MC74LVXT8053DR2G [ONSEMI]

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS; 模拟多路复用器/多路解复用器高性能硅栅CMOS
MC74LVXT8053DR2G
型号: MC74LVXT8053DR2G
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
模拟多路复用器/多路解复用器高性能硅栅CMOS

解复用器 开关 复用器或开关 信号电路 光电二极管 栅
文件: 总12页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC74LVXT8053  
Analog Multiplexer /  
Demultiplexer  
High−Performance Silicon−Gate CMOS  
The MC74LVXT8053 utilizes silicon−gate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low OFF  
leakage currents. This analog multiplexer/demultiplexer controls  
analog voltages that may vary across the complete power supply range  
http://onsemi.com  
MARKING  
DIAGRAMS  
(from V to GND).  
CC  
The LVXT8053 is similar in pinout to the high−speed HC4053A,  
and the metal−gate MC14053B. The Channel−Select inputs determine  
which one of the Analog Inputs/Outputs is to be connected by means  
of an analog switch to the Common Output/Input. When the Enable  
pin is HIGH, all analog switches are turned off.  
The Channel−Select and Enable inputs are compatible with  
TTL−type input thresholds. The input protection circuitry on this  
device allows overvoltage tolerance on the input, allowing the device  
to be used as a logic−level translator from 3.0 V CMOS logic to 5.0 V  
CMOS Logic or from 1.8 V CMOS logic to 3.0 V CMOS Logic while  
operating at the higher−voltage power supply.  
16  
SOIC−16  
D SUFFIX  
CASE 751B  
LVXT8053  
AWLYWW  
1
16  
LVXT  
8053  
ALYW  
TSSOP−16  
DT SUFFIX  
CASE 948F  
The MC74LVXT8053 input structure provides protection when  
voltages up to 7.0 V are applied, regardless of the supply voltage. This  
allows the MC74LVXT8053 to be used to interface 5.0 V circuits to  
3.0 V circuits.  
1
This device has been designed so that the ON resistance (R ) is  
on  
more linear over input voltage than R of metal−gate CMOS analog  
switches.  
on  
16  
1
SOEIAJ−16  
M SUFFIX  
CASE 966  
LVXT8053  
ALYW  
Features  
Fast Switching and Propagation Speeds  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
Analog Power Supply Range (V − GND) = 2.0 V to 6.0 V  
CC  
A
=
=
=
=
Assembly Location  
Wafer Lot  
Year  
Digital (Control) Power Supply Range (V − GND) = 2.0 V to 6.0 V  
WL or L  
Y
WW or W  
CC  
Improved Linearity and Lower ON Resistance Than Metal−Gate  
Work Week  
Counterparts  
Low Noise  
In Compliance With the Requirements of JEDEC Standard No. 7A  
Pb−Free Packages are Available*  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
March, 2005 − Rev. 4  
MC74LVXT8053/D  
MC74LVXT8053  
FUNCTION TABLE − MC74LVXT8053  
Control Inputs  
V
Y
X
X1  
13  
X0  
12  
A
B
C
9
CC  
16  
15  
14  
11  
10  
Select  
Enable  
C
B
A
ON Channels  
L
L
L
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
H
L
H
L
H
X
Z0  
Y0  
Y0  
Y1  
Y1  
Y0  
Y0  
Y1  
Y1  
NONE  
X0  
Z0  
Z0  
Z0  
Z1  
Z1  
Z1  
Z1  
X1  
X0  
X1  
X0  
X1  
X0  
