DC Supply Voltage  
Min  
Max  
Unit  
V
CC  
(Referenced to GND)  
(Referenced to V  
2.0  
2.0  
6.0  
12.0  
V
)
EE  
V
EE  
Negative DC Supply Voltage, Output (Referenced to  
GND)  
– 6.0 GND  
V
V
Analog Input Voltage  
V
V
V
V
V
IS  
EE  
CC  
V
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature Range, All Package Types  
GND  
in  
CC  
V
IO  
*
1.2  
– 55 + 125  
V
T
C
ns  
A
t , t  
r f  
Input Rise/Fall Time  
(Channel Select or Enable Inputs)  
V
CC  
V
CC  
V
CC  
= 2.0 V  
= 4.5 V  
= 6.0 V  
0
0
0
1000  
500  
400  
* For voltage drops across switch greater than 1.2V (switch on), excessive V  
drawn;i.e., thecurrentoutoftheswitchmaycontainbothV  
CC  
reliability of the device will be unaffected unless the Maximum Ratings are exceeded.  
current may be  
CC  
andswitchinputcomponents. The  
3
MOTOROLA  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) V  
= GND, Except Where Noted  
EE  
Guaranteed Limit  
–55 to 25°C 85°C 125°C  
V
CC  
V
Symbol  
Parameter  
Condition  
= Per Spec  
Unit  
V
IH  
Minimum High–Level Input Voltage,  
Channel–Select or Enable Inputs  
R
R
2.0  
4.5  
6.0  
1.50  
3.15  
4.20  
1.50  
3.15  
4.20  
1.50  
3.15  
4.20  
V
on  
on  
V
Maximum Low–Level Input Voltage,  
Channel–Select or Enable Inputs  
= Per Spec  
2.0  
4.5  
6.0  
0.3  
0.9  
1.2  
0.3  
0.9  
1.2  
0.3  
0.9  
1.2  
V
IL  
in  
I
Maximum Input Leakage Current,  
Channel–Select or Enable Inputs  
V
V
= V  
= – 6.0 V  
or GND,  
6.0  
± 0.1  
± 1.0  
± 1.0  
µA  
µA  
in  
EE  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
Channel Select, Enable and  
CC  
V
V
= V  
CC  
= 0 V  
or GND;  
V
V
= GND  
= – 6.0  
6.0  
6.0  
2
8
20  
80  
40  
160  
IS  
IO  
EE  
EE  
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).  
DC CHARACTERISTICS — Analog Section  
Guaranteed Limit  
Symbol  
Parameter  
Condition  
V
CC  
V
EE  
Unit  
–55 to 25°C 85°C 125°C  
R
Maximum “ON” Resistance  
V
V
= V or V ; V = V  
to  
4.5  
4.5  
6.0  
0.0  
– 4.5  
– 6.0  
190  
120  
100  
240  
150  
125  
280  
170  
140  
on  
in  
IL IH IS  
CC  
; I 2.0 mA  
EE  
S
(Figures 1, 2)  
V
V
= V or V ; V = V  
IL IH IS  
or  
4.5  
4.5  
6.0  
0.0  
– 4.5  
– 6.0  
150  
100  
80  
190  
125  
100  
230  
140  
115  
in  
CC  
(Endpoints); I 2.0 mA  
EE  
S
(Figures 1, 2)  
R  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
= V or V  
IL  
;
4.5  
4.5  
6.0  
0.0  
– 4.5  
– 6.0  
30  
12  
10  
35  
15  
12  
40  
18  
14  
on  
in  
IS  
IH  
= 1/2 (V  
– V );  
EE  
CC  
I
S
2.0 mA  
I
off  
Maximum Off–Channel Leakage  
Current, Any One Channel  
V
V
= V or V  
;
µA  
in  
IL  
IH  
= V  
CC  
– V  
;
6.0  
– 6.0  
0.1  
0.5  
1.0  
IO  
EE  
Switch Off (Figure 3)  
Maximum Off–Channel HC4051  
V
V
= V or V  
IL IH  
;
6.0  
6.0  
6.0  
– 6.0  
– 6.0  
– 6.0  
0.2  
0.1  
0.1  
2.0  
1.0  
1.0  
4.0  
2.0  
2.0  
in  
Leakage Current,  
Common Channel  
HC4052  
HC4053 Switch Off (Figure 4)  
= V  
– V  
;
IO  
CC EE  
I
on  
Maximum On–Channel HC4051  
Leakage Current,  
V
= V or V  
IL IH  
;
6.0  
6.0  
6.0  
– 6.0  
