MC74LVX595MEL [ONSEMI]

8−Bit Shift Register;
MC74LVX595MEL
型号: MC74LVX595MEL
厂家: ONSEMI    ONSEMI
描述:

8−Bit Shift Register

光电二极管 逻辑集成电路 触发器
文件: 总14页 (文件大小:344K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74LVX595  
Product Preview  
8−Bit Shift Register with  
Output Storage Register  
(3−State)  
http://onsemi.com  
MARKING DIAGRAMS  
The MC74LVX595 is an advanced high speed 8bit shift register  
with an output storage register fabricated with silicon gate CMOS  
technology.  
The MC74LVX595 contains an 8bit static shift register which  
feeds an 8bit storage register.  
Shift operation is accomplished on the positive going transition of  
the Shift Clock input (SCK). The output register is loaded with the  
contents of the shift register on the positive going transition of the  
Register Clock input (RCK). Since the RCK and SCK signals are  
independent, parallel outputs can be held stable during the shift  
operation. And, since the parallel outputs are 3state, the LVX595 can  
be directly connected to an 8bit bus. This register can be used in  
serialtoparallelconversion, data receivers, etc.  
The internal circuit is composed of three stages, including a buffer  
output which provides high noise immunity and stable output. The  
inputs tolerate voltages up to 7.0 V, allowing the interface of 5.0 V  
systems to 3.0 V systems.  
16  
9
LVX595  
AWLYYWW  
SOIC16  
D SUFFIX  
CASE 751B  
1
8
16  
9
LVX  
595  
TSSOP16  
DT SUFFIX  
CASE 948F  
AWLYWW  
1
8
16  
9
LVX595  
ALYW  
High Speed: f  
Low Power Dissipation: I = 4 mA (Max) at T = 25°C  
High Noise Immunity: V  
= 100 MHz (Typ) at V = 3.3 V  
CC  
max  
SOIC EIAJ16  
M SUFFIX  
CASE 966  
CC  
A
1
8
= V = 28% V  
NIL CC  
NIH  
Power Down Protection Provided on Inputs  
Balanced Propagation Delays  
Designed for 2 V to 3.6 V Operating Range  
A
= Assembly Location  
WL or L = Wafer Lot  
YY or Y = Year  
WW or W = Work Week  
Low Noise: V  
= 1.0 V (Max)  
OLP  
Pin and Function Compatible with Other Standard Logic Families  
Latchup Performance Exceeds 300 mA  
ESD Performance: HBM > 2000 V; Machine Model > 200 V  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC74LVX595M  
SO EIAJ16 48 Units/Rail  
MC74LVX595MEL  
SO EIAJ16 2000 Units/Reel  
This document contains information on a product under development. ON Semiconductor  
reserves the right to change or discontinue this product without notice.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
June, 2006 Rev. 2  
MC74LVX595/D  
MC74LVX595  
FUNCTION TABLE  
Inputs  
Resulting Function  
Serial  
Input  
(SI)  
Shift  
Clock  
(SCK)  
Reg  
Clock  
(RCK)  
Output  
Enable  
(OE)  
Shift  
Register  
Contents  
Storage  
Register  
Contents  
Serial  
Output  
(SQH)  
Parallel  
Outputs  
(QA QH)  
Reset  
(SCLR)  
Operation  
Clear shift register  
L
X
D
X
L, H,  
L, H, ↓  
L
L
L
U
U
L
U
U
Shift data into shift  
register  
H
DSR ;  
SR SR  
SR SR  
A
G
H
N
N+1  
Registers remains  
unchanged  
H
H
X
X
L, H, ↓  
L, H, ↓  
X
L
L
U
U
**  
U
*
**  
Transfer shift register  
contents to storage  
register  
SR ³STR  
SR  
N
N
N
Storage register remains  
unchanged  
X
X
X
L, H, ↓  
L
*
U
*
U
Enable parallel outputs  
X
X
X
X
X
X
X
X
L
*
*
**  
**  
*
*
Enabled  
