MC74LVXT4052DT [ONSEMI]

Analog Multiplexer Demultiplexer; 模拟多路复用器多路解复用器
MC74LVXT4052DT
型号: MC74LVXT4052DT
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexer Demultiplexer
模拟多路复用器多路解复用器

解复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总16页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74LVXT4052  
Analog Multiplexer/  
Demultiplexer  
High–Performance Silicon–Gate CMOS  
The MC74LVXT4052 utilizes silicon–gate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low OFF  
leakage currents. This analog multiplexer/demultiplexer controls  
analog voltages that may vary across the complete power supply range  
http://onsemi.com  
MARKING DIAGRAMS  
(from V to V ).  
CC  
EE  
The LVXT4052 is similar in pinout to the high–speed HC4052A  
and the metal–gate MC14052B. The Channel–Select inputs determine  
which one of the Analog Inputs/Outputs is to be connected, by means  
of an analog switch, to the Common Output/Input. When the Enable  
pin is HIGH, all analog switches are turned off.  
16  
9
LVXT4052  
AWLYYWW  
SO–16  
D SUFFIX  
CASE 751B  
1
8
The Channel–Select and Enable inputs are compatible with standard  
TTL levels.  
16  
9
This device has been designed so the ON resistance (R ) is more  
ON  
LVXT  
4052  
AWLYWW  
linear over input voltage than the R of metal–gate CMOS analog  
ON  
switches and High–Speed CMOS analog switches.  
TSSOP–16  
DT SUFFIX  
CASE 948F  
Select Pins Compatible with TTL Levels  
Fast Switching and Propagation Speeds  
1
8
Low Crosstalk Between Switches  
16  
9
Analog Power Supply Range (V – V ) = *3.0 V to )3.0 V  
CC  
EE  
LVXT4052  
ALYW  
Digital (Control) Power Supply Range (V – GND) = 2.5 to 6.0 V  
CC  
SO EIAJ–16  
M SUFFIX  
CASE 966  
Improved Linearity and Lower ON Resistance Than Metal–Gate,  
HSL, or VHC Counterparts  
1
8
Low Noise  
A
L, WL  
Y, YY  
= Assembly Location  
= Wafer Lot  
= Year  
Designed to Operate on a Single Supply with V = GND, or Using  
EE  
Split Supplies up to $ 3.0 V  
W, WW = Work Week  
Break–Before–Make Circuitry  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC74LVXT4052D  
SO–16  
SO–16  
48 Units/Rail  
MC74LVXT4052DR2  
2500 Units/Reel  
MC74LVXT4052DT  
TSSOP–16  
96 Units/Rail  
MC74LVXT4052DTR2 TSSOP–16 2500 Units/Reel  
MC74LVXT4052M  
SO EIAJ–16  
48 Units/Rail  
MC74LVXT4052MEL  
SO EIAJ–16 2000 Units/Reel  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
January, 2002 – Rev. 3  
MC74LVXT4052/D  
MC74LVXT4052  
FUNCTION TABLE  
V
X2  
15  
X1  
14  
X
X0  
12  
X3  
11  
A
B
9
CC  
Control Inputs  
Select  
16  
13  
10  
Enable  
B
A
ON Channels  
L
L
L
L
H
L
L
H
H
X
L
H
L
H
X
Y0  
Y1  
Y2  
Y3  
X0  
X1  
X2  
X3  
1
2
3
4
5
6
7
8
NONE  
Y0  
Y2  
Y
Y3  
Y1 Enable  
V
EE  
GND  
X = Don’t Care  
Figure 1. Pin Connection and Marking Diagram  
(Top View)  
Double–Pole, 4–Position Plus Common Off  
12  
14  
15  
11  
X0  
X1  
X2  
X3  
13  
X SWITCH  
Y SWITCH  
X
COMMON  
OUTPUTS/INPUTS  
ANALOG  
INPUTS/OUTPUTS  
1
5
Y0  
Y1  