X1  
L
1
2
3
4
Z
5
6
7
8
H
H
H
H
X
L
Y1  
Y0  
Z1  
Z0 Enable NC GND  
H
H
X
PIN CONNECTION AND  
MARKING DIAGRAM (Top View)  
X = Don’t Care  
12  
13  
X0  
X1  
14  
X
Y
Z
X SWITCH  
2
1
Y0  
Y1  
15  
ANALOG  
COMMON  
OUTPUTS/INPUTS  
Y SWITCH  
Z SWITCH  
INPUTS/OUTPUTS  
5
3
Z0  
Z1  
4
11  
10  
9
A
B
C
CHANNEL-SELECT  
INPUTS  
PIN 16 = V  
CC  
PIN 8 = GND  
6
ENABLE  
NOTE: This device allows independent control of each switch. Channel−Select Input A  
controls the X−Switch, Input B controls the Y−Switch and Input C controls the Z−Switch  
Figure 1. LOGIC DIAGRAM  
Triple Single−Pole, Double−Position Plus Common Off  
ORDERING INFORMATION  
Device  
Package  
Shipping  
MC74LVXT8053DR2  
MC74LVXT8053DR2G  
SOIC−16  
2500 Tape & Reel  
2500 Tape & Reel  
SOIC−16  
(Pb−Free)  
MC74LVXT8053DTR2  
MC74LVXT8053M  
TSSOP−16*  
SOEIAJ−16  
2500 Tape & Reel  
50 Units / Rail  
50 Units / Rail  
MC74LVXT80531MG  
SOEIAJ−16  
(Pb−Free)  
MC74LVXT8053MEL  
MC74LVXT8053MELG  
SOEIAJ−16  
2000 Tape & Reel  
2000 Tape & Reel  
SOEIAJ−16  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*This package is inherently Pb−Free.  
http://onsemi.com  
2
MC74LVXT8053  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this high−impedance cir-  
V
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage  
–0.5 to + 7.0  
CC  
V
−0.5 to V + 0.5  
V
IS  
CC  
V
Digital Input Voltage (Referenced to GND)  
DC Current, Into or Out of Any Pin  
–0.5 to V + 0.5  
V
in  
CC  
I
−20  
mA  
mW  
cuit. For proper operation, V and  
in  
P
D
Power Dissipation in Still Air,  
SOIC Package†  
TSSOP Package†  
500  
450  
V
out  
should be constrained to the  
range GND v (V or V ) v V  
.
in  
out  
CC  
Unused inputs must always be  
tied to an appropriate logic voltage  
T
stg  
Storage Temperature Range  
–65 to + 150  
260  
°C  
°C  
T
L
Lead Temperature, 1 mm from Case for 10 Seconds  
level (e.g., either GND or V ).  
CC  
Unused outputs must be left open.  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings  
applied to the device are individual stress limit values (not normal operating conditions) and are  
not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
†Derating − SOIC Package: – 7 mW/°C from 65°C to 125°C  
TSSOP Package: − 6.1 mW/°C from 65°C to 125°C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
Max  
Unit  
V
V
CC  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage  
6.0  
V
IS  
0.0  
V
CC  
V
CC  
V
V
in  
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature Range, All Package Types  
GND  
V
V *  
IO  
1.2  
V
T
A
–55  
+ 85  
°C  
ns/V  
t , t  
Input Rise/Fall Time  
r
f
(Channel Select or Enable Inputs)  
V
CC  
V
CC  
= 3.3 V ± 0.3 V  
= 5.0 V ± 0.5 V  
0
0
100  
20  
*For voltage drops across switch greater than 1.2 V (switch on), excessive V current may be  
CC  
drawn; i.e., the current out of the switch may contain both V and switch input components. The  
