MC74HC160ADTR2G [ONSEMI]

具有异步重置模式的 BCD 计数器;
MC74HC160ADTR2G
型号: MC74HC160ADTR2G
厂家: ONSEMI    ONSEMI
描述:

具有异步重置模式的 BCD 计数器

CD 光电二极管 逻辑集成电路 触发器 计数器
文件: 总13页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74HC160A  
Presettable Counters  
HighPerformance SiliconGate CMOS  
The MC74HC160A is identical in pinout to the LS160. The device  
inputs are compatible with standard CMOS outputs; with pullup  
resistors, they are compatible with LSTTL outputs.  
The HC160A is a programmable BCD counters with asynchronous  
Reset input.  
http://onsemi.com  
MARKING  
DIAGRAMS  
16  
Features  
SOIC16  
D SUFFIX  
CASE 751B  
Output Drive Capability: 10 LSTTL Loads  
Outputs Directly Interface to CMOS, NMOS, and TTL  
Operating Voltage Range: 2 to 6 V  
Low Input Current: 1 mA  
HC160AG  
AWLYWW  
16  
1
1
16  
High Noise Immunity Characteristic of CMOS Devices  
In Compliance with the Requirements Defined by JEDEC Standard  
No. 7A  
Chip Complexity: 234 FETs or 58.5 Equivalent Gates  
These are PbFree Devices  
TSSOP16  
DT SUFFIX  
CASE 948F  
HC  
160A  
ALYWG  
G
16  
1
1
A
= Assembly Location  
= Wafer Lot  
= Year  
WL, L  
YY, Y  
WW, W = Work Week  
3
4
5
6
14  
13  
12  
11  
Q0  
Q1  
Q2  
Q3  
P0  
P1  
P2  
P3  
G or G  
= PbFree Package  
(Note: Microdot may be in either location)  
PRESENT  
DATA  
INPUTS  
BCD  
OUTPUTS  
PIN ASSIGNMENT  
RESET  
CLOCK  
1
2
16  
15  
V
CC  
RIPPLE  
CARRY OUT  
RIPPLE  
CARRY  
OUT  
2
15  
CLOCK  
3
4
14 Q0  
P0  
P1  
P2  
P3  
13 Q1  
5
6
7
8
12 Q2  
RESET  
LOAD  
11 Q3  
10 ENABLE T  
ENABLE P  
GND  
9
LOAD  
ENABLE P  
ENABLE T  
COUNT  
PIN 16 = V  
CC  
PIN 8 = GND  
ENABLES  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
Figure 1. Logic Diagram  
Device  
Count Mode  
Reset Mode  
Asynchronous  
HC160  
BCD  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
May, 2013 Rev. 2  
MC74HC160A/D  
MC74HC160A  
FUNCTION TABLE  
Clock  
Inputs  
Outputs  
Q
Reset*  
Load  
Enable P  
Enable T  
L
X
L
X
X
H
L
X
X
H
X
L
Reset  
H
H
H
H
Load Preset Data  
Count  
H
H
H
No Count  
No Count  
X
*HC160 is an Asynchronous Reset Device.  
H = High Level  
L = Low Level  
X = Don’t Care  
MAXIMUM RATINGS  
Symbol  
Parameter  
DC Supply Voltage (Referenced to GND)  
DC Input Voltage (Referenced to GND)  
DC Output Voltage (Referenced to GND)  
DC Input Current, per Pin  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this highimpedance cir-  
V
CC  
0.5 to +7.0  
V
in  
0.5 to V + 0.5  
V
CC  
V
out  
0.5 to V + 0.5  
V
CC  
I
in  
20  
25  
50  
mA  
mA  
mA  
mW  
cuit. For proper operation, V and  
in  
I
I
DC Output Current, per Pin  
out  
V
out  
should be constrained to the  
range GND v (V or V ) v V  
.
DC Supply Current, V and GND Pins  
in  
out  
CC  
CC  
CC  
Unused inputs must always be  
tied to an appropriate logic voltage  
P
D
Power Dissipation in Still Air, Plastic or Ceramic DIP†  
SOIC Package†  
750  
500  
level (e.g., either GND or V ).  
CC  
Unused outputs must be left open.  
T
stg  
Storage Temperature  