Y2  
Y3  
A
3
Y
2
4
10  
9
CHANNELĆSELECT  
INPUTS  
PIN 16 = V  
CC  
PIN 7 = V  
B
EE  
PIN 8 = GND  
6
ENABLE  
NOTE: This device allows independent control of each switch.  
Channel–Select Input A controls the X–Switch, Input B controls the  
Y–Switch.  
Figure 2. Logic Diagram  
http://onsemi.com  
2
MC74LVXT4052  
MAXIMUM RATINGS (Note 1)  
Symbol  
Parameter  
Value  
Unit  
V
V
EE  
V
CC  
Negative DC Supply Voltage  
Positive DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
*7.0 to )0.5  
*0.5 to )7.0  
*0.5 to )7.0  
V
(Referenced to V  
)
EE  
V
V
I
Analog Input Voltage  
V
EE *0.5 to V )0.5  
V
V
IS  
CC  
Digital Input Voltage  
(Referenced to GND)  
*0.5 to 7.0  
$20  
IN  
DC Current, Into or Out of Any Pin  
Storage Temperature Range  
mA  
_C  
T
*65 to )150  
260  
STG  
L
T
T
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature under Bias  
Thermal Resistance  
_C  
)150  
_C  
J
q
SOIC  
TSSOP  
143  
164  
°C/W  
JA  
P
D
Power Dissipation in Still Air,  
SOIC  
TSSOP  
500  
450  
mW  
MSL  
Moisture Sensitivity  
Flammability Rating  
ESD Withstand Voltage  
Level 1  
F
R
Oxygen Index: 30% – 35%  
UL–94–VO (0.125 in)  
V
ESD  
Human Body Model (Note 2)  
Machine Model (Note 3)  
Charged Device Model (Note 4)  
u2000  
u200  
u1000  
V
I
Latch–Up Performance  
Above V and Below GND at 125°C (Note 5)  
$300  
mA  
LATCH–UP  
CC  
1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum–rated  
conditions is not implied.  
2. Tested to EIA/JESD22–A114–A.  
3. Tested to EIA/JESD22–A115–A.  
4. Tested to JESD22–C101–A.  
5. Tested to EIA/JESD78.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
EE  
CC  
Negative DC Supply Voltage  
Positive DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
*6.0  
GND  
V
2.5  
2.5  
6.0  
6.0  
V
(Referenced to V  
)
EE  
V
V
T
Analog Input Voltage  
Digital Input Voltage  
V
V
CC  
V
V
IS  
EE  
(Note 6) (Referenced to GND)  
0
6.0  
IN  
Operating Temperature Range, All Package Types  
*55  
125  
_C  
ns/V  
A
t , t  
r
Input Rise/Fall Time  
(Channel Select or Enable Inputs)  
V
V
= 3.0 V $ 0.3 V  
= 5.0 V $ 0.5 V  
0
0
100  
20  
f
CC  
CC  
6. Unused inputs may not be left open. All inputs must be tied to a high–logic voltage level or a low–logic input voltage level.  
DEVICE JUNCTION TEMPERATURE VERSUS  
TIME TO 0.1% BOND FAILURES  
FAILURE RATE OF PLASTIC = CERAMIC  
UNTIL INTERMETALLICS OCCUR  
Junction  
Temperature °C  
Time, Hours  
1,032,200  
419,300  
178,700  
79,600  
Time, Years  
117.8  
47.9  
80  
90  
1
100  
110  
120  
130  
140  
20.4  
9.4  
1
10  
100  
1000  
37,000  
4.2  
TIME, YEARS  
17,800  
2.0  
Figure 3. Failure Rate vs. Time Junction Temperature  
8,900  
1.0  
http://onsemi.com  
3
MC74LVXT4052  
DC CHARACTERISTICS – Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
*55 to 25°C v85°C v125°C  
V
Symbol  
Parameter  
Condition  
Unit  
V
IH  
Minimum High–Level Input Voltage,  
Channel–Select or Enable Inputs  
3.0  
4.5  