Z
Force outputs into high  
impedance state  
H
SR = shift register contents  
STR = storage register contents U = remains unchanged  
D = data (L, H) logic level  
= HightoLow  
= LowtoHigh  
* = depends on Reset and Shift Clock inputs  
** = depends on Register Clock input  
13  
OE  
QB  
QC  
1
2
16  
V
CC  
EN3  
C2  
12  
RSK  
15 QA  
SRG8  
R
QD  
QE  
QF  
3
4
5
14 SI  
10  
SCLR  
11  
13 OE  
12 RCK  
SCK  
C/1  
14  
SI  
15  
1D  
2D  
3
QA  
QB  
QG  
QH  
6
7
8
11 SCK  
1
10 SCLR  
2
3
4
QC  
GND  
9
SQH  
QD  
QE  
Figure 1. Pin Assignment  
5
6
7
9
QF  
QG  
QH  
SERIAL  
DATA  
INPUT  
14  
15  
1
3
2D  
QA  
QB  
SI  
SQH  
2
3
4
QC  
Figure 2. IEC Logic Symbol  
PARALLEL  
DATA  
OUTPUTS  
QD  
QE  
SHIFT  
REGISTER  
STORAGE  
REGISTER  
5
6
7
QF  
QG  
QH  
11  
10  
12  
13  
SCK  
SERIAL  
DATA  
OUTPUT  
9
SQH  
SCLR  
RCK  
OE  
Figure 3. Logic Diagram  
http://onsemi.com  
2
MC74LVX595  
13  
12  
14  
OE  
RCK  
15  
1
D
Q
D
D
D
D
D
D
D
D
Q
SI  
QA  
QB  
QC  
QD  
QE  
QF  
QG  
QH  
SRA  
STRA  
R
D
Q
Q
SRB  
STRB  
R
D
2
Q
Q
SRC  
STRC  
R
D
3
Q
Q
SRD  
STRD  
PARALLEL  
DATA  
OUTPUTS  
R
D
4
Q
Q
SRE  
STRE  
R
D
5
Q
Q
SRF  
STRF  
R
D
6
Q
Q
SRG  
STRG  
R
D
7
Q
Q
11  
10  
SRH  
STRH  
SCK  
R
9
SCLR  
SQH  
Figure 4. Expanded Logic Diagram  
http://onsemi.com  
3
MC74LVX595  
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this highimpedance cir-  
V
V
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
Input Diode Current  
–0.5 to + 7.0  
–0.5 to + 7.0  
CC  
in  
V
V
out  
0.5 to V + 0.5  
V
CC  
I
I
I
I
20  
±20  
±25  
±50  
mA  
mA  
mA  
mA  
mW  
IK  
cuit. For proper operation, V and  
in  
Output Diode Current  
OK  
out  
CC  
V
out  
should be constrained to the  
range GND v (V or V ) v V  
.
DC Output Current, per Pin  
in  
out  
CC  
Unused inputs must always be  
tied to an appropriate logic voltage  
DC Supply Current, V and GND Pins  
CC  
level (e.g., either GND or V ).  
CC  
P
Power Dissipation in Still Air, SOIC Packages†  
TSSOP Package†  
200  
180  
D
Unused outputs must be left open.  
T
stg  
Storage Temperature  
–65 to + 150  
°C  
* Absolute maximum continuous ratings are those values beyond which damage to the device  
may occur. Exposure to these conditions or conditions beyond those indicated may  
adversely affect device reliability. Functional operation under absolutemaximumrated  
conditions is not implied.  
†Derating — SOIC Packages: – 7.0 mW/°C from 65° to 125°C  
— TSSOP Package: 6.1 mW/°C from 65° to 125°C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Characteristics  
Min  
2.0  
0.0  
0.0  
55  
0
Max  
3.6  
Unit  
V
V
V
V
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
CC  
IN  
5.5  
V
V
V
OUT  
CC  
T
A
Operating Temperature Range  
Input Rise and Fall Time  
+85  
100  
°C  
ns/V  
t , t  
V
= 3.3 V ± 0.3 V  
CC  
r
f
DC ELECTRICAL CHARACTERISTICS  
T
A
= 25°C  
T
A
85°C  
V
CC  
Min  
Typ  
Max  
Min  
Max  
(V)  
Symbol  
Parameter  
Test Conditions  
Unit  
V
HighLevel Input Voltage  
2.0  
3.0  
3.6  
1.5  
2.1  
2.4  
1.5  
2.1  
2.4  
V
IH  
V
V
V
LowLevel Input Voltage  
2.0  
3.0  
3.6  
0.5  
0.8  
0.8  
0.5  
0.8  
0.8  
V
V
V
IL  
HighLevel Output Voltage  
I
I
I
= 50 mA  