CC  
reliability of the device will be unaffected unless the Maximum Ratings are exceeded.  
DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
−55 to 25°C 85°C 125°C  
V
Symbol  
Parameter  
Condition  
= Per Spec  
Unit  
V
IH  
Minimum High−Level Input Voltage,  
Channel−Select or Enable Inputs  
R
R
3.0  
4.5  
5.5  
1.2  
2.0  
2.0  
1.2  
2.0  
2.0  
1.2  
2.0  
2.0  
V
on  
on  
V
IL  
Maximum Low−Level Input Voltage,  
Channel−Select or Enable Inputs  
= Per Spec  
3.0  
4.5  
5.5  
0.53  
0.8  
0.53  
0.8  
0.53  
0.8  
V
0.8  
0.8  
0.8  
I
Maximum Input Leakage Current,  
Channel−Select or Enable Inputs  
V
= V or GND,  
5.5  
± 0.1  
± 1.0  
± 1.0  
mA  
mA  
in  
in  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
Channel Select, Enable and  
= V or GND; V = 0 V  
5.5  
4
40  
160  
CC  
V
IS  
CC  
IO  
http://onsemi.com  
3
MC74LVXT8053  
DC ELECTRICAL CHARACTERISTICS Analog Section  
Guaranteed Limit  
v
v
V
V
CC  
85°C  
125°C  
−55 to 25°C  
Symbol  
Parameter  
Test Conditions  
= V or V  
Unit  
R
Maximum “ON” Resistance  
W
V
V
3.0  
4.5  
5.5  
40  
30  
25  
45  
32  
28  
50  
37  
30  
on  
in  
IL  
IH  
= V to GND  
IS  
CC  
|I | v 10.0 mA (Figures 1, 2)  
S
V
V
= V or V  
IH  
3.0  
4.5  
5.5  
30  
25  
20  
35  
28  
25  
40  
35  
30  
in  
IL  
= V or GND (Endpoints)  
IS  
CC  
|I | v 10.0 mA (Figures 1, 2)  
S
DR  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
= V or V  
IH  
3.0  
4.5  
5.5  
15  
8.0  
8.0  
20  
12  
12  
25  
15  
15  
W
on  
in  
IL  
= 1/2 (V − GND)  
IS  
CC  
|I | v 10.0 mA  
S
mA  
I
off  
Maximum Off−Channel Leakage  
Current, Any One Channel  
V
V
= V or V ;  
IH  
5.5  
5.5  
5.5  
0.1  
0.1  
0.1  
0.5  
1.0  
1.0  
1.0  
2.0  
2.0  
in  
IL  
= V or GND;  
IO  
CC  
Switch Off (Figure 3)  
Maximum Off−Channel  
Leakage Current,  
Common Channel  
V
V
= V or V ;  
IL IH  
in  
= V or GND;  
IO  
CC  
Switch Off (Figure 4)  
I
on  
Maximum On−Channel  
Leakage Current,  
Channel−to−Channel  
V
in  
= V or V  
;
IH  
mA  
IL  
Switch−to−Switch =  
V or GND; (Figure 5)  
CC  
AC CHARACTERISTICS (C = 50 pF, Input t = t = 3 ns)  
L
r
f
Guaranteed Limit  
−55 to 25°C 85°C 125°C  
V
V
CC  
Symbol  
Parameter  
Unit  
t
t
t
t
,
Maximum Propagation Delay, Channel−Select to Analog Output  
(Figure 9)  
2.0  
3.0  
4.5  
5.5  
30  
20  
15  
15  
35  
25  
18  
18  
40  
30  
22  
20  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figure 10)  
2.0  
3.0  
4.5  
5.5  
4.0  
3.0  
1.0  
1.0  
6.0  
5.0  
2.0  
2.0  
8.0  
6.0  
2.0  
2.0  
ns  
ns  
ns  
PLH  
t
PHL  
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.0  
3.0  
4.5  
5.5  
30  
20  
15  
15  
35  
25  
18  
18  
40  
30  
22  
20  
PLZ  
t
PHZ  
,
Maximum Propagation Delay, Enable to Analog Output  
(Figure 11)  
2.0  
3.0  
4.5  
5.5  
20  
12  
8.0  
8.0  
25  
14  
10  
10  
30  
15  
12  
