MC74LVXT4066 [ONSEMI]

Quad Analog Switch/Multiplexer/Demultiplexer; 四路模拟开关/多路复用器/多路解复用器
MC74LVXT4066
型号: MC74LVXT4066
厂家: ONSEMI    ONSEMI
描述:

Quad Analog Switch/Multiplexer/Demultiplexer
四路模拟开关/多路复用器/多路解复用器

解复用器 开关
文件: 总12页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High–Performance Silicon–Gate CMOS  
The MC74LVXT4066 utilizes silicon–gate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low  
http://onsemi.com  
OFF–channel  
leakage  
current.  
This  
bilateral  
switch/multiplexer/demultiplexer controls analog and digital voltages  
that may vary across the full power–supply range (from V to GND).  
CC  
The LVXT4066 is identical in pinout to the metal–gate CMOS  
MC14066 and the high–speed CMOS HC4066A. Each device has four  
independent switches. The device has been designed so that the ON  
14–LEAD SOIC  
D SUFFIX  
CASE 751A  
14–LEAD TSSOP  
DT SUFFIX  
resistances (R ) are much more linear over input voltage than R  
ON  
ON  
of metal–gate CMOS analog switches.  
CASE 948G  
The ON/OFF control inputs are compatible with standard LSTTL  
outputs. The input protection circuitry on this device allows  
overvoltage tolerance on the ON/OFF control inputs, allowing the  
device to be used as a logic–level translator from 3.0V CMOS logic to  
5.0V CMOS Logic or from 1.8V CMOS logic to 3.0V CMOS Logic  
while operating at the higher–voltage power supply.  
The MC74LVXT4066 input structure provides protection when voltages  
up to 7V are applied, regardless of the supply voltage. This allows the  
MC74LVXT4066 to be used to interface 5V circuits to 3V circuits.  
PIN CONNECTION AND  
MARKING DIAGRAM (Top View)  
V
X
A
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CC  
A ON/OFF  
CONTROL  
Y
A
D ON/OFF  
CONTROL  
Y
B
X
B
X
D
Fast Switching and Propagation Speeds  
High ON/OFF Output Voltage Ratio  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
B ON/OFF  
CONTROL  
Y
D
C ON/OFF  
CONTROL  
Y
C
8
X
C
GND  
Wide Power–Supply Voltage Range (V  
– GND) = 2.0 to 6.0 Volts  
CC  
For detailed package marking information, see the Marking  
Diagram section on page 10 of this data sheet.  
Analog Input Voltage Range (V  
CC  
– GND) = 2.0 to 6.0 Volts  
Improved Linearity and Lower ON Resistance over Input Voltage  
than the MC14016 or MC14066  
Low Noise  
FUNCTION TABLE  
LOGIC DIAGRAM  
On/Off Control  
Input  
State of  
Analog Switch  
1
2
X
A
Y
A
13  
4
L
H
Off  
On  
A ON/OFF CONTROL  
3
X
B
Y
B
5
ANALOG  
OUTPUTS/INPUTS  
B ON/OFF CONTROL  
8
9
X
C
Y
C
ORDERING INFORMATION  
6
C ON/OFF CONTROL  
Device  
Package  
Shipping  
55 Units/Rail  
2500 Units/Reel  
96 Units/Rail  
11  
12  
10  
X
D
Y
D
MC74LVXT4066D  
MC74LVXT4066DR2  
MC74LVXT4066DT  
SOIC  
SOIC  
D ON/OFF CONTROL  
TSSOP  
ANALOG INPUTS/OUTPUTS = X , X , X , X  
B C D  
A
PIN 14 = V  
CC  
MC74LVXT4066DTR2 TSSOP 2500 Units/Reel  
PIN 7 = GND  
Semiconductor Components Industries, LLC, 1999  
1
Publication Order Number:  
March, 2000 – Rev. 1  
MC74LVXT4066/D  
MC74LVXT4066  
MAXIMUM RATINGS*  
Symbol  
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high–impedance cir-  
V