OH  
2.0  
3.0  
3.0  
1.9  
2.9  
2.58  
2.0  
3.0  
1.9  
2.9  
2.48  
OH  
OL  
(V = V or V )  
= 50 mA  
= 4 mA  
IN  
IH  
IL  
OH  
OH  
LowLevel Output Voltage  
I
I
I
= 50 mA  
= 50 mA  
= 4 mA  
2.0  
3.0  
3.0  
0.0  
0.0  
0.1  
0.1  
0.36  
0.1  
0.1  
0.44  
OL  
OL  
OL  
(V = V or V )  
IN  
IH  
IL  
I
I
I
3State Output  
OffState Current  
V
V
= V or V  
IL  
3.6  
±0.25  
±0.1  
4.0  
±2.5  
±1.0  
40.0  
mA  
mA  
mA  
OZ  
IN  
IH  
= V or GND  
OUT  
CC  
Input Leakage Current  
V
= 5.5 V or GND  
0 to  
3.6  
IN  
in  
in  
Quiescent Supply Current  
V
= V or GND  
3.6  
CC  
CC  
http://onsemi.com  
4
MC74LVX595  
AC ELECTRICAL CHARACTERISTICS Input t = t = 3.0 ns  
r
f
T
A
= 25°C  
T
A
= 85°C  
Min  
Typ  
Max  
Min  
Max  
Symbol  
Parameter  
Test Conditions  
= 2.7 V C = 15 pF  
Unit  
V
90  
60  
130  
110  
80  
50  
f
Maximum Clock  
Frequency (50% Duty  
Cycle)  
MHz  
CC  
L
max  
R = 1 kW  
C = 50 pF  
L
L
V
= 3.3 V ± 0.3 VC = 15 pF  
100  
75  
150  
130  
100  
90  
CC  
L
R = 1 kW  
C = 50 pF  
L
L
V
V
V
V
V
V
V
= 2.7 V  
C = 15 pF  
C = 50 pF  
L
11.0  
13.5  
14.0  
17.5  
1.0  
1.0  
16.0  
19.5  
t
t
,
Propagation Delay,  
SCK to SQH  
ns  
ns  
ns  
ns  
ns  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
L
PLH  
PHL  
= 3.3 V ± 0.3 VC = 15 pF  
8.8  
11.3  
12.0  
15.5  
1.0  
1.0  
13.5  
17.0  
L
C = 50 pF  
L
= 2.7 V  
C = 15 pF  
10.0  
13.0  
14.0  
17.5  
1.0  
1.0  
16.0  
19.5  
t
Propagation Delay,  
CPLR to SQH  
L
PHL  
C = 50 pF  
L
= 3.3 V ± 0.3 VC = 15 pF  
8.4  
10.9  
12.0  
15.5  
1.0  
1.0  
13.5  
17.0  
L
C = 50 pF  
L
= 2.7 V  
C = 15 pF  
9.5  
12.0  
13.0  
16.5  
1.0  
1.0  
15.0  
18.5  
t
t
,
Propagation Delay,  
RCK to QAQH  
L
PLH  
PHL  
C = 50 pF  
L
= 3.3 V ± 0.3 VC = 15 pF  
7.7  
10.2  
11.0  
14.5  
1.0  
1.0  
12.5  
16.0  
L
C = 50 pF  
L
= 2.7 V  
C = 15 pF  
9.5  
11.0  
12.5  
17.0  
1.0  
1.0  
14.5  
19.0  
t
t
,
Output Enable Time,  
OE to QAQH  
L
PZL  
PZH  
R = 1 kW  
C = 50 pF  
L
L
V
= 3.3 V ± 0.3 VC = 15 pF  
7.5  
9.0  
10.5  
14.0  
1.0  
1.0  
12.0  
15.5  
CC  
L
R = 1 kW  
C = 50 pF  
L
L
V
= 2.7 V  
C = 50 pF  
L
14.0  
17.0  
15.0  
10  
1.0  
19.0  
t
t
,
Output Disable Time,  
OE to QAQH  
CC  
PLZ  
PHZ  
R = 1 kW  
L
V
= 3.3 V ± 0.3 VC = 50 pF  
L
12.0  
1.0  
16.5  
CC  
R = 1 kW  
L
C
C
Input Capacitance  
4
6
10  
10  
pF  
pF  
IN  
ThreeState Output  
Capacitance (Output in  
HighImpedance State),  
QAQH  
OUT  
Typical @ 25°C, V = 3.3 V  
CC  
87  
C
PD  
Power Dissipation Capacitance (Note 1)  
pF  
1. C is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.  
PD  
Average operating current can be obtained by the equation: I  
) = C V f + I . C is used to determine the noload dynamic  
CC(OPR  
PD CC in CC PD  
2
power consumption; P = C V  
f + I V  
.
D
PD  
CC  
in  
CC  
CC  
NOISE CHARACTERISTICS Input t = t = 3.0 ns, C = 50 pF, V = 3.3 V  
r
f
L
CC  
T
A
= 25°C  
Typ  
0.8  
Max  
1.0  
Symbol  
Characteristic  
Unit  
V
Quiet Output Maximum Dynamic V  
V
OLP  
OLV  
IHD  
ILD  
OL  
V
V
V
Quiet Output Minimum Dynamic V  
0.8  
1.0  
3.5  
V
V
V
OL  
Minimum High Level Dynamic Input Voltage  
Maximum Low Level Dynamic Input Voltage  
1.5  
http://onsemi.com  
5
 