12  
PZL  
t
PZH  
C
Maximum Input Capacitance, Channel−Select or Enable Inputs  
10  
35  
50  
1.0  
10  
35  
50  
1.0  
10  
35  
50  
1.0  
pF  
pF  
in  
C
Maximum Capacitance  
(All Switches Off)  
Analog I/O  
I/O  
Common O/I  
Feedthrough  
Typical @ 25°C, V = 5.0 V  
CC  
C
45  
PD  
Power Dissipation Capacitance (Figure 13)*  
pF  
2
* Used to determine the no−load dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
http://onsemi.com  
4
MC74LVXT8053  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Limit*  
V
CC  
25°C  
V
Symbol  
Parameter  
Condition  
= 1MHz Sine Wave; Adjust f Voltage to Obtain 0dBm  
Unit  
BW  
Maximum On−Channel Bandwidth  
f
in  
MHz  
in  
or Minimum Frequency Response at V ; Increase f Frequency Until dB Meter Reads −3  
OS  
in  
120  
120  
120  
3.0  
4.5  
5.5  
(Figure 6)  
dB;  
R = 50 W, C = 10 pF  
L
L
Off−Channel Feedthrough  
Isolation (Figure 7)  
f
V
= Sine Wave; Adjust f Voltage to Obtain 0 dBm at  
−50  
−50  
−50  
dB  
3.0  
4.5  
5.5  
in  
in  
IS  
f
in  
= 10kHz, R = 600 W, C = 50 pF  
L L  
3.0  
4.5  
5.5  
−37  
−37  
−37  
f
in  
= 1.0MHz, R = 50W, C = 10pF  
L L  
Feedthrough Noise.  
Channel−Select Input to Common Setup so that I = 0A;  
I/O (Figure 8)  
V
1MHz Square Wave (t = t = 3 ns); Adjust R at  
25  
105  
135  
mV  
3.0  
4.5  
5.5  
in  
r
f
L
PP  
S
Enable = GND  
R = 600 W, C = 50pF  
L L  
3.0  
4.5  
5.5  
35  
145  
190  
R = 10 kW, C = 10pF  
L
L
Crosstalk Between Any Two  
Switches (Figure 12)  
f
in  
= Sine Wave; Adjust f Voltage to Obtain 0dBm at V  
IS  
−50  
−50  
−50  
dB  
3.0  
4.5  
5.5  
in  
f
in  
= 10 kHz, R = 600W, C = 50pF  
L L  
3.0  
4.5  
5.5  
−60  
−60  
−60  
f
in  
= 1.0MHz, R = 50W, C = 10pF  
L L  
THD  
Total Harmonic Distortion  
(Figure 14)  
f
= 1kHz, R = 10 kW, C = 50pF  
%
in  
L
L
THD = THD  
− THD  
measured  
source  
V
= 2.0V sine wave  
3.0  
4.5  
5.5  
0.10  
0.08  
0.05  
IS  
PP  
V
IS  
V
IS  
= 4.0V sine wave  
PP  
= 5.0V sine wave  
PP  
*Limits not tested. Determined by design and verified by qualification.  
http://onsemi.com  
5
MC74LVXT8053  
45  
40  
35  
30  
25  
20  
15  
10  
5
125°C  
85°C  
25°C  
−ꢀ55°C  
0
0
1.0  
2.0  
3.0  
4.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 1a. Typical On Resistance, VCC = 3.0 V  
35  
30  
25  
20  
15  
30  
25  
125°C  
85°C  
25°C  
125°C  
20  
85°C  
25°C  
−ꢀ55°C  
15  
−ꢀ55°C  
10  
10  
5
5
0
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
V , INPUT VOLTAGE (VOLTS)  
IN  
V , INPUT VOLTAGE (VOLTS)  
IN  
Figure 1b. Typical On Resistance, VCC = 4.5 V  
Figure 1c. Typical On Resistance, VCC = 5.5 V  
PLOTTER  
PROGRAMMABLE  
POWER  
SUPPLY  
MINI COMPUTER  
DC ANALYZER  
+
V
CC  
DEVICE  
UNDER TEST  
ANALOG IN  
COMMON OUT  
GND  
GND  
Figure 1. On Resistance Test Set−Up  
http://onsemi.com  
6
MC74LVXT8053  
V
CC  
V
CC  
V
V
CC  
CC  
16  
16  
GND  
GND  