5.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
V
V
IL  
Maximum Low–Level Input Voltage,  
Channel–Select or Enable Inputs  
3.0  
4.5  
5.5  
0.5  
0.8  
0.8  
0.5  
0.8  
0.8  
0.5  
0.8  
0.8  
V
I
I
Maximum Input Leakage Current,  
Channel–Select or Enable Inputs  
V
= 6.0 or GND  
0 V to 6.0 V  
$0.1  
$1.0  
$1.0  
m A  
m A  
IN  
IN  
Maximum Quiescent Supply  
Current (per Package)  
Channel Select, Enable and  
= V or GND  
6.0  
4.0  
40  
80  
CC  
V
IS  
CC  
DC ELECTRICAL CHARACTERISTICS – Analog Section  
Guaranteed Limit  
V
CC  
V
EE  
*55 to 25°C v85_C v125_C  
V
V
Symbol  
Parameter  
Test Conditions  
= V or V  
Unit  
R
Maximum “ON” Resistance  
V
V
S
3.0  
4.5  
0
0
86  
37  
26  
108  
46  
120  
55  
W
ON  
IN  
IS  
IL  
IH  
= ½ (V – V  
)
CC  
EE  
|I | = 2.0 mA  
(Figure 4)  
3.0 *3.0  
33  
37  
R  
Maximum Difference in “ON”  
Resistance Between Any  
Two Channels in the Same  
Package  
V
V
= V or V  
IH  
3.0  
4.5  
0
0
15  
13  
10  
20  
18  
15  
20  
18  
15  
W
ON  
IN  
IS  
IL  
= ½ (V – V  
)
CC  
EE  
|I | = 2.0 mA  
S
3.0 *3.0  
I
off  
Maximum Off–Channel  
Leakage Current, Any One  
Channel  
V
V
= V or V ;  
IH  
5.5  
+3.0  
0
–3.0  
0.1  
0.1  
0.5  
0.5  
1.0  
1.0  
m
A
in  
IL  
= V or GND;  
IO  
CC  
Switch Off (Figure 3)  
Maximum Off–Channel  
Leakage Current,  
V
V
= V or V ;  
IH  
5.5  
+3.0  
0
–3.0  
0.2  
0.2  
2.0  
2.0  
4.0  
4.0  
in  
IL  
= V or GND;  
IO  
CC  
Common Channel  
Switch Off (Figure 4)  
I
on  
Maximum On–Channel  
Leakage Current,  
Channel–to–Channel  
V
= V or V  
;
IH  
5.5  
+3.0  
0
–3.0  
0.2  
0.2  
2.0  
2.0  
4.0  
4.0  
m
A
in  
IL  
Switch–to–Switch =  
V or GND; (Figure 5)  
CC  
AC CHARACTERISTICS (Input t = t = 3 ns)  
r
f
Guaranteed Limit  
*55 to 25_C  
V
V
V
EE  
V
CC  
Min  
Typ*  
Symbol  
Parameter  
Test Conditions  
v85_C v125_C Unit  
t
Minimum Break–Before–Make  
Time  
V
V
= V or V  
3.0  
4.5  
3.0  
0.0  
0.0  
*3.0  
1.0  
1.0  
1.0  
6.5  
5.0  
3.5  
ns  
BBM  
IN  
IS  
IL  
IH  
= V  
CC  
R = 300 WC, = 35 pF  
L
L
(Figures 12 and 13)  
*Typical Characteristics are at 25_C.  
http://onsemi.com  
4
MC74LVXT4052  
AC CHARACTERISTICS (C = 50 pF, Input t = t = 3 ns)  
L
r
f
Guaranteed Limit  
*55 to 25°C  
v85°C  
v125°C  
V
V
V
EE  
V
CC  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Unit  
t
t
,
Maximum Propagation Delay,  
Channel–Select to Analog  
Output  
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
PLH  
PHL  
(Figures 16 and 17)  
*3.0  
t
t
,
Maximum Propagation Delay,  
Enable to Analog Output (Fig-  
ures 14 and 15)  
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
ns  
PLZ  
PHZ  
*3.0  
t
t
,
Maximum Propagation Delay,  
Enable to Analog Output (Fig-  
ures 14 and 15)  
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
PZL  
PZH  
*3.0  
Typical @ 25°C, V = 5.0 V, V = 0V  
CC  
EE  
45  
pF  
pF  
C
C
Power Dissipation Capacitance (Figure 18) (Note 7)  
Maximum Input Capacitance, Channel–Select or Enable Inputs  