– 6.0  
– 6.0  
0.2  
0.1  
0.1  
2.0  
1.0  
1.0  
4.0  
2.0  
2.0  
µA  
in  
HC4052 Switch–to–Switch =  
Channel–to–Channel  
HC4053  
V
CC  
– V ; (Figure 5)  
EE  
MOTOROLA  
4
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
AC CHARACTERISTICS (C = 50 pF, Input t = t = 6 ns)  
L
r
f
Guaranteed Limit  
V
CC  
V
Symbol  
Parameter  
Unit  
–55 to 25°C  
85°C  
125°C  
t
t
t
,
Maximum Propagation Delay, Channel–Select to Analog Output  
(Figure 9)  
2.0  
4.5  
6.0  
370  
74  
63  
465  
93  
79  
550  
110  
94  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figure 10)  
2.0  
4.5  
6.0  
60  
12  
10  
75  
15  
13  
90  
18  
15  
ns  
ns  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.0  
4.5  
6.0  
290  
58  
49  
364  
73  
62  
430  
86  
73  
PLZ  
t
PHZ  
t
t
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.0  
4.5  
6.0  
345  
69  
59  
435  
87  
74  
515  
103  
87  
PZL  
PZH  
C
Maximum Input Capacitance, Channel–Select or Enable Inputs  
10  
35  
10  
35  
10  
35  
pF  
pF  
in  
C
Maximum Capacitance  
(All Switches Off)  
Analog I/O  
I/O  
Common O/I: HC4051  
HC4052  
130  
80  
130  
80  
130  
80  
HC4053  
50  
50  
50  
Feedthrough  
1.0  
1.0  
1.0  
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High–  
Speed CMOS Data Book (DL129/D).  
Typical @ 25°C, V  
= 5.0 V, V = 0 V  
EE  
CC  
C
Power Dissipation Capacitance (Figure 13)*  
HC4051  
HC4052  
HC4053  
pF  
45  
80  
45  
PD  
2
* Used to determine the no–load dynamic power consumption: P = C  
D
Motorola High–Speed CMOS Data Book (DL129/D).  
V
f + I  
V
. For load considerations, see Chapter 2 of the  
PD CC  
CC CC  
5
MOTOROLA  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Limit*  
25°C  
‘52  
V
V
CC  
V
EE  
V
Symbol  
Parameter  
Condition  
= 1MHz Sine Wave; Adjust f Voltage to  
Unit  
BW  
Maximum On–Channel Bandwidth  
or Minimum Frequency Response  
(Figure 6)  
f
‘51  
‘53  
MHz  
in  
in  
Obtain 0dBm at V ; Increase f Frequency  
OS  
in  
2.25  
4.50  
6.00  
80  
80  
80  
95  
95  
95  
120  
120  
120  
–2.25  
–4.50  
–6.00  
Until dB Meter Reads –3dB;  
R
= 50, C = 10pF  
L
L
Off–Channel Feedthrough Isolation  
(Figure 7)  
f
= Sine Wave; Adjust f Voltage to Obtain  
in  
2.25 –2.25  
4.50 –4.50  
–50  
–50  
–50  
dB  
in  
0dBm at V  
IS  
in  
f
= 10kHz, R = 600, C = 50pF 6.00 –6.00  
L L  
2.25 –2.25  
4.50 –4.50  
–40  
–40  
–40  
f
in  
= 1.0MHz, R = 50, C = 10pF 6.00 –6.00  
L L  
Feedthrough Noise.  
Channel–Select Input to Common  
I/O (Figure 8)  
V
1MHz Square Wave (t = t = 6ns);  
2.25 –2.25  
4.50 –4.50  
25  
105  
135  
mV  
PP  
in  
r
f
Adjust R at Setup so that I = 0A;  
Enable = GND  
L
S
R
= 600, C = 50pF 6.00 –6.00  
L
L
2.25 –2.25  
4.50 –4.50  
= 10k, C = 10pF 6.00 –6.00  
35  
145  
190  
R
L
L
Crosstalk Between Any Two  
Switches (Figure 12)  
(Test does not apply to HC4051)  
f
= Sine Wave; Adjust f Voltage to Obtain  
in  
2.25 –2.25  
4.50 –4.50  
–50  
–50  
–50  
dB  
in  
0dBm at V  
IS  
f
in  
= 10kHz, R = 600, C = 50pF 6.00 –6.00  
L L  
2.25 –2.25  
4.50 –4.50  