ANALOG I/O  
OFF  
OFF  
OFF  
OFF  
A
V
V
CC  
V
CC  
COMMON O/I  
NC  
COMMON O/I  
V
IH  
6
8
6
8
IH  
Figure 2. Maximum Off Channel Leakage Current,  
Any One Channel, Test Set−Up  
Figure 3. Maximum Off Channel Leakage Current,  
Common Channel, Test Set−Up  
V
CC  
V
OS  
V
CC  
V
CC  
16  
16  
0.1 mF  
A
dB  
METER  
f
in  
ON  
ON  
N/C  
R
L
GND  
C *  
L
COMMON O/I  
OFF  
V
CC  
ANALOG I/O  
V
IL  
6
8
6
8
*Includes all probe and jig capacitance  
Figure 4. Maximum On Channel Leakage Current,  
Channel to Channel, Test Set−Up  
Figure 5. Maximum On Channel Bandwidth,  
Test Set−Up  
V
CC  
V
CC  
V
IS  
V
OS  
16  
16  
0.1 mF  
dB  
METER  
R
L
f
in  
OFF  
ON/OFF  
OFF/ON  
COMMON O/I  
TEST  
POINT  
ANALOG I/O  
R
L
R
L
C *  
L
R
L
C *  
L
R
L
6
8
6
8
V
CC  
V
1 MHz  
11  
in  
t = t = 3 ns  
r
f
V
IH  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
V
IL  
or V  
V
IL  
IH  
Figure 6. Off Channel Feedthrough Isolation,  
Test Set−Up  
Figure 7. Feedthrough Noise, Channel Select to  
Common Out, Test Set−Up  
http://onsemi.com  
7
MC74LVXT8053  
V
CC  
V
CC  
16  
V
CC  
ON/OFF  
OFF/ON  
COMMON O/I  
C *  
CHANNEL  
SELECT  
TEST  
POINT  
50%  
ANALOG I/O  
GND  
L
t
t
PHL  
PLH  
6
8
ANALOG  
OUT  
50%  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 9a. Propagation Delays, Channel Select  
to Analog Out  
Figure 9b. Propagation Delay, Test Set−Up Channel  
Select to Analog Out  
V
CC  
16  
COMMON O/I  
C *  
ANALOG I/O  
TEST  
POINT  
V
CC  
ON  
ANALOG  
IN  
50%  
L
GND  
t
t
PHL  
PLH  
6
8
ANALOG  
OUT  
50%  
*Includes all probe and jig capacitance  
Figure 10a. Propagation Delays, Analog In  
to Analog Out  
Figure 10b. Propagation Delay, Test Set−Up  
Analog In to Analog Out  
t
t
POSITION 1 WHEN TESTING t  
AND t  
PZH  
POSITION 2 WHEN TESTING t AND t  
f
r
PHZ  
1
2
PLZ  
PZL  
V
CC  
90%  
50%  
10%  
ENABLE  
V
CC  
GND  
1kW  
V
CC  
16  
t
t
PLZ  
PZL  
HIGH  
IMPEDANCE  
1
2
ANALOG I/O  
ENABLE  
TEST  
POINT  
ON/OFF  
ANALOG  
OUT  
50%  
t
C *  
L
10%  
V
OL  
t
V
IH  
PZH  
PHZ  
V
IL  
6
8
V
OH  
90%  
ANALOG  
OUT  
50%  
HIGH  
IMPEDANCE  
Figure 11a. Propagation Delays, Enable to  
Analog Out  
Figure 11b. Propagation Delay, Test Set−Up  
Enable to Analog Out  
http://onsemi.com  
8
MC74LVXT8053  
V
CC  
V
IS  
A
V
CC  
16  
16  
R
L
V
OS  
ON/OFF  
OFF/ON  
COMMON O/I  
f
in  
ON  
NC  
ANALOG I/O  
0.1mF  
OFF  
R
L
R
L
C *  
L
C *  
L
V
CC  
R
L
6
8
6
8
11  
CHANNEL SELECT  
*Includes all probe and jig capacitance  
Figure 12. Crosstalk Between Any Two  
Switches, Test Set−Up  
Figure 13. Power Dissipation Capacitance,  
Test Set−Up  
0
−ꢀ10  
−ꢀ20  
−ꢀ30  
−ꢀ40  
V
IS  
FUNDAMENTAL FREQUENCY  
V
CC  
V
OS  
16  
0.1mF  
TO  
DISTORTION  
METER  
f
in  
ON  
R
L
C *  
L
−ꢀ50  
−ꢀ60  
DEVICE  
SOURCE  
6
8
−ꢀ70  
−ꢀ80  
−ꢀ90  
*Includes all probe and jig capacitance  
100  
1.0  
2.0  
3.125  
FREQUENCY (kHz)  