CC  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage (Referenced to GND)  
Digital Input Voltage (Referenced to GND)  
DC Current Into or Out of Any Pin  
– 0.5 to + 7.0  
V
IS  
– 0.5 to V  
+ 0.5  
V
CC  
V
in  
– 0.5 to V  
+ 0.5  
V
CC  
I
–20  
mA  
mW  
cuit. For proper operation, V and  
in  
P
D
Power Dissipation in Still Air,  
SOIC Package†  
TSSOP Package†  
500  
450  
V
should be constrained to the  
out  
range GND (V or V  
)
V
CC  
.
in out  
T
stg  
Storage Temperature  
– 65 to + 150  
260  
C
C
Unused inputs must always be  
tied to an appropriate logic voltage  
T
L
Lead Temperature, 1 mm from Case for 10 Seconds  
level (e.g., either GND or V  
).  
CC  
*Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — SOIC Package: – 7 mW/ C from 65 to 125 C  
Unused outputs must be left open.  
I/O pins must be connected to a  
properly terminated line or bus.  
TSSOP Package: – 6.1 mW/ C from 65 to 125 C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
Max  
Unit  
V
V
CC  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage (Referenced to GND)  
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature, All Package Types  
Input Rise and Fall Time, ON/OFF Control  
5.5  
V
IS  
GND  
GND  
V
V
V
CC  
V
in  
V
CC  
V
IO  
*
1.2  
V
T
A
– 55  
+ 85  
C
t , t  
r f  
ns/V  
Inputs (Figure 10)  
V
CC  
V
CC  
= 3.3 V ± 0.3 V  
= 5.0 V ± 0.5 V  
0
0
100  
20  
*Forvoltagedropsacrosstheswitchgreaterthan1.2V(switchon), excessiveV  
be drawn; i.e., the current out of the switch may contain both V  
CC  
currentmay  
and switch input  
CC  
components. The reliability of the device will be unaffected unless the Maximum Ratings are  
exceeded.  
DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
V
– 55 to  
25 C  
Symbol  
Parameter  
Test Conditions  
Unit  
85 C  
125 C  
V
Minimum High–Level Voltage  
ON/OFF Control Inputs  
(Note 1)  
R
R
= Per Spec  
3.0  
4.5  
5.5  
1.2  
2.0  
2.0  
1.2  
2.0  
2.0  
1.2  
2.0  
2.0  
V
IH  
on  
on  
V
Maximum Low–Level Voltage  
ON/OFF Control Inputs  
(Note 1)  
= Per Spec  
3.0  
4.5  
5.5  
0.53  
0.8  
0.8  
0.53  
0.8  
0.8  
0.53  
0.8  
0.8  
V
IL  
I
Maximum Input Leakage Current  
ON/OFF Control Inputs  
V
= V  
or GND  
or GND  
5.5  
± 0.1  
± 1.0  
± 1.0  
µA  
µA  
in  
in  
CC  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
V
V
= V  
= 0 V  
5.5  
4.0  
40  
160  
CC  
in  
IO  
1. Specifications are for design target only. Not final specification limits.  
http://onsemi.com  
2
MC74LVXT4066  
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)  
Guaranteed Limit  
– 55 to  
V
CC  
V
Symbol  
Parameter  
Test Conditions  
25 C  
Unit  
85 C  
125 C  
R
Maximum “ON” Resistance  
V
V
= V  
= V  
2.0†  
3.0  
4.5  
5.5  
40  
25  
20  
45  
28  
25  
50  
35  
30  
on  
in  
IS  
IH  
to GND  
CC  
2.0 mA (Figures 1, 2)  
I
S
V
V
= V  
2.0  
3.0  
4.5  
5.5  
30  
25  
20  
35  
28  
25  
40  
35  
30  
in  
IS  
IH  
= V  
or GND (Endpoints)  
CC  
2.0 mA (Figures 1, 2)  
I
S
R  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
= V  
= 1/2 (V  
2.0 mA  
3.0  
4.5  
5.5  
15  
10  
10  
20  
12  
12  
25  
15  
15  
on  