MC74LVX595  
TIMING REQUIREMENTS Input t = t = 3.0 ns  
r
f
T
A
= 40 to  
85°C  
T
A
= 25°C  
Typ  
Limit  
3.5  
3.0  
9.0  
7.0  
9.0  
7.0  
2.0  
1.0  
0
Limit  
3.5  
3.0  
9..5  
7.5  
8.5  
7.5  
2.0  
1.0  
0
Symbol  
Parameter  
Test Conditions  
= 2.7 V  
Unit  
V
t
Setup Time, SI to SCK  
ns  
CC  
su  
V
V
V
V
V
V
V
V
= 3.3 V ± 0.3 V  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
= 2.7 V  
t
Setup Time, SCK to RCK  
Setup Time, SCLR to RCK  
Hold Time, SI to SCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CC  
su(H)  
= 3.3 V ± 0.3 V  
= 2.7 V  
V
t
CC  
su(L)  
= 3.3 V ± 0.3 V  
= 2.7 V  
V
t
CC  
h
= 3.3 V ± 0.3 V  
= 2.7 V  
V
t
Hold Time, SCLR to RCK  
CC  
h(L)  
= 3.3 V ± 0.3 V  
= 2.7 V  
0
0
V
2.5  
2.0  
4.0  
4.0  
4.0  
4.0  
2.5  
2.0  
4.0  
4.0  
4.0  
4.0  
t
Recovery Time, SCLR to  
SCK  
CC  
rec  
= 3.3 V ± 0.3 V  
= 2.7 V  
V
t
Pulse Width, SCK or RCK  
Pulse Width, SCLR  
CC  
w
= 3.3 V ± 0.3 V  
= 2.7 V  
V
t
CC  
w(L)  
= 3.3 V ± 0.3 V  
http://onsemi.com  
6
MC74LVX595  
SWITCHING WAVEFORMS  
V
t
CC  
w
SCK  
SQH  
50%  
V
CC  
GND  
50%  
SCLR  
t
w
GND  
1/f  
t
max  
PHL  
t
t
PHL  
PLH  
50% V  
CC  
SQH  
SCK  
50% V  
t
CC  
rec  
V
CC  
50%  
GND  
Figure 5.  
Figure 6.  
V
V
CC  
CC  
RCK  
50%  
50%  
OE  
GND  
GND  
t
t
PLZ  
PZL  
HIGH  
IMPEDANCE  
t
t
PHL  
PLH  
50% V  
CC  
QA−QH  
QA−QH  
V
V
+0.3V  
QA−QH  
OL  
t
t
PHZ  
PZH  
50% V  
CC  
−0.3V  
OH  
50% V  
CC  
HIGH  
IMPEDANCE  
Figure 7.  
Figure 8.  
V
V
CC  
CC  
SCLR  
50%  
50%  
SCK  
RCK  
GND  
GND  
VALID  
V
t
CC  
su(H)  
V
50%  
CC  
SI  
50%  
GND  
t
su  
t
h
GND  
t
w
V
CC  
50%  
SCK or RCK  
GND  
Figure 9.  
Figure 10.  
TEST CIRCUITS  
TEST POINT  
OUTPUT  
TEST POINT  
1 kW  
CONNECT TO V WHEN  
CC  
OUTPUT  
TESTING t AND t  
PLZ  
.
PZL  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
CONNECT TO GND WHEN  
TESTING t AND t  
.
PZH  
PHZ  
C *  
L
C *  
L
*Includes all probe and jig capacitance  
*Includes all probe and jig capacitance  
Figure 11.  
Figure 12.  
http://onsemi.com  
7
MC74LVX595  
CK  
SI  
LR  
CK  
OE  
QA  
QB  
QC  
QD  
QE  
QF  
QG  
QH  
QH  
NOTE:  
output is in a highimpedance state.  
Figure 13. Timing Diagram  
INPUT  
Figure 14. Input Equivalent Circuit  
http://onsemi.com  
8
MC74LVX595  
10 PITCHES  
CUMULATIVE  
TOLERANCE ON  
TAPE  
±0.2 mm  
(±0.008”)  
P
K
t
0
P
D
2
TOP  
COVER  
TAPE  
E
SEE NOTE 2  
A
F
0
W
+
+
+
K
B
0
0
B
1
SEE  
NOTE 2  
D
1
P
FOR COMPONENTS  
2.0 mm × 1.2 mm  
AND LARGER  
EMBOSSMENT  
USER DIRECTION OF FEED  
CENTER  
LINES  
OF CAVITY  
FOR MACHINE REFERENCE  
ONLY  
INCLUDING DRAFT AND RADII  
CONCENTRIC AROUND B  
0
*TOP COVER  
TAPE THICKNESS (t )  
1
0.10 mm  
(0.004”) MAX.  
R MIN.  
TAPE AND COMPONENTS  
SHALL PASS AROUND RADIUS “R”  
WITHOUT DAMAGE  
EMBOSSED  
CARRIER  
EMBOSSMENT  
BENDING RADIUS  
100 mm  
(3.937”)  
MAXIMUM COMPONENT ROTATION  
10°  
1 mm MAX  
TYPICAL  
COMPONENT CAVITY  
CENTER LINE  
TAPE  
1 mm  
(0.039”) MAX  
250 mm  
(9.843”)  
TYPICAL  
CAMBER (TOP VIEW)  
ALLOWABLE CAMBER TO BE 1 mm/100 mm NONACCUMULATIVE OVER 250 mm  
COMPONENT  
CENTER LINE  
2. A , B , and K are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to  
0
0
0
0.50 mm max. The component cannot rotate more than 10° within the determined cavity  
Figure 15. Carrier Tape Specifications  
http://onsemi.com  
9
 