65 to +150  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress  
ratings only. Functional operation above the Recommended Operating Conditions is not implied.  
Extended exposure to stresses above the Recommended Operating Conditions may affect device  
reliability.  
†Derating  
SOIC Package: 7 mW/°C from 65° to 125°C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
0
Max  
Unit  
V
V
CC  
DC Supply Voltage (Referenced to GND)  
DC Input Voltage, Output Voltage (Referenced to GND)  
Operating Temperature, All Package Types  
6.0  
V , V  
in out  
V
CC  
V
T
A
55  
+125  
°C  
ns  
t , t  
Input Rise and Fall Time  
(Figure 3)  
V
CC  
V
CC  
V
CC  
= 2.0 V  
= 4.5 V  
= 6.0 V  
0
0
0
1000  
500  
400  
r
f
http://onsemi.com  
2
MC74HC160A  
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)  
Guaranteed Limit  
55 to  
V
V
CC  
25°C  
v 85°C  
v 125°C  
Symbol  
Parameter  
Test Conditions  
= 0.1 V or V 0.1 V  
|I | v 20 mA  
Unit  
V
IH  
Minimum HighLevel Input  
V
2.0  
3.0  
4.5  
6.0  
1.5  
2.1  
3.15  
4.2  
1.5  
2.1  
3.15  
4.2  
1.5  
2.1  
3.15  
4.2  
V
out  
CC  
Voltage  
out  
V
Maximum LowLevel Input  
Voltage  
V
= 0.1 V or V 0.1 V  
2.0  
3.0  
4.5  
6.0  
0.5  
0.9  
1.35  
1.8  
0.5  
0.9  
1.35  
1.8  
0.5  
0.9  
1.35  
1.8  
V
V
IL  
out  
CC  
|I | v 20 mA  
out  
V
OH  
Minimum HighLevel Output  
Voltage  
V
in  
= V or V  
IL  
2.0  
4.5  
6.0  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
1.9  
4.4  
5.9  
IH  
|I | v 20 mA  
out  
V
= V or V  
|I | v 2.4 m  
3.0  
4.5  
6.0  
2.48  
3.98  
5.48  
2.34  
3.84  
5.34  
2.20  
3.70  
5.20  
in  
IH  
IL  
out  
|I | v 4.0 mA  
out  
|I | v 5.2 mA  
out  
V
OL  
Maximum LowLevel Output  
V
in  
= V or V  
2.0  
4.5  
6.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
V
IH  
IL  
Voltage  
|I | v 20 mA  
out  
V
= V or V  
|I | v 2.4 m  
3.0  
4.5  
6.0  
0.26  
0.26  
0.26  
0.33  
0.33  
0.33  
0.40  
0.40  
0.40  
in  
IH  
IL  
out  
|I | v 4.0 mA  
out  
|I | v 5.2 mA  
out  
I
Maximum Input Leakage Current  
V
V
= V or GND  
6.0  
6.0  
0.1  
4
1.0  
40  
1.0  
mA  
mA  
in  
in  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
= V or GND  
160  
CC  
in  
CC  
I
= 0 mA  
out  
http://onsemi.com  
3
MC74HC160A  
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, Input t = t = 6 ns)  
L
r
f
Guaranteed Limit  
55 to  
V
V
CC  
25°C  
v 85°C  
v 125°C  
Symbol  
Parameter  
Unit  
f
Maximum Clock Frequency (50% Duty Cycle)*  
(Figures 3 and 8)  
2.0  
4.5  
6.0  
6.0  
30  
35  
4.8  
24  
28  
4.0  
20  
24  
MHz  
max  
PLH  
PHL  
PHL  
PLH  
PHL  
PLH  
PHL  
PHL  
t
t
t
t
t
t
t
t
Maximum Propagation Delay, Clock to Q  
(Figures 3 and 8)  
2.0  
4.5  
6.0  
170  
34  
29  
215  
43  
37  
255  
51  
43  
ns  
2.0  
4.5  
6.0  
205  
41  
35  
255  
51  
43  
310  
62  
53  
Maximum Propagation Delay, Reset to Q (HC160A Only)  
(Figures 4 and 8)  
2.0  
4.5  
6.0  
210  
42  
36  
265  
53  
45  
315  
63  
54  
ns  
ns  
Maximum Propagation Delay, Enable T to Ripple Carry Out  