in  
IS  
IH  
– GND)  
CC  
I
S
I
Maximum Off–Channel Leakage  
Current, Any One Channel  
V
V
= V  
5.5  
0.1  
0.5  
1.0  
µA  
µA  
off  
in  
IL  
= V  
or GND  
CC  
IO  
Switch Off (Figure 3)  
I
on  
Maximum On–Channel Leakage  
Current, Any One Channel  
V
V
= V  
IH  
= V  
5.5  
0.1  
0.5  
1.0  
in  
IS  
or GND  
CC  
(Figure 4)  
†At supply voltage (V ) approaching 2 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage  
CC  
operation, it is recommended that these devices only be used to control digital signals.  
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, ON/OFF Control Inputs: t = t = 6 ns)  
L
r
f
Guaranteed Limit  
V
CC  
V
– 55 to  
25 C  
Symbol  
Parameter  
Unit  
85 C  
125 C  
t
t
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figures 8 and 9)  
2.0  
3.0  
4.5  
5.5  
4.0  
3.0  
1.0  
1.0  
6.0  
5.0  
2.0  
2.0  
8.0  
6.0  
2.0  
2.0  
ns  
PLH  
PHL  
t
t
,
Maximum Propagation Delay, ON/OFF Control to Analog Output  
(Figures 10 and 11)  
2.0  
3.0  
4.5  
5.5  
30  
20  
15  
15  
35  
25  
18  
18  
40  
30  
22  
20  
ns  
ns  
pF  
PLZ  
PHZ  
t
t
,
Maximum Propagation Delay, ON/OFF Control to Analog Output  
(Figures 10 and 1 1)  
2.0  
3.0  
4.5  
5.5  
20  
12  
8.0  
8.0  
25  
14  
10  
10  
30  
15  
12  
12  
PZL  
PZH  
C
Maximum Capacitance  
ON/OFF Control Input  
10  
10  
10  
Control Input = GND  
Analog I/O  
35  
1.0  
35  
1.0  
35  
1.0  
Feedthrough  
Typical @ 25°C, V  
= 5.0 V  
CC  
C
Power Dissipation Capacitance (Per Switch) (Figure 13)*  
pF  
15  
PD  
2
* Used to determine the no–load dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
http://onsemi.com  
3
MC74LVXT4066  
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)  
V
CC  
V
Limit*  
25 C  
Symbol  
Parameter  
Test Conditions  
= 1 MHz Sine Wave  
Unit  
BW  
Maximum On–Channel Bandwidth  
or Minimum Frequency Response  
(Figure 5)  
f
in  
4.5  
5.5  
150  
160  
MHz  
Adjust f Voltage to Obtain 0 dBm at V  
in  
OS  
Increase f Frequency Until dB Meter Reads – 3 dB  
in  
R
= 50 , C = 10 pF  
L
L
Off–Channel Feedthrough Isolation  
(Figure 6)  
4.5  
5.5  
– 50  
– 50  
dB  
f
Sine Wave  
in  
Adjust f Voltage to Obtain 0 dBm at V  
in IS  
f
in  
= 10 kHz, R = 600 , C = 50 pF  
L L  
f
in  
= 1.0 MHz, R = 50 , C = 10 pF  
4.5  
5.5  
– 37  
– 37  
L
L
Feedthrough Noise, Control to  
Switch  
(Figure 7)  
V
1 MHz Square Wave (t = t = 3 ns)  
4.5  
5.5  
100  
200  
mV  
PP  
in  
r
f
Adjust R at Setup so that I = 0 A  
L
S
R = 600 , C = 50 pF  
L L  
R
= 10 k, C = 10 pF  
4.5  
5.5  
50  
100  
L
L
Crosstalk Between Any Two  
Switches  
(Figure 12)  
4.5  
5.5  
– 70  
– 70  
dB  
%
f
Sine Wave  
in  
Adjust f Voltage to Obtain 0 dBm at V  
in IS  
f
in  
= 10 kHz, R = 600 , C = 50 pF  
L L  
f
in  
= 1.0 MHz, R = 50 , C = 10 pF  
4.5  
5.5  
– 80  
– 80  
L
L
THD  
Total Harmonic Distortion  
(Figure 14)  
f
= 1 kHz, R = 10 k, C = 50 pF  
in  
THD = THD  
L
L
– THD  
Measured  
Source  
V
IS  
V
IS  
= 4.0 V  
sine wave  
sine wave  
4.5  
5.5  
0.10  
0.06  
PP  
PP  
= 5.0 V  
*Guaranteed limits not tested. Determined by design and verified by qualification.  