MC74LVX595  
EMBOSSED CARRIER DIMENSIONS (See Notes 3 and 4)  
Tape  
Size  
B
1
Max  
D
D
1
E
F
K
P
P
P
2
R
T
W
0
8 mm  
4.35 mm  
(0.179”)  
1.0 mm  
Min  
3.5 mm  
±0.5  
2.4 mm  
Max  
4.0 mm  
±0.10  
25 mm  
(0.98”)  
8.3 mm  
(0.327)  
1.5 mm  
+ 0.1  
1.75 mm  
±0.1  
4.0 mm  
±0.1  
2.0 mm  
±0.1  
0.6 mm  
(0.024)  
(0.179”)  
(1.38  
±0.002”)  
(0.094”)  
(0.157  
±0.004”)  
0.0  
(0.069  
±0.004”)  
(0.157  
±0.004”)  
(0.079  
±0.004”)  
(0.059”  
+0.004  
0.0)  
12 mm  
8.2 mm  
(0.323”)  
5.5 mm  
±0.5  
6.4 mm  
Max  
4.0 mm  
±0.10  
12.0 mm  
±0.3  
1.5 mm  
Min  
30 mm  
(1.18”)  
(0.217  
±0.002”)  
(0.252”)  
(0.157  
(0.470  
±0.012”)  
(0.060)  
±0.004”)  
8.0 mm  
±0.10  
(0.315  
±0.004”)  
16 mm 12.1 mm  
(0.476”)  
7.5 mm  
±0.10  
7.9 mm  
Max  
4.0 mm  
±0.10  
16.3 mm  
(0.642)  
(0.295  
(0.311”)  
(0.157  
±0.004”)  
±0.004”)  
8.0 mm  
±0.10  
(0.315  
±0.004”)  
12.0 mm  
±0.10  
(0.472  
±0.004”)  
24 mm 20.1 mm  
(0.791”)  
11.5 mm  
±0.10  
11.9 mm  
Max  
16.0 mm  
±0.10  
24.3 mm  
(0.957)  
(0.453  
(0.468”)  
(0.63  
±0.004”)  
±0.004”)  
3. Metric Dimensions GovernEnglish are in parentheses for reference only.  
4. A , B , and K are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to  
0
0
0
0.50 mm max. The component cannot rotate more than 10° within the determined cavity  
http://onsemi.com  
10  
 