(Figures 5 and 8)  
2.0  
4.5  
6.0  
160  
32  
27  
200  
40  
34  
240  
48  
41  
2.0  
4.5  
6.0  
195  
39  
33  
245  
49  
42  
295  
59  
50  
Maximum Propagation Delay, Clock to Ripple Carry Out  
(Figures 3 and 8)  
2.0  
4.5  
6.0  
175  
35  
30  
220  
44  
37  
265  
53  
45  
ns  
2.0  
4.5  
6.0  
215  
43  
37  
270  
54  
46  
325  
65  
55  
Maximum Propagation Delay, Reset to Ripple Carry Out  
(HC160A Only)  
(Figures 4 and 8)  
2.0  
4.5  
6.0  
220  
44  
37  
275  
55  
47  
330  
66  
56  
ns  
ns  
pF  
t
,
Maximum Output Transition Time, Any Output  
(Figures 3 and 8)  
2.0  
4.5  
6.0  
75  
15  
13  
95  
19  
16  
110  
22  
19  
TLH  
t
THL  
C
Maximum Input Capacitance  
10  
10  
10  
in  
*Applies to noncascaded/nonsynchronously clocked configurations only. With synchronously cascaded counters, (1) Clock to Ripple Carry Out  
propagation delays, (2) Enable T or Enable P to Clock setup times, and (3) Clock to Enable T or Enable P hold times determine f . However,  
max  
if Ripple Carry Out of each stage is tied to the Clock of the next stage (nonsynchronously clocked), the f  
See Applications Information in this data sheet.  
in the table above is applicable.  
max  
Typical @ 25°C, V = 5.0 V  
CC  
60  
C
Power Dissipation Capacitance (Per Package)*  
pF  
PD  
2
*Used to determine the noload dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
http://onsemi.com  
4
MC74HC160A  
TIMING REQUIREMENTS (Input t = t = 6 ns)  
r
f
Guaranteed Limit  
55 to  
V
V
CC  
25°C  
v 85°C  
190  
38  
v 125°C  
Symbol  
Parameter  
Unit  
t
t
t
Minimum Setup Time, Preset Data Inputs to Clock  
(Figure 6)  
2.0  
4.5  
6.0  
150  
30  
225  
45  
38  
ns  
su  
su  
su  
26  
33  
Minimum Setup Time, Load to Clock  
(Figure 6)  
2.0  
4.5  
6.0  
135  
27  
23  
170  
34  
29  
205  
41  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Minimum Setup Time, Enable T or Enable P to Clock  
(Figure 7)  
2.0  
4.5  
6.0  
200  
40  
34  
250  
50  
43  
300  
60  
51  
t
Minimum Hold Time, Clock to Preset Data Inputs  
(Figure 6)  
2.0  
4.5  
6.0  
50  
10  
9
65  
13  
11  
75  
15  
13  
h
h
h
t
Minimum Hold Time, Clock to Load  
(Figure 6)  
2.0  
4.5  
6.0  
3
3
3
3
3
3
3
3
3
t
Minimum Hold Time, Clock to Enable T or Enable P  
(Figure 7)  
2.0  
4.5  
6.0  
3
3
3
3
3
3
3
3
3
t
t
Minimum Recovery Time, Reset Inactive to Clock  
(Figure 4)  
2.0  
4.5  
6.0  
125  
25  
21  
155  
31  
26  
190  
38  
32  
rec  
Minimum Recovery Time, Load Inactive to Clock  
(Figure 6)  
2.0  
4.5  
6.0  
125  
25  
21  
155  
31  
26  
190  
38  
32  
rec  
t
t
Minimum Pulse Width, Clock  
(Figure 3)  
2.0  
4.5  
6.0  
80  
16  
14  
100  
20  
17  
120  
24  
20  
w
Minimum Pulse Width, Reset  
(Figure 4)  
2.0  
4.5  
6.0  
80  
16  
14  
100  
20  
17  
120  
24  
20  
w
t , t  
r
Maximum Input Rise and Fall Times  
(Figure 3)  
2.0  
4.5  
6.0  
1000  
500  
400  
1000  
500  
400  
1000  
500  
400  
f
http://onsemi.com  
5
MC74HC160A  
FUNCTION DESCRIPTION  