PD  
IN  
10  
10  
10  
1.0  
C
Maximum Capacitance  
(All Switches Off)  
Analog I/O  
Common O/I  
Feedthrough  
I/O  
pF  
2
7. Used to determine the no–load dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Typ  
V
CC  
V
EE  
V
V
25°C  
Symbol  
Parameter  
Condition  
Unit  
BW  
Maximum On–Channel  
Bandwidth or Minimum  
Frequency Response  
V
= ½ (V – V )  
EE  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
80  
80  
80  
80  
MHz  
IS  
CC  
Ref and Test Attn = 10 dB  
Source Amplitude = 0 dB  
(Figure 7)  
*3.0  
V
V
Off–Channel Feedthrough  
Isolation  
f = 1 MHz; V = ½ (V – V )  
EE  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
*70  
*70  
*70  
*70  
dB  
dB  
ISO  
IS  
CC  
Adjust Network Analyzer output to 10 dBm on each  
output from the power splitter.  
(Figures 8 and 9)  
*3.0  
Maximum Feedthrough  
On Loss  
V
IS  
= ½ (V – V )  
EE  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
*2  
*2  
*2  
*2  
ONL  
CC  
Adjust Network Analyzer output to 10 dBm on each  
output from the power splitter.  
(Figure 11)  
*3.0  
Q
Charge Injection  
V
R
= V to V  
f
= 1 kHz, t = t = 3 ns  
5.0  
3.0  
0.0  
*3.0  
9.0  
12  
pC  
%
IN  
CC  
EE, IS  
r
f
= 0 W, C = 1000 pF, Q = C * V  
OUT  
IS  
L
L
(Figure 10)  
THD  
Total Harmonic Distortion  
THD + Noise  
f
IS  
= 1 MHz, R = 10 KW, C = 50 pF,  
L
L
V
V
= 5.0 V sine wave  
6.0  
3.0  
0.0  
*3.0  
0.10  
0.05  
IS  
PP  
= 6.0 V sine wave  
IS  
PP  
(Figure 19)  
http://onsemi.com  
5
MC74LVXT4052  
PLOTTER  
PROGRAMMABLE  
POWER  
MINI  
COMPUTER  
DC ANALYZER  
SUPPLY  
*
)
V
CC  
DEVICE  
UNDER TEST  
ANALOG IN  
COMMON OUT  
GND  
GND  
Figure 4. On Resistance, Test Set–Up  
V
CC  
V
CC  
V
CC  
16  
A
V
CC  
ON  
16  
V
EE  
N/C  
COMMON O/I  
V
EE  
OFF  
OFF  
OFF  
A
A
V
V
CC  
V
CC  
ANALOG I/O  
NC  
COMMON O/I  
V
IL  
6
7
8
V
EE  
6
7
8
IH  
V
EE  
Figure 5. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set–Up  
Figure 6. Maximum On Channel Leakage Current,  
Channel to Channel, Test Set–Up  
HP4195A  
Network Anl  
S1 R1 T1  
0.1 m F  
V
IS  
HP11667B  
Pwr Splitter  
V
CC  
100 KW  
0.1 m F  
ON  
All untested Analog I/O pins  
OFF  
50 KW  
Channel Selects  
V
EE  
6
7
8
connected to address  
pins on HP4195A and  
appropriately configured  
to test each switch.  
9 – 11  
Figure 7. Maximum On Channel Bandwidth, Test Set–Up  
http://onsemi.com  
6
MC74LVXT4052  
HP4195A  
Network Anl  
S1 R1 T1  
0.1 m F  
HP11667B  
Pwr Splitter  
0.1 m F  
V
IS  
V
CC  
100 KW  
16  
OFF  
ON  
All untested Analog I/O pins  
50 KW  
Channel Selects  
V
EE  
6
7
8
connected to address  
pins on HP4195A and  
appropriately configured  
to test each switch.  
9 – 11  
Config = Network  
Format = T/R (dB)  
CAL = Trans Cal  
V
ISO  
(dB) = 20 log (V /V  
)
T1 R1  
Display = Rectan X*A)B  
Scale Ref = Auto Scale  
View = Off, Off, Off  
Trig = Cont Mode  
Source Amplitude = )13 dB  
Reference Attenuation = 20 dB  
Test Attenuation = 0 dB  