MC74LVX595  
t MAX  
13.0 mm ±0.2 mm  
(0.512” ±0.008”)  
1.5 mm MIN  
(0.06”)  
20.2 mm MIN  
(0.795”)  
50 mm MIN  
(1.969”)  
A
FULL RADIUS  
G
Figure 16. Reel Dimensions  
REEL DIMENSIONS  
Tape Size  
T&R Suffix  
A Max  
G
t Max  
8 mm  
T1, T2  
178 mm  
(7”)  
8.4 mm, +1.5 mm, 0.0  
(0.33” + 0.059”, 0.00)  
14.4 mm  
(0.56”)  
8 mm  
T3, T4  
R2  
330 mm  
(13”)  
8.4 mm, +1.5 mm, 0.0  
(0.33” + 0.059”, 0.00)  
14.4 mm  
(0.56”)  
12 mm  
16 mm  
24 mm  
330 mm  
(13”)  
12.4 mm, +2.0 mm, 0.0  
(0.49” + 0.079”, 0.00)  
18.4 mm  
(0.72”)  
R2  
360 mm  
(14.173”)  
16.4 mm, +2.0 mm, 0.0  
(0.646” + 0.078”, 0.00)  
22.4 mm  
(0.882”)  
R2  
360 mm  
(14.173”)  
24.4 mm, +2.0 mm, 0.0  
(0.961” + 0.078”, 0.00)  
30.4 mm  
(1.197”)  
DIRECTION OF FEED  
BARCODE LABEL  
POCKET  
HOLE  
Figure 17. Reel Winding Direction  
http://onsemi.com  
11  
MC74LVX595  
TAPE TRAILER  
(Connected to Reel Hub)  
NO COMPONENTS  
160 mm MIN  
TAPE LEADER  
NO COMPONENTS  
400 mm MIN  
COMPONENTS  
CAVITY TOP TAPE  
TAPE  
DIRECTION OF FEED  
Figure 18. Tape Ends for Finished Goods  
User Direction of Feed  
Figure 19. TSSOP and SOIC R2 Reel Configuration/Orientation  
TAPE UTILIZATION BY PACKAGE  
SC88A / SOT353  
SC88/SOT363  
Tape Size  
8 mm  
SOIC  
TSSOP  
QFN  
5, 6Lead  
12 mm  
16 mm  
24 mm  
8Lead  
8, 14, 16Lead  
20, 24Lead  
48, 56Lead  
8, 14, 16Lead  
20, 24Lead  
48, 56Lead  
14, 16Lead  
18, 20, 24, 28Lead  
http://onsemi.com  
12  
MC74LVX595  
PACKAGE DIMENSIONS  
SOIC16  
D SUFFIX  
CASE 751B05  
ISSUE J  
A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
1
9
8
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
B  
P 8 PL  
M
M
B
0.25 (0.010)  
G
MILLIMETERS  
MIN MAX  
9.80 10.00  
INCHES  
MIN MAX  
DIM  
A
0.386 0.393  
0.150 0.157  
0.054 0.068  
0.014 0.019  
0.016 0.049  
0.050 BSC  
F
K
R X 45°  
B
3.80  
1.35  
0.35  
0.40  
4.00  
1.75  
0.49  
1.25  
C
D
C
F
1.27 BSC  
G
J
T  
0.19  
0.25  
0.25  
7°  
0.008 0.009  
0.004 0.009  
J
SEATING  
M
K
0.10  
0°  
PLANE  
Dꢀ16ꢀPL  
M
P
0° 7°  
0.229 0.244  
5.80  
0.25  
6.20  
0.50  
M
S
S
0.25 (0.010)  
T
B
A
R
0.010 0.019  
TSSOP16  
DT SUFFIX  
CASE 948F01  
ISSUE O  
16X KREF  
M
S
S
V
0.10 (0.004)  
T U  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
0.15 (0.006) T U  
K
K1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR  
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER  
SIDE.  
16  
9
2X L/2  
J1  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
B