Figure 14a. Total Harmonic Distortion, Test Set−Up  
Figure 14b. Plot, Harmonic Distortion  
APPLICATIONS INFORMATION  
The Channel Select and Enable control pins should be at connected). However, tying unused analog inputs and  
V
CC  
or GND logic levels. V being recognized as a logic  
outputs to V or GND through a low value resistor helps  
CC  
CC  
high and GND being recognized as a logic low. In this  
example:  
minimize crosstalk and feedthrough noise that may be  
picked up by an unused switch.  
Although used here, balanced supplies are not a  
requirement. The only constraints on the power supplies are  
that:  
V
= +5V = logic high  
CC  
GND = 0V = logic low  
The maximum analog voltage swing is determined by the  
supply voltages V . The positive peak analog voltage  
V
CC  
− GND = 2 to 6 volts  
CC  
should not exceed V . Similarly, the negative peak analog  
When voltage transients above V and/or below GND  
CC  
CC  
voltage should not go below GND. In this example, the  
are anticipated on the analog channels, external Germanium  
difference between V and GND is five volts. Therefore,  
or Schottky diodes (D ) are recommended as shown in  
CC  
x
using the configuration of Figure 15, a maximum analog  
signal of five volts peak−to−peak can be controlled. Unused  
analog inputs/outputs may be left floating (i.e., not  
Figure 16. These diodes should be able to absorb the  
maximum anticipated current surges during clipping.  
http://onsemi.com  
9
MC74LVXT8053  
V
CC  
V
CC  
+5V  
V
CC  
D
D
16  
x
16  
ON/OFF  
x
+5V  
0V  
+5V  
0V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON  
D
x
D
x
GND  
GND  
TO EXTERNAL LSTTL COMPATIBLE  
CIRCUITRY 0 to V  
DIGITAL SIGNALS  
6
8
11  
10  
9
IH  
8
Figure 15. Application Example  
Figure 16. External Germanium or  
Schottky Clipping Diodes  
+3V  
+5V  
16  
16  
+3V  
+5V  
+3V  
+5V  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ANALOG  
SIGNAL  
ON/OFF  
ON/OFF  
GND  
GND  
GND  
GND  
1.8 − 2.5V  
6
8
11  
10  
9
6
8
11  
10  
9
1.8 − 2.5V  
CIRCUITRY  
1.8 − 2.5V  
CIRCUITRY  
MC74VHC1GT50 BUFFERS  
= 3.0V  
V
CC  
a. Low Voltage Logic Level Shifting Control  
b. 2−Stage Logic Level Shifting Control  
Figure 17. Interfacing Low Voltage CMOS Inputs  
11  
10  
9
13  
LEVEL  
SHIFTER  
A
X1  
12  
14  
1
X0  
X
LEVEL  
SHIFTER  
B
Y1  
2
15  
3
Y0  
Y
LEVEL  
SHIFTER  
C
Z1  
5
4
Z0  
Z
6
LEVEL  
SHIFTER  
ENABLE  
Figure 18. Function Diagram, LVXT8053  
http://onsemi.com  
10  
MC74LVXT8053  
PACKAGE DIMENSIONS  
SOIC−16  
D SUFFIX  
CASE 751B−05  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
16  
9
8
−B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
0.386  
G
DIM MIN  
MAX  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
C
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
−T−  
SEATING  
PLANE  
K
M
P
R
J
7
0
_
_
_
_
M
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