Figure 8. Maximum Off Channel Feedthrough Isolation, Test Set–Up  
HP4195A  
Network Anl  
S1 R1 T1  
0.1 m F  
V
IS  
HP11667B  
Pwr Splitter  
V
CC  
100 KW  
0.1 m F  
16  
OFF  
ON  
50 KW  
All untested Analog I/O pins  
Channel Selects  
V
EE  
50 W  
6
7
8
connected to address  
pins on HP4195A and  
appropriately configured  
to test each switch.  
9 – 11  
Config = Network  
Format = T/R (dB)  
CAL = Trans Cal  
Display = Rectan X*A)B  
Scale Ref = Auto Scale  
View = Off, Off, Off  
V
(dB) = 20 log (V /V  
)
ISOC  
T1 R1  
Trig = Cont Mode  
Source Amplitude = )13 dB  
Reference Attenuation = 20 dB  
Test Attenuation = 0 dB  
Figure 9. Maximum Common–Channel Feedthrough Isolation, Test Set–Up  
http://onsemi.com  
7
MC74LVXT4052  
V
CC  
16  
ON/OFF  
OFF/ON  
V
OUT  
C *  
L
Enable  
6
V
EE  
Bias Channel Selects to  
test each combination of  
analog inputs to common  
analog output.  
7
8
R
9 – 11  
V
IN  
IS  
*Includes all probe and jig capacitance.  
V
V
IH  
V
IS  
IL  
Q = C * D V  
L
OUT  
D V  
OUT  
V
OUT  
Figure 10. Charge Injection, Test Set–Up  
HP4195A  
Network Anl  
S1 R1 T1  
0.1 m F  
HP11667B  
Pwr Splitter  
0.1 m F  
V
IS  
V
CC  
100 KW  
16  
ON  
All untested Analog I/O pins  
OFF  
50 W  
Channel Selects  
V
EE  
6
7
8
connected to address  
pins on HP4195A and  
appropriately configured  
to test each switch.  
9 – 11  
Config = Network  
Format = T/R (dB)  
CAL = Trans Cal  
Display = Rectan X*A)B  
Scale Ref = Auto Scale  
View = Off, Off, Off  
V
ONL  
(dB) = 20 log (V /V  
)
T1 R1  
Trig = Cont Mode  
Source Amplitude = )13 dB  
Reference Attenuation = 20 dB  
Test Attenuation = 20 dB  
Figure 11. Maximum On Channel Feedthrough On Loss, Test Set–Up  
http://onsemi.com  
8
MC74LVXT4052  
Tek 11801B  
DSO  
V
CC  
COM INPUT  
V
CC  
V
IN  
V
OH  
16  
80%  
OFF  
ON  
80% of  
C
V
OH  
L
R
L
Channel Selects connected  
V
EE  
to V and appropriately  
configured to test each switch.  
IN  
6
7
8
9 – 11  
GND  
t
BBM  
V
IN  
50 W  
Figure 12. Break–Before–Make, Test Set–Up  
Figure 13. Break–Before–Make Time  
V
CC  
V
CC  
16  
COMMON  
O/I  
V
CC  
ON/OFF  
OFF/ON  
TEST  
POINT  
ANALOG I/O  
CHANNEL  
SELECT  
50%  
GND  
C *  
L
6
7
8
t
t
PHL  
PLH  
ANALOG  
OUT  
50%  
CHANNEL SELECT  
*Includes all probe and jig capacitance.  
Figure 14. Propagation Delays, Channel Select  
to Analog Out  
Figure 15. Propagation Delay, Test Set–Up  
Channel Select to Analog Out  
GND  
t
f
t
r
POSITION 1 WHEN TESTING t  
POSITION 2 WHEN TESTING t  
AND t  
AND t  
PHZ  
PLZ  
PZH  
PZL  
V
CC  
1
2
90%  
50%  
10%  
ENABLE  
V
CC  
GND  
1 KΩ  
V
CC  
t
t
t
16  
PZL  
PLZ  
HIGH  
IMPEDANCE  
1
2
ANALOG I/O  
TEST  
POINT  
ON/OFF  
ANALOG  
OUT  
50%  
50%  
10%  
V
OL  
C *  
L
t
PHZ  
PZH  
ENABLE  
6
V
OH  
90%  
ANALOG  
OUT  
7
8
HIGH  
IMPEDANCE  
Figure 16. Propagation Delays, Enable to  
Analog Out  
Figure 17. Propagation Delay, Test Set–Up  
Enable to Analog Out  
http://onsemi.com  
9
MC74LVXT4052  
V
CC  
A