SECTION NN  
L
U−  
0.25 (0.010) PER SIDE.  
J
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE DETERMINED AT  
DATUM PLANE −W−.  
S
0.15 (0.006) T U  
A
V−  
M
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
5.10  
4.50  
1.20  
0.15  
0.75  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
N
A
B
4.90  
4.30  
−−−  
0.193  
0.169  
−−−  
F
C
D
0.05  
0.50  
0.002  
0.020  
F
DETAIL E  
G
H
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28  
0.20  
0.16  
0.30  
0.25  
0.007  
0.004  
0.004  
0.007  
0.007  
0.011  
0.008  
0.006  
0.012  
0.010  
J
J1  
K
W−  
C
K1  
L
6.40 BSC  
0.252 BSC  
0
0.10 (0.004)  
M
0
8
8
_
_
_
_
H
DETAIL E  
SEATING  
PLANE  
T−  
D
G
http://onsemi.com  
13  
MC74LVX595  
PACKAGE DIMENSIONS  
SOIC EIAJ16  
M SUFFIX  
CASE 96601  
ISSUE O  
NOTES:  
ꢁꢂ1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
ꢁꢂ2. CONTROLLING DIMENSION: MILLIMETER.  
ꢁꢂ3. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS AND ARE  
MEASURED AT THE PARTING LINE. MOLD FLASH  
OR PROTRUSIONS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
L
16  
9
E
Q
1
H
E
E
M
_
ꢁꢂ4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
ꢁꢂ5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
1
8
L
DETAIL P  
Z
D
VIEW P  
e
MILLIMETERS  
INCHES  
MIN  
A
DIM MIN  
MAX  
2.05  
0.20  
0.50  
0.27  
10.50  
5.45  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
c
A
−−−  
0.05  
0.35  
0.18  
9.90  
5.10  
−−−  
0.002  
0.014  
0.007  
0.390  
0.201  
A
1
b
c
D
E
A
1
b
0.13 (0.005)  
e
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
M
H
7.40  
0.50  
1.10  
8.20  
0.85  
1.50  
0.291  
0.020  
0.043  
0.323  
0.033  
0.059  
E
L
L
E
0
10  
10  
_
0.035  
0.031  
M
Q
0
_
_
_
0.70  
−−−  
0.90  
0.78  
0.028  
−−−  
1
Z
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MC74LVX595/D  

相关型号:

MC74LVX74

LOW-VOLTAGE CMOS
ONSEMI

MC74LVX74D

LOW-VOLTAGE CMOS
ONSEMI

MC74LVX74DR2

Dual D−Type Flip−Flop with Set and Clear
ONSEMI

MC74LVX74DR2G

Dual D−Type Flip−Flop with Set and Clear
ONSEMI

MC74LVX74DT

LOW-VOLTAGE CMOS
ONSEMI

MC74LVX74DTG

Dual D−Type Flip−Flop with Set and Clear
ONSEMI

MC74LVX74DTR2

Dual D−Type Flip−Flop with Set and Clear
ONSEMI

MC74LVX74DTR2G

Dual D−Type Flip−Flop with Set and Clear
ONSEMI

MC74LVX74M

LOW-VOLTAGE CMOS
ONSEMI

MC74LVX74MEL

Dual D−Type Flip−Flop with Set and Clear
ONSEMI

MC74LVX74MELG

Dual D−Type Flip−Flop with Set and Clear
ONSEMI

MC74LVX74MG

Dual D−Type Flip−Flop with Set and Clear
ONSEMI