= 1.0MHz, R = 50, C = 10pF 6.00 –6.00  
–60  
–60  
–60  
f
in  
L
L
THD  
Total Harmonic Distortion  
(Figure 14)  
f
= 1kHz, R = 10k, C = 50pF  
%
in  
THD = THD  
L
L
– THD  
measured  
source  
PP  
V
IS  
IS  
= 4.0V  
sine wave  
sine wave  
sine wave  
2.25 –2.25  
4.50 –4.50  
6.00 –6.00  
0.10  
0.08  
0.05  
V
= 8.0V  
PP  
PP  
V
IS  
= 11.0V  
* Limits not tested. Determined by design and verified by qualification.  
MOTOROLA  
6
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
300  
250  
200  
150  
100  
120  
100  
80  
125°C  
25°C  
125  
°C  
60  
25°C  
55°C  
40  
55°C  
50  
0
20  
0
0
0.25 0.50  
0.75  
1.0  
1.25  
1.5  
1.75  
2.0  
2.25  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V
, INPUT VOLTAGE (VOLTS), REFERENCED TO V  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS EE  
IS EE  
Figure 1a. Typical On Resistance, V  
– V  
EE  
= 2.0 V  
Figure 1b. Typical On Resistance, V  
– V = 4.5 V  
EE  
CC  
CC  
120  
105  
90  
90  
75  
60  
45  
30  
125°C  
125°C  
75  
25°C  
25°C  
60  
55°C  
45  
55°C  
30  
15  
0
15  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
V
, INPUT VOLTAGE (VOLTS), REFERENCED TO V  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS EE  
IS EE  
Figure 1c. Typical On Resistance, V  
– V  
EE  
= 6.0 V  
Figure 1d. Typical On Resistance, V  
– V = 9.0 V  
EE  
CC  
CC  
80  
70  
60  
50  
40  
30  
20  
PLOTTER  
125°C  
PROGRAMMABLE  
POWER  
SUPPLY  
MINI COMPUTER  
DC ANALYZER  
25°C  
+
V
CC  
55°C  
DEVICE  
UNDER TEST  
10  
0
ANALOG IN  
COMMON OUT  
EE  
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0  
GND  
V
V
, INPUT VOLTAGE (VOLTS), REFERENCED TO V  
IS EE  
Figure 1e. Typical On Resistance, V  
– V  
EE  
= 12.0 V  
Figure 2. On Resistance Test Set–Up  
CC  
7
MOTOROLA  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
V
V
CC  
CC  
V
V
CC  
CC  
16  
16  
V
V
V
V
EE  
EE  
ANALOG I/O  
OFF  
OFF  
OFF  
OFF  
A
V
CC  
CC  
COMMON O/I  
NC  
COMMON O/I  
V
6
7
8
6
7
8
IH  
IH  
V
V
EE  
EE  
Figure 3. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set–Up  
Figure 4. Maximum Off Channel Leakage Current,  
Common Channel, Test Set–Up  
V
CC  
16  
V
OS  
V
V
CC  
V
CC  
16  
0.1µF  
A
dB  
METER  
f
ON  
ON  
in  
N/C  
R
L
C *  
EE  
CC  
L
COMMON O/I  
OFF  
V
ANALOG I/O  
V
6
7
8
6
7
8
IL  
V
V
EE  
EE  
*Includes all probe and jig capacitance  
Figure 5. Maximum On Channel Leakage Current,  
Channel to Channel, Test Set–Up  
Figure 6. Maximum On Channel Bandwidth,  
Test Set–Up  
V
V
V
CC  
16  
V
CC  
16  
IS  
OS  
0.1µF  
dB  
METER  
R
L
f
OFF  
ON/OFF  
OFF/ON  
COMMON O/I  
in  
TEST  
ANALOG I/O  
R
R
L
L
C *  
POINT  
L
R
L
C *  
L
R
L
6
7
8
6
7
8
V
CC  
V
1 MHz  
11  
in  
t = t = 6 ns  
r
f
V
V
EE  
EE  
V
GND  
CC  
CHANNEL SELECT  
CHANNEL SELECT  
V
or V  
IH  
IL  
*Includes all probe and jig capacitance  
*Includes all probe and jig capacitance  
Figure 7. Off Channel Feedthrough Isolation,  
Test Set–Up  
Figure 8. Feedthrough Noise, Channel Select to  
Common Out, Test Set–Up  
MOTOROLA  
8