D
16 PL  
M
S
S
A
0.25 (0.010)  
T
B
TSSOP−16  
DT SUFFIX  
CASE 948F−01  
ISSUE A  
NOTES:  
16X KREF  
1. DIMENSIONING AND TOLERANCING PER  
M
S
S
V
ANSI Y14.5M, 1982.  
0.10 (0.004)  
T
U
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
S
0.15 (0.006) T U  
K
K1  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
16  
9
2X L/2  
J1  
B
−U−  
SECTION N−N  
L
J
PIN 1  
IDENT.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
8
1
N
0.25 (0.010)  
S
0.15 (0.006) T U  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
M
−V−  
A
B
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
N
C
1.20  
−−− 0.047  
D
F
0.15 0.002 0.006  
0.75 0.020 0.030  
F
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
DETAIL E  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
−W−  
C
6.40 BSC  
0.252 BSC  
M
0
8
0
8
_
_
_
_
0.10 (0.004)  
DETAIL E  
H
SEATING  
PLANE  
−T−  
D
G
http://onsemi.com  
11  
MC74LVXT8053  
SOEIAJ−16  
M SUFFIX  
CASE 966−01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
9
L
E
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS AND ARE MEASURED  
AT THE PARTING LINE. MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
Q
1
H
E
M
_
E
4. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
1
8
L
5. THE LEAD WIDTH DIMENSION (b) DOES NOT  
INCLUDE DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)  
TOTAL IN EXCESS OF THE LEAD WIDTH  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSIONS AND ADJACENT LEAD  
TO BE 0.46 ( 0.018).  
DETAIL P  
Z
D
VIEW P  
e
A
c
MILLIMETERS  
INCHES  
MIN  
−−−  
DIM MIN  
MAX  
MAX  
0.081  
0.008  
0.020  
0.011  
0.413  
0.215  
A
−−−  
0.05  
0.35  
0.18  
9.90  
5.10  
2.05  
A
A
1
0.20 0.002  
0.50 0.014  
0.27 0.007  
1
b
0.13 (0.005)  
b
c
0.10 (0.004)  
M
D
E
10.50  
5.45 0.201  
0.390  
e
1.27 BSC  
0.050 BSC  
H
7.40  
0.50  
1.10  
8.20 0.291  
0.85 0.020  
1.50 0.043  
0.323  
0.033  
0.059  
E
L
L
E
M
Q
0
10  
0.90 0.028  
10  
_
0.035  
0.031  
0
_
_
_
0.70  
−−−  
1
Z
0.78  
−−−  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC74LVXT8053/D  

相关型号:

MC74LVXT8053DT

Analog Multiplexer/Demultiplexer
ONSEMI

MC74LVXT8053DT

6-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16, PLASTIC, TSSOP-16
MOTOROLA

MC74LVXT8053DTR2

Analog Multiplexer/Demultiplexer
ONSEMI

MC74LVXT8053DTR2G

SGL ENDED MULTIPLEXER
ONSEMI

MC74LVXT8053DTRG

Analog Multiplexer/Demultiplexer (Mux/Demux)
ONSEMI

MC74LVXT8053M

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT8053MEL

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT8053MELG

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT8053MG

TRIPLE 2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16, EIAJ, SOP-16
ONSEMI

MC74LVXT8053_05

Analog Multiplexer / Demultiplexer High−Performance Silicon−Gate CMOS
ONSEMI

MC74LVXT8053_11

Analog Multiplexer/Demultiplexer
ONSEMI

MC74LVXU04

Hex Inverter(Unbuffered)
ONSEMI