http://onsemi.com  
4
MC74LVXT4066  
400  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
I = 1mA  
–55°C  
25°C  
s
85°C  
I = 5mA  
s
125°C  
I = 9mA  
s
50  
0
I = 15mA  
s
0
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
Vin (Volts)  
Vin (Volts)  
Figure 1a. Typical On Resistance, V  
= 2.0 V, T = 25°C  
Figure 1b. Typical On Resistance, V  
= 2.0 V  
CC  
CC  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
125°C  
85°C  
25°C  
125°C  
85°C  
25°C  
–55°C  
–55°C  
5
0
0
0
1
2
3
4
0
1
2
3
4
5
Vin (Volts)  
Vin (Volts)  
Figure 1c. Typical On Resistance, V  
CC  
= 3.0 V  
Figure 1d. Typical On Resistance, V  
= 4.5 V  
CC  
18  
16  
PLOTTER  
125°C  
85°C  
14  
12  
10  
8
PROGRAMMABLE  
POWER  
25°C  
MINI COMPUTER  
DC ANALYZER  
SUPPLY  
–55°C  
+
V
CC  
DEVICE  
UNDER TEST  
6
4
2
ANALOG IN  
COMMON OUT  
0
0
1
2
3
4
5
6
GND  
Vin (Volts)  
Figure 2. On Resistance Test Set–Up  
Figure 1e. Typical On Resistance, V  
CC  
= 5.5 V  
http://onsemi.com  
5
MC74LVXT4066  
V
CC  
V
CC  
V
CC  
V
CC  
14  
14  
GND  
N/C  
A
ON  
A
OFF  
GND  
V
CC  
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
IL  
V
IH  
7
7
Figure 3. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set–Up  
Figure 4. Maximum On Channel Leakage Current,  
Test Set–Up  
V
OS  
V
OS  
V
CC  
14  
V
CC  
14  
V
IS  
f
in  
f
in  
ON  
OFF  
dB  
METER  
dB  
METER  
0.1µF  
0.1µF  
C *  
L
C *  
L
R
L
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
CC  
7
7
*Includes all probe and jig capacitance.  
*Includes all probe and jig capacitance.  
Figure 5. Maximum On–Channel Bandwidth  
Test Set–Up  
Figure 6. Off–Channel Feedthrough Isolation,  
Test Set–Up  
V
CC  
V
CC/2  
V
CC/2  
14  
R
R
L
L
V
OS  
I
S
OFF/ON  
V
CC  
C *  
L
50%  
ANALOG IN  
SELECTED  
CONTROL  
INPUT  
GND  
7
V 1 MHz  
t
t
PHL  
in  
PLH  
t = t = 3 ns  
r
f
V
V
IL  
IH  
CONTROL  
50%  
ANALOG OUT  
*Includes all probe and jig capacitance.  
Figure 7. Feedthrough Noise, ON/OFF Control to  
Analog Out, Test Set–Up  
Figure 8. Propagation Delays, Analog In to  
Analog Out  
http://onsemi.com  
6
MC74LVXT4066  
V
CC  
t
r
t
f
14  
V
CC  
90%  
50%  
10%  
CONTROL  
ANALOG IN  
ANALOG OUT  
C *  
TEST  
POINT  
ON  
GND  
L
t
t
PLZ  
PZL  
HIGH  
IMPEDANCE  
50%  
SELECTED  
CONTROL  
INPUT  
V
IH  
10%  
90%  
V
OL  
ANALOG  
OUT  
7
t
t
PHZ  
PZH  
V
OH  
50%  
HIGH  
*Includes all probe and jig capacitance.  
IMPEDANCE  
Figure 9. Propagation Delay Test Set–Up  
Figure 10. Propagation Delay, ON/OFF Control  
to Analog Out  
V
IS  
1
2
POSITION  
POSITION  
WHEN TESTING t  
PHZ  
AND t  
PZH  
V
CC  
WHEN TESTING t  
AND t  
1
2
PLZ  
PZL  
14  
R
L
V
OS  
V
CC  
f
in  
ON  
V
CC  
0.1 µF  
1 kΩ  
14  
1
2
TEST  
POINT  
OFF  
ON/OFF  
V
IH  
OR V  
IL  
R
L
C *  
L
R
L
C *  
L
C *  
L
R
L
SELECTED  
CONTROL  
INPUT  
V
V
IL  
SELECTED  
CONTROL  
INPUT  
IH  
V
CC/2  
V
CC/2  
7
7
V
CC/2  
*Includes all probe and jig capacitance.  
*Includes all probe and jig capacitance.  
Figure 11. Propagation Delay Test Set–Up  
Figure 12. Crosstalk Between Any Two Switches,  
Test Set–Up  
V
CC  
A
V
IS  
V
CC  