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
V
CC  
16  
V
CC  
V
CC  
ON/OFF  
OFF/ON  
COMMON O/I  
C *  
CHANNEL  
SELECT  
TEST  
POINT  
50%  
ANALOG I/O  
GND  
L
t
t
PHL  
PLH  
6
7
8
ANALOG  
OUT  
50%  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 9a. Propagation Delays, Channel Select  
to Analog Out  
Figure 9b. Propagation Delay, Test Set–Up Channel  
Select to Analog Out  
V
CC  
16  
COMMON O/I  
C *  
ANALOG I/O  
TEST  
POINT  
V
CC  
ON  
ANALOG  
IN  
50%  
L
GND  
t
t
PHL  
PLH  
6
7
8
ANALOG  
OUT  
50%  
*Includes all probe and jig capacitance  
Figure 10a. Propagation Delays, Analog In  
to Analog Out  
Figure 10b. Propagation Delay, Test Set–Up  
Analog In to Analog Out  
t
t
POSITION 1 WHEN TESTING t  
POSITION 2 WHEN TESTING t  
AND t  
AND t  
f
r
PHZ  
PLZ  
PZH  
PZL  
1
2
V
CC  
90%  
50%  
10%  
ENABLE  
V
CC  
16  
GND  
1kΩ  
V
CC  
t
t
PLZ  
PZL  
HIGH  
IMPEDANCE  
1
2
ANALOG I/O  
ENABLE  
TEST  
POINT  
ON/OFF  
ANALOG  
OUT  
50%  
C *  
L
10%  
V
OL  
t
t
PZH PHZ  
6
7
8
V
90%  
OH  
ANALOG  
OUT  
50%  
HIGH  
IMPEDANCE  
Figure 11a. Propagation Delays, Enable to  
Analog Out  
Figure 11b. Propagation Delay, Test Set–Up  
Enable to Analog Out  
9
MOTOROLA  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
V
CC  
V
IS  
A
V
CC  
16  
16  
R
V
L
OS  
ON/OFF  
OFF/ON  
COMMON O/I  
f
ON  
in  
NC  
ANALOG I/O  
0.1µF  
OFF  
V
R
L
R
EE  
C *  
L
C *  
V
L
L
CC  
R
6
7
8
L
6
7
8
11  
V
EE  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 12. Crosstalk Between Any Two  
Switches, Test Set–Up  
Figure 13. Power Dissipation Capacitance,  
Test Set–Up  
0
10  
20  
30  
40  
V
IS  
FUNDAMENTAL FREQUENCY  
V
CC  
16  
V
OS  
0.1µF  
TO  
f
in  
DISTORTION  
METER  
ON  
R
L
C *  
L
50  
60  
70  
DEVICE  
SOURCE  
6
7
8
80  
90  
V
EE  
*Includes all probe and jig capacitance  
100  
1.0  
2.0  
3.125  
FREQUENCY (kHz)  
Figure 14a. Total Harmonic Distortion, Test Set–Up  
Figure 14b. Plot, Harmonic Distortion  
APPLICATIONS INFORMATION  
The Channel Select and Enable control pins should be at  
or GND logic levels. V being recognized as a logic  
high and GND being recognized as a logic low. In this exam-  
ple:  
V
or GND through a low value resistor helps minimize  
CC  
V
crosstalk and feedthrough noise that may be picked up by an  
unused switch.  
Although used here, balanced supplies are not a require-  
ment. The only constraints on the power supplies are that:  
CC  
CC  
V
= +5V = logic high  
CC  
GND = 0V = logic low  
V
– GND = 2 to 6 volts  
– GND = 0 to –6 volts  
CC  
The maximum analog voltage swings are determined by  
V
V
EE  
the supply voltages V  
voltage should not exceed V . Similarly, the negative peak  
analog voltage should not go below V . In this example, the  
difference between V  
and V . The positive peak analog  
CC  
EE  
– V  
= 2 to 12 volts  
GND  
CC  
EE  
CC  
and V  
EE  
EE  
When voltage transients above V  
and/or below V  
are  
EE  
and V  
is ten volts. Therefore,  
EE  
CC  
CC  
anticipated on the analog channels, external Germanium or  