Loading  
The HC160A is a programmable 4bit synchronous  
counters that feature parallel Load, synchronous or  
asynchronous Reset, a Carry Output for cascading, and  
countenable controls. The HC160A is a BCD counter with  
asynchronous Reset.  
With the rising edge of the Clock, a low level on Load (pin  
9) loads the data from the Preset Data Input pins (P0, P1, P2,  
P3) into the internal flipflops and onto the output pins, Q0  
through Q3. The count function is disabled as long as Load  
is low.  
INPUTS  
Although the HC160A is a BCD counters, they may be  
programmed to any state. If they are loaded with a state  
disallowed in BCD code, they will return to their normal  
count sequence within two clock pulses (see the Output State  
Diagram).  
Clock (Pin 2)  
The internal flipflops toggle and the output count  
advances with the rising edge of the Clock input. In addition,  
control functions, such as loading occur with the rising edge  
of the Clock input.  
Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6)  
These are the data inputs for programmable counting.  
Data on these pins may be synchronously loaded into the  
internal flipflops and appear at the counter outputs. P0 (pin  
3) is the leastsignificant bit and P3 (pin 6) is the  
mostsignificant bit.  
Count Enable/Disable  
These devices have two countenable control pins:  
Enable P (pin 7) and Enable T (pin 10). The devices count  
when these two pins and the Load pin are high. The logic  
equation is:  
Count Enable = Enable P Enable T Load  
The count is either enabled or disabled by the control  
inputs according to Table 1. In general, Enable P is a  
countenable control; Enable T is both a countenable and  
a RippleCarry Output control.  
OUTPUTS  
Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11)  
These are the counter outputs (BCD or binary). Q0 (pin  
14) is the leastsignificant bit and Q3 (pin 11) is the  
mostsignificant bit.  
Table 1. COUNT ENABLE/DISABLE  
Control Inputs  
Result at Outputs  
Ripple Carry Out (Pin 15)  
When the counter is in its maximum state (1001 for the  
BCD counters or 1111 for the binary counters), this output  
goes high, providing an external lookahead carry pulse that  
may be used to enable successive cascaded counters. Ripple  
Carry Out remains high only during the maximum count  
state. The logic equation for this output is:  
Load Enable P Enable T Q0 Q3 Ripple Carry Out  
H
L
H
H
L
H
H
H
Count  
High when  
Q0Q3 are max-  
imum*  
No Count  
X
No Count High when  
Q0Q3 are max-  
imum*  
Ripple Carry Out =  
Enable T Q0 Q1 Q2 Q3  
X
X
L
No Count  
L
for BCD counters  
*Q0 through Q3 are maximum for the HC160A when Q3 Q2 Q1 Q0  
= 1001.  
CONTROL FUNCTIONS  
Resetting  
A low level on the Reset pin (pin 1) resets the internal  
flipflops and sets the outputs (Q0 through Q3) to a low  
level. The HC160A resets asynchronously.  
0
1
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
Figure 2. Output State Diagrams HC160A BCD Counters  
http://onsemi.com  
6
 