V
OS  
14  
0.1 µF  
TO  
N/C  
N/C  
OFF/ON  
f
in  
ON  
DISTORTION  
METER  
C *  
L
R
L
V
SELECTED  
CONTROL  
INPUT  
CC/2  
7
SELECTED  
CONTROL  
INPUT  
V
IH  
7
V
V
IL  
IH  
ON/OFF CONTROL  
*Includes all probe and jig capacitance.  
Figure 13. Power Dissipation Capacitance  
Test Set–Up  
Figure 14. Total Harmonic Distortion, Test Set–Up  
http://onsemi.com  
7
MC74LVXT4066  
0
10  
20  
30  
40  
FUNDAMENTAL FREQUENCY  
50  
60  
70  
80  
90  
DEVICE  
SOURCE  
1.0  
2.0  
FREQUENCY (kHz)  
3.0  
Figure 15. Plot, Harmonic Distortion  
APPLICATION INFORMATION  
The ON/OFF Control pins should be at V or V logic  
IH IL  
Therefore, using the configuration in Figure 16, a maximum  
analog signal of six volts peak–to–peak can be controlled.  
levels, V being recognized as logic high and V being  
IH IL  
recognized as a logic low. Unused analog inputs/outputs  
may be left floating (not connected). However, it is  
When voltage transients above V and/or below GND  
CC  
are anticipated on the analog channels, external diodes (Dx)  
are recommended as shown in Figure 17. These diodes  
should be small signal, fast turn–on types able to absorb the  
maximum anticipated current surges during clipping. An  
alternate method would be to replace the Dx diodes with  
Mosorbs (Mosorb is an acronym for high current surge  
protectors). Mosorbs are fast turn–on devices ideally suited  
for precise DC protection with no inherent wear out  
mechanism.  
advisable to tie unused analog inputs and outputs to V  
or  
CC  
GND through a low value resistor. This minimizes crosstalk  
and feedthrough noise that may be picked–up by the unused  
I/O pins.  
The maximum analog voltage swings are determined by  
thesupplyvoltagesV andGND.Thepositivepeakanalog  
CC  
voltageshouldnotexceedV .Similarly,thenegativepeak  
CC  
analog voltage should not go below GND. In the example  
below, the difference between V  
and GND is six volts.  
CC  
V
CC  
V
CC  
V
CC  
= 6.0 V  
D
D
14  
x
16  
x
+ 6.0 V  
0 V  
+ 6.0 V  
ANALOG I/O  
ANALOG O/I  
ON  
ON  
0 V  
D
x
D
x
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
IH  
V
IH  
OTHER CONTROL  
OTHER CONTROL  
INPUTS  
INPUTS  
7
7
(V OR V )  
(V OR V )  
IH  
IL  
IH  
IL  
Figure 16. 6.0 V Application  
Figure 17. Transient Suppressor Application  
http://onsemi.com  
8
MC74LVXT4066  
+3 V  
+5 V  
+3V  
+3V  
14  
14  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
GND  
GND  
LVXT4066  
LVXT4066  
LSTTL/  
NMOS/  
ABT/  
5
6
5
6
1.8 – 2.5V  
CIRCUITRY  
CONTROL  
INPUTS  
CONTROL  
INPUTS  
ALS  
14  
15  
14  
15  
7
7
R* = 2 TO 10 kΩ  
a. Low Voltage Logic Level Shifting Control  
b. Using LVXT4066  
Figure 18. Low Voltage CMOS Interface  
1 OF 4  
SWITCHES  
CHANNEL 4  
CHANNEL 3  
CHANNEL 2  
CHANNEL 1  
1 OF 4  
SWITCHES  
COMMON I/O  
1 OF 4  
SWITCHES  
1 OF 4  
SWITCHES  
OUTPUT  
1 OF 4  
INPUT  
+
LF356 OR  
EQUIVALENT  
SWITCHES  
0.01 µF  
1
2
3
4
CONTROL INPUTS  
Figure 19. 4–Input Multiplexer  
Figure 20. Sample/Hold Amplifier  
http://onsemi.com  
9
MC74LVXT4066  
MARKING DIAGRAMS  
(Top View)  
14 13 12 11 10  
9
6
8
7
14  
13  