V
CC  
ON/OFF  
OFF/ON  
NC  
V
IL  
15  
10 – 11,  
13 – 14  
12  
Channel  
Select  
Figure 18. Power Dissipation Capacitance, Test Set–Up  
HP3466  
)V  
DMM  
COM  
HP3466  
DMM  
)V  
COM  
HP E3630A  
HP 339  
DC Pwr Supply  
Distortion Measurement Set  
COM )20 V  
*20 V  
Analyzer  
Oscillator  
Input COM Output COM  
16  
ON  
R
C
L
L
OFF  
50 KW  
Channel Selects connected  
to DC bias supply or ground  
and appropriately configured  
to test each switch.  
6
7
8
9 – 11  
Figure 19. Total Harmonic Distortion, Test Set–Up  
http://onsemi.com  
10  
MC74LVXT4052  
APPLICATIONS INFORMATION  
The Channel Select and Enable control pins should be at  
or GND logic levels. V being recognized as a logic  
outputs to V or GND through a low value resistor helps  
CC  
minimize crosstalk and feedthrough noise that may be  
V
CC  
CC  
high and GND being recognized as a logic low. In this  
example:  
picked up by an unused switch.  
Although used here, balanced supplies are not a  
requirement. The only constraints on the power supplies are  
that:  
V
CC  
= )5 V = logic high  
GND = 0 V = logic low  
V
V
V
– GND = 0 to *6 volts  
– GND = 2.5 to 6 volts  
EE  
The maximum analog voltage swing is determined by the  
CC  
supply voltages V and V . The positive peak analog  
CC  
EE  
– V = 2.5 to 6 volts  
CC  
EE  
voltage should not exceed V . Similarly, the negative peak  
CC  
and V v GND  
EE  
analog voltage should not go below V . In this example,  
EE  
the difference between V and V is five volts. Therefore,  
When voltage transients above V and/or below V are  
CC EE  
CC  
EE  
using the configuration of Figure 21, a maximum analog  
signal of five volts peak–to–peak can be controlled. Unused  
analog inputs/outputs may be left floating (i.e., not  
connected). However, tying unused analog inputs and  
anticipated on the analog channels, external Germanium or  
Schottky diodes (D ) are recommended as shown in  
x
Figure 22. These diodes should be able to absorb the  
maximum anticipated current surges during clipping.  
+3.0 V  
+5 V  
+5 V  
+3.0 V  
16  
16  
+3.0 V  
+5 V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON  
ON  
–3.0 V  
GND  
–3.0 V  
GND  
TO EXTERNAL CMOS  
CIRCUITRY 0 to 3.0 V  
DIGITAL SIGNALS  
TO EXTERNAL CMOS  
CIRCUITRY 0 to 5 V  
DIGITAL SIGNALS  
6
7
8
11  
10  
9
6
7
8
11  
10  
9
–3.0 V  
Figure 20. Application Example  
Figure 21. Application Example  
V
CC  
V
CC  
V
CC  
D
D
x
16  
ON/OFF  
x
D
D
x
x
V
EE  
V
EE  
7
8
V
EE  
Figure 22. External Germanium or Schottky Clipping Diodes  
http://onsemi.com  
11  
MC74LVXT4052  
10  
12  
14  
15  
LEVEL  
SHIFTER  
A
B
X0  
X1  
X2  
9
LEVEL  
SHIFTER  
11  
13  
1
X3  
X
6
LEVEL  
SHIFTER  
ENABLE  
Y0  
5
2
4
3
Y1  
Y2  
Y3  
Y
Figure 23. Function Diagram, LVXT4052  
http://onsemi.com  
12  
MC74LVXT4052  
PACKAGE DIMENSIONS  
SOIC–16  
D SUFFIX  
CASE 751B–05  
ISSUE J  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
B
0.25 (0.010)  