MC74HC160A  
SWITCHING WAVEFORMS  
t
w
t
r
t
f
V
V
CC  
CC  
90%  
50%  
10%  
CLOCK  
50%  
RESET  
GND  
GND  
t
PHL  
t
w
1/fmax  
50%  
ANY  
t
t
PHL  
PLH  
OUTPUT  
90%  
50%  
10%  
t
ANY  
rec  
OUTPUT  
V
CC  
50%  
CLOCK  
t
t
THL  
TLH  
GND  
Figure 3.  
Figure 4.  
t
r
t
f
VALID  
V
CC  
90%  
50%  
10%  
ENABLE T  
INPUTS  
P0, P1,  
P2, P3  
V
CC  
GND  
50%  
t
t
GND  
PLH  
PHL  
90%  
50%  
10%  
RIPPLE  
CARRY  
OUT  
t
t
t
su  
h
V
CC  
t
t
THL  
TLH  
50%  
LOAD  
GND  
Figure 5.  
t
t
su  
rec  
h
V
CC  
CLOCK  
50%  
GND  
Figure 6.  
TEST CIRCUIT  
VALID  
TEST POINT  
ENABLE T  
OR  
V
CC  
50%  
OUTPUT  
ENABLE P  
GND  
DEVICE  
UNDER  
TEST  
t
su  
t
h
C *  
L
V
CC  
50%  
CLOCK  
GND  
Figure 7.  
*Includes all probe and jig capacitance  
Figure 8.  
http://onsemi.com  
7
MC74HC160A  
http://onsemi.com  
8
MC74HC160A  
Sequence illustrated in waveforms:  
1. Reset outputs to zero.  
2. Preset to BCD seven.  
3. Count to eight, nine, zero, one, two, and three.  
4. Inhibit.  
RESET (HC160A)  
(ASYNCHRONOUS)  
LOAD  
P0  
PRESET  
DATA  
INPUTS  
P1  
P2  
P3  
CLOCK  
(HC160A)  
CLOCK  
(HC162A)  
ENABLE P  
ENABLE T  
Q0  
COUNT  
ENABLES  
Q1  
OUTPUTS  
Q2  
Q3  
RIPPLE  
CARRY  
OUT  
7
8
9
0
1
2
3
COUNT  
INHIBIT  
RESET  
LOAD  
Figure 9. MC74HC160A Timing Diagram  
http://onsemi.com  
9
MC74HC160A  
TYPICAL APPLICATIONS CASCADING  
LOAD  
INPUTS  
INPUTS  
INPUTS  
LOAD P0 P1 P2 P3  
LOAD P0 P1 P2 P3  
LOAD P0 P1 P2 P3  
H = COUNT  
L = DISABLE  
ENABLE P  
RIPPLE  
ENABLE P  
RIPPLE  
ENABLE P  
RIPPLE  
H = COUNT  
L = DISABLE  
TO  
ENABLE T  
CARRY  
OUT  
ENABLE T  
CARRY  
OUT  
ENABLE T  
CARRY  
OUT  
MORE  
SIGNIFICANT  
STAGES  
CLOCK  
CLOCK  
CLOCK  
R
Q0 Q1 Q2 Q3  
R
Q0 Q1 Q2 Q3  
R
Q0 Q1 Q2 Q3  
RESET  
CLOCK  
OUTPUTS  
OUTPUTS  
OUTPUTS  
NOTE: When used in these cascaded configurations the clock f  
guaranteed limits may not apply. Actual performance will depend  
max  
on number of stages. This limitation is due to set up times between Enable (Port) and Clock.  
Figure 10. NBit Synchronous Counters  
INPUTS  
INPUTS  
INPUTS  
LOAD  
ENABLE P  
ENABLE T  
LOAD P0 P1 P2 P3  
LOAD P0 P1 P2 P3  
LOAD P0 P1 P2 P3  
ENABLE P  
RIPPLE  
ENABLE P  
RIPPLE  
ENABLE P  
RIPPLE  
TO  
ENABLE T  
CARRY  
OUT  
ENABLE T  
CARRY  
OUT  
ENABLE T  
CARRY  
OUT  
MORE  
SIGNIFICANT  
STAGES  
CLOCK  
RESET  
CLOCK  
CLOCK  
CLOCK  
R
Q0 Q1 Q2 Q3  
R
Q0 Q1 Q2 Q3  
R
Q0 Q1 Q2 Q3  
OUTPUTS  
OUTPUTS  
OUTPUTS  
Figure 11. Nibble Ripple Counter  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC74HC160ADG  
SOIC16  
(PbFree)  
48 Units / Rail  
MC74HC160ADR2G  
SOIC16  
(PbFree)  
2500 Tape & Reel  
MC74HC160ADTG  
TSSOP16*  
TSSOP16*  
96 Units / Rail  
MC74HC160ADTR2G  
2500 Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*This package is inherently PbFree.  
http://onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16  
CASE 751B05  
ISSUE K  
DATE 29 DEC 2006  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
16  
9
8
B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
0.386  
DIM MIN  
MAX  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00  
G
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
K
M
P
R
C
7
0
_
_
_
_
T−  
SEATING  
PLANE  
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
J
M
D
16 PL  
M
S
S
A
0.25 (0.010)  
T B  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. COLLECTOR  
2. BASE  
3. EMITTER  
4. NO CONNECTION  
5. EMITTER  
6. BASE  
7. COLLECTOR  
8. COLLECTOR  
9. BASE  
10. EMITTER  
11. NO CONNECTION  
12. EMITTER  
13. BASE  
PIN 1. CATHODE  
2. ANODE  
3. NO CONNECTION  
4. CATHODE  
5. CATHODE  
6. NO CONNECTION  
7. ANODE  
8. CATHODE  
9. CATHODE  
10. ANODE  
11. NO CONNECTION  