Schottky diodes (D ) are recommended as shown in Figure  
16. These diodes should be able to absorb the maximum  
anticipated current surges during clipping.  
using the configuration of Figure 15, a maximum analog sig-  
nal of ten volts peak–to–peak can be controlled. Unused  
analog inputs/outputs may be left floating (i.e., not con-  
nected). However, tying unused analog inputs and outputs to  
x
MOTOROLA  
10  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
V
V
CC  
CC  
+5V  
V
CC  
16  
ON/OFF  
D
D
16  
x
x
+5V  
–5V  
+5V  
–5V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON  
D
D
x
x
V
V
EE  
EE  
TO EXTERNAL CMOS  
CIRCUITRY 0 to 5V  
DIGITAL SIGNALS  
6
7
8
11  
10  
9
7
8
–5V  
V
EE  
Figure 15. Application Example  
Figure 16. External Germanium or  
Schottky Clipping Diodes  
+5V  
+5V  
16  
ON/OFF  
16  
ON/OFF  
+5V  
+5V  
+5V  
+5V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
V
V
V
V
EE  
EE  
EE  
EE  
+5V  
*
R
R
R
+5V  
6
7
8
11  
10  
9
6
7
8
11  
10  
9
LSTTL/NMOS  
CIRCUITRY  
LSTTL/NMOS  
CIRCUITRY  
V
V
EE  
EE  
* 2K  
R 10K  
HCT  
BUFFER  
a. Using Pull–Up Resistors  
b. Using HCT Interface  
Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs  
11  
10  
9
13  
X0  
LEVEL  
SHIFTER  
A
14  
X1  
15  
X2  
LEVEL  
SHIFTER  
B
C
12  
X3  
1
LEVEL  
SHIFTER  
X4  
5
X5  
6
2
LEVEL  
SHIFTER  
ENABLE  
X6  
4
X7  
3
X
Figure 18. Function Diagram, HC4051  
11  
MOTOROLA  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
10  
12  
14  
15  
LEVEL  
SHIFTER  
A
X0  
X1  
X2  
9
LEVEL  
SHIFTER  
B
11  
13  
1
X3  
X
6
LEVEL  
SHIFTER  
ENABLE  
Y0  
5
2
4
3
Y1  
Y2  
Y3  
Y
Figure 19. Function Diagram, HC4052  
11  
10  
9
13  
LEVEL  
SHIFTER  
A
X1  
12  
14  
1
X0  
X
LEVEL  
SHIFTER  
B
C
Y1  
2
15  
3
Y0  
Y
LEVEL  
SHIFTER  
Z1  
5
4
Z0  
Z
6
LEVEL  
SHIFTER  
ENABLE  
Figure 20. Function Diagram, HC4053  
MOTOROLA  
12  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
OUTLINE DIMENSIONS  
J SUFFIX  
CERAMIC PACKAGE  
CASE 620–10  
ISSUE V  
–A  
NOTES:  
16  
1
9
8
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
–B  
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE  
THE LEAD ENTERS THE CERAMIC BODY.  
L
C
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.785  
0.295  
0.200  
0.020  
MIN  
19.05  
6.10  
0.39  
1.27 BSC  
MAX  
19.93  
7.49  
5.08  
0.50  
0.750  
0.240  
0.015  
0.050 BSC  
–T  
SEAT  
ING  
N
K
PLANE  
F
G
J
K
L
M
N
0.055  
0.100 BSC  
0.008  
0.125  
0.065  
1.40  
2.54 BSC  
0.21  
3.18  
1.65  
E
M
0.015  
0.170  
0.38  
4.31  
J 16 PL  
F
G
0.300 BSC  
15  
0.040  
7.62 BSC  
15  
1.01  
0.51  
M
S
0.25 (0.010)  
T
B
D 16 PL  
°
°
0°  
0°  
M
S
0.25 (0.010)  
T
A
0.020  
N SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
16  
9
B
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
1
8
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
F
C
L
0.740  
0.250  
0.145  
0.015  
0.040  
S
0.070  
1.77  
SEATING  
PLANE  
–T  
0.100 BSC  
0.050 BSC  
0.015  
0.130  
0.305  
2.54 BSC  
1.27 BSC  
0.38  
3.30  
7.74  
M
K
0.008  
0.110  