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
_
C
G
J
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
K
M
P
R
D
16 PL  
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
http://onsemi.com  
13  
MC74LVXT4052  
PACKAGE DIMENSIONS  
TSSOP–16  
DT SUFFIX  
CASE 948F–01  
ISSUE O  
16X KREF  
M
S
S
0.10 (0.004)  
T
U
V
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
U
0.15 (0.006) T  
K
K1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR  
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER  
SIDE.  
16  
9
2X L/2  
J1  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
B
–U–  
SECTION N–N  
L
J
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE DETERMINED AT  
DATUM PLANE -W-.  
S
0.15 (0.006) T  
U
A
M
MILLIMETERS  
INCHES  
MIN  
–V–  
DIM MIN  
MAX  
5.10  
4.50  
1.20  
0.15  
0.75  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
N
A
B
4.90  
4.30  
---  
0.193  
0.169  
---  
F
C
D
0.05  
0.50  
0.002  
0.020  
F
DETAIL E  
G
H
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28  
0.20  
0.16  
0.30  
0.25  
0.007  
0.004  
0.004  
0.007  
0.007  
0.011  
0.008  
0.006  
0.012  
0.010  
J
J1  
K
–W–  
C
K1  
L
6.40 BSC  
0.252 BSC  
0
0.10 (0.004)  
M
0
8
8
_
_
_
_
H
DETAIL E  
SEATING  
PLANE  
–T–  
D
G
http://onsemi.com  
14  
MC74LVXT4052  
PACKAGE DIMENSIONS  
SOIC EIAJ–16  
M SUFFIX  
CASE 966–01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
9
L
E
Q
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS AND ARE MEASURED  
AT THE PARTING LINE. MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
1
H
E
M
_
E
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
1
8
L
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
DETAIL P  
Z
D
VIEW P  
e
A
c
MILLIMETERS  
INCHES  
MIN  
---  
DIM MIN  
MAX  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
A
---  
0.05  
0.35  
0.18  
9.90  
5.10  
2.05  
A
A
1
1
0.20 0.002  
0.50 0.014  
0.27 0.007  
b
0.13 (0.005)  
b
c
0.10 (0.004)  
M
D
E
10.50 0.390  
5.45 0.201  
e
1.27 BSC  
0.050 BSC  
H
7.40  
0.50  
1.10  
8.20 0.291  
0.85 0.020  
1.50 0.043  
0.323  
0.033  
0.059  
E
L
L
E
0
10  
0.90 0.028  
10  
_
0.035  
0.031  
M
Q
0
_
_
_
0.70  
---  
1
Z
0.78  
---  
http://onsemi.com  
15  
MC74LVXT4052  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
MC74LVXT4052/D  

相关型号:

MC74LVXT4052DTG

Analog Multiplexer/ Demultiplexer
ONSEMI

MC74LVXT4052DTR2

Analog Multiplexer Demultiplexer
ONSEMI

MC74LVXT4052DTR2G

DIFFERENTIAL MULTIPLEXER
ONSEMI

MC74LVXT4052DTRG

暂无描述
ONSEMI

MC74LVXT4052M

Analog Multiplexer Demultiplexer
ONSEMI

MC74LVXT4052MEL

Analog Multiplexer Demultiplexer
ONSEMI

MC74LVXT4052MELG

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4052MG

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4052_05

Analog Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4052_16

Analog Multiplexer/ Demultiplexer
ONSEMI

MC74LVXT4053

Analog Multiplexer/ Demultiplexer
ONSEMI

MC74LVXT4053D

Analog Multiplexer/ Demultiplexer
ONSEMI