12. CATHODE  
13. CATHODE  
14. NO CONNECTION  
15. ANODE  
PIN 1. COLLECTOR, DYE #1  
2. BASE, #1  
3. EMITTER, #1  
4. COLLECTOR, #1  
5. COLLECTOR, #2  
6. BASE, #2  
PIN 1. COLLECTOR, DYE #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. COLLECTOR, #3  
6. COLLECTOR, #3  
7. COLLECTOR, #4  
8. COLLECTOR, #4  
9. BASE, #4  
10. EMITTER, #4  
11. BASE, #3  
12. EMITTER, #3  
13. BASE, #2  
7. EMITTER, #2  
8. COLLECTOR, #2  
9. COLLECTOR, #3  
10. BASE, #3  
11. EMITTER, #3  
12. COLLECTOR, #3  
13. COLLECTOR, #4  
14. BASE, #4  
SOLDERING FOOTPRINT  
14. COLLECTOR  
15. EMITTER  
16. COLLECTOR  
14. EMITTER, #2  
15. BASE, #1  
16. EMITTER, #1  
15. EMITTER, #4  
16. COLLECTOR, #4  
8X  
6.40  
16. CATHODE  
16X  
1.12  
STYLE 5:  
STYLE 6:  
STYLE 7:  
PIN 1. SOURCE N‐CH  
PIN 1. DRAIN, DYE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. DRAIN, #3  
6. DRAIN, #3  
7. DRAIN, #4  
8. DRAIN, #4  
9. GATE, #4  
PIN 1. CATHODE  
2. CATHODE  
3. CATHODE  
4. CATHODE  
5. CATHODE  
6. CATHODE  
7. CATHODE  
8. CATHODE  
9. ANODE  
2. COMMON DRAIN (OUTPUT)  
3. COMMON DRAIN (OUTPUT)  
4. GATE P‐CH  
5. COMMON DRAIN (OUTPUT)  
6. COMMON DRAIN (OUTPUT)  
7. COMMON DRAIN (OUTPUT)  
8. SOURCE P‐CH  
1
16  
16X  
0.58  
9. SOURCE P‐CH  
10. SOURCE, #4  
11. GATE, #3  
12. SOURCE, #3  
13. GATE, #2  
14. SOURCE, #2  
15. GATE, #1  
16. SOURCE, #1  
10. ANODE  
11. ANODE  
12. ANODE  
13. ANODE  
14. ANODE  
15. ANODE  
16. ANODE  
10. COMMON DRAIN (OUTPUT)  
11. COMMON DRAIN (OUTPUT)  
12. COMMON DRAIN (OUTPUT)  
13. GATE N‐CH  
14. COMMON DRAIN (OUTPUT)  
15. COMMON DRAIN (OUTPUT)  
16. SOURCE N‐CH  
1.27  
PITCH  
8
9
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42566B  
SOIC16  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSSOP16  
CASE 948F01  
ISSUE B  
16  
DATE 19 OCT 2006  
1
SCALE 2:1  
16X KREF  
NOTES:  
M
S
S
0.10 (0.004)  
T U  
V
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
S
0.15 (0.006) T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
K
K1  
16  
9
2X L/2  
J1  
SECTION NN  
B
U−  
L
J
PIN 1  
IDENT.  
N
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
8
0.25 (0.010)  
1
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
M
S
0.15 (0.006) T U  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
V−  
N
A
4.90  
4.30  
−−−  
5.10 0.193 0.200  
4.50 0.169 0.177  
B
F
C
1.20  
−−− 0.047  
D
F
0.05  
0.50  
0.15 0.002 0.006  
0.75 0.020 0.030  
DETAIL E  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
W−  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
C
0.10 (0.004)  
6.40 BSC  
0.252 BSC  
DETAIL E  
H
SEATING  
PLANE  
T−  
M
0
8
0
8
_
_
_
_
D
G
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT  
7.06  
16  
XXXX  
XXXX  
ALYW  
1
1
XXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
Y
W
= Year  
= Work Week  
0.65  
PITCH  
G or G = PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
01.36X6  
16X  
1.26  
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASH70247A  
TSSOP16  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

MC74HC160AN

Presettable Counters
MOTOROLA

MC74HC160D

Presettable Counters
MOTOROLA

MC74HC160N

Presettable Counters
MOTOROLA

MC74HC161

Presettable Counters
ONSEMI

MC74HC161A

Presettable Counters
ONSEMI

MC74HC161AD

Presettable Counters
MOTOROLA

MC74HC161AD

Presettable Counters
ONSEMI

MC74HC161ADG

Presettable Counters High−Performance Silicon−Gate CMOS
ONSEMI

MC74HC161ADR2

Presettable Counters
ONSEMI

MC74HC161ADR2

Binary Counter, HC/UH Series, Synchronous, Positive Edge Triggered, 4-Bit, Up Direction, CMOS, PDSO16, SOIC-16
ROCHESTER

MC74HC161ADR2G

Presettable Counters High−Performance Silicon−Gate CMOS
ONSEMI

MC74HC161ADT

Presettable Counters
ONSEMI