0.295  
0.21  
2.80  
7.50  
H
J
G
D 16 PL  
M
S
0°  
10°  
0°  
10°  
M
M
0.25 (0.010)  
T
A
0.020  
0.040  
0.51  
1.01  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751B–05  
ISSUE J  
–A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
M
0.25 (0.010)  
B
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
J
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
0.386  
0.150  
0.054  
0.014  
0.016  
0.050 BSC  
0.008  
0.004  
F
K
R X 45°  
C
1.25  
1.27 BSC  
–T  
0.19  
0.10  
0.25  
0.25  
0.009  
0.009  
J
SEAT  
ING  
M
K
PLANE  
D 16 PL  
M
P
R
0
5.80  
0.25  
°
7
6.20  
0.50  
°
0
°
7°  
0.244  
0.019  
0.229  
0.010  
M
S
S
0.25 (0.010)  
T
B
A
13  
MOTOROLA  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
OUTLINE DIMENSIONS  
DW SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751G–02  
ISSUE A  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
16  
9
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
–B–  
8X P  
0.010 (0.25)  
M
M
B
1
8
J
16X D  
MILLIMETERS  
INCHES  
M
S
S
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.010 (0.25)  
T
A
B
0.400  
0.292  
0.093  
0.014  
0.020  
F
R X 45  
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
C
–T–  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
M
SEATING  
14X G  
K
PLANE  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948F–01  
ISSUE O  
16X KREF  
M
S
S
0.10 (0.004)  
T
U
V
NOTES:  
S
0.15 (0.006) T  
U
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
K
K1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR  
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER  
SIDE.  
16  
9
2X L/2  
J1  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
B
–U–  
SECTION N–N  
L
0.25 (0.010) PER SIDE.  
J
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE DETERMINED AT  
DATUM PLANE –W–.  
S
0.15 (0.006) T  
U
A
M
MILLIMETERS  
INCHES  
–V–  
DIM  
A
B
C
D
MIN  
4.90  
4.30  
–––  
0.05  
0.50  
MAX  
5.10  
4.50  
1.20  
0.15  
0.75  
MIN  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
N
0.193  
0.169  
–––  
0.002  
0.020  
F
F
DETAIL E  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28  
0.20  
0.16  
0.30  
0.25  
0.007  
0.004  
0.004  
0.007  
0.007  
0.011  
0.008  
0.006  
0.012  
0.010  
–W–  
C
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
M
0
8
0
8
DETAIL E  
H
SEATING  
PLANE  
–T–  
D
G
MOTOROLA  
14  
MC54/74HC4051 MC74HC4052 MC54/74HC4053  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
CODELINE  
MC54/74HC4051/D  

相关型号:

MC54HC4051A

ANALOG MULTIPLEXERS/ DEMULTIPLEXERS
MOTOROLA

MC54HC4051AJ

Analog Multiplexers/Demultiplexers
MOTOROLA

MC54HC4051J

Analog Multiplexers/Demultiplexers
MOTOROLA

MC54HC4051J

Analog Multiplexers/Demultiplexers
ONSEMI

MC54HC4051JD

暂无描述
MOTOROLA

MC54HC4051JDS

暂无描述
MOTOROLA

MC54HC4052JD

Differential Multiplexer, 1 Func, 4 Channel, CMOS, CDIP16
MOTOROLA
ROCHESTER
ROCHESTER

MC54HC4053

ANALOG MULTIPLEXERS DEMULTIPLEXERS
MOTOROLA

MC54HC4053

High-Performance Silicon-Gate CMOS
ONSEMI

MC54HC4053AJ

Analog Multiplexers/Demultiplexers
MOTOROLA