12  
11  
10  
9
6
8
7
LVXT  
4066  
LVXT4066  
AWLYWW*  
ALYW*  
1
2
3
4
5
1
2
3
4
5
14–LEAD SOIC  
D SUFFIX  
14–LEAD TSSOP  
DT SUFFIX  
CASE 751A  
CASE 948G  
*See Applications Note #AND8004/D for date code and traceability information.  
PACKAGE DIMENSIONS  
D SUFFIX  
PLASTIC SOIC PACKAGE  
CASE 751A–03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–A–  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
14  
1
8
7
P 7 PL  
–B–  
M
M
0.25 (0.010)  
B
MILLIMETERS  
INCHES  
MIN MAX  
G
F
R X 45°  
DIM MIN  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
C
A
B
C
D
F
G
J
K
M
P
8.55  
3.80  
1.35  
0.35  
0.40  
0.337 0.344  
0.150 0.157  
0.054 0.068  
0.014 0.019  
0.016 0.049  
0.050 BSC  
J
M
SEATING  
PLANE  
K
D 14 PL  
1.27 BSC  
0.19  
0.10  
0°  
0.25  
0.25  
7°  
0.008 0.009  
0.004 0.009  
M
S
S
0.25 (0.010)  
T
B
A
0°  
7°  
5.80  
0.25  
6.20  
0.50  
0.228 0.244  
0.010 0.019  
R
http://onsemi.com  
10  
MC74LVXT4066  
PACKAGE DIMENSIONS  
DT SUFFIX  
PLASTIC TSSOP PACKAGE  
CASE 948G–01  
ISSUE O  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
M
S
S
0.10 (0.004)  
T U  
V
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
–U–  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
L
N
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE W.  
S
K
0.15 (0.006) T U  
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
K1  
–V–  
A
B
C
4.90  
4.30  
–––  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
––– 0.047  
D
F
0.05  
0.50  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION N–N  
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
0.19  
–W–  
C
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
M
0
8
0
8
SEATING  
PLANE  
–T–  
H
G
DETAIL E  
D
http://onsemi.com  
11  
MC74LVXT4066  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
withoutfurthernoticetoanyproductsherein. SCILLCmakesnowarranty,representationorguaranteeregardingthesuitabilityofitsproductsforanyparticular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLCproductsarenotdesigned, intended, orauthorizedforuseascomponentsinsystemsintendedforsurgicalimplantintothebody, orotherapplications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorneyfees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, England, Ireland  
MC74LVXT4066/D  

相关型号:

MC74LVXT4066D

Quad Analog Switch/Multiplexer/Demultiplexer
ONSEMI

MC74LVXT4066DR2

Quad Analog Switch/Multiplexer/Demultiplexer
ONSEMI

MC74LVXT4066DR2G

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4066DT

Quad Analog Switch/Multiplexer/Demultiplexer
ONSEMI

MC74LVXT4066DTG

QUAD 1-CHANNEL, SGL POLE SGL THROW SWITCH, PDSO14, GREEN, TSSOP-14
ONSEMI

MC74LVXT4066DTR2

Quad Analog Switch/Multiplexer/Demultiplexer
ONSEMI

MC74LVXT4066DTR2G

Quad Analog Switch/ Multiplexer/Demultiplexer
ONSEMI

MC74LVXT4066DTRG

Quad Analog Switch/ Multiplexer/Demultiplexer
ONSEMI

MC74LVXT4066M

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4066MEL

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4066MELG

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT4066MG

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI