MC74VHCXXXXDT [ONSEMI]

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS; 四路模拟开关/多路复用器/多路解复用器高性能硅栅CMOS
MC74VHCXXXXDT
型号: MC74VHCXXXXDT
厂家: ONSEMI    ONSEMI
描述:

Quad Analog Switch/Multiplexer/Demultiplexer High−Performance Silicon−Gate CMOS
四路模拟开关/多路复用器/多路解复用器高性能硅栅CMOS

解复用器 开关 栅
文件: 总13页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
Quad Analog Switch/  
Multiplexer/Demultiplexer  
MC74VHC4066  
HighPerformance SiliconGate CMOS  
The MC74VHC4066 utilizes silicongate CMOS technology to  
achieve fast propagation delays, low ON resistances, and low  
D SUFFIX  
14LEAD SOIC PACKAGE  
CASE 751A03  
OFFchannel  
leakage  
current.  
This  
bilateral  
switch/multiplexer/demultiplexer controls analog and digital voltages  
that may vary across the full powersupply range (from V to GND).  
CC  
The VHC4066 is identical in pinout to the metalgate CMOS  
MC14066 and the highspeed CMOS HC4066A. Each device has four  
independent switches. The device has been designed so that the ON  
DT SUFFIX  
14LEAD TSSOP PACKAGE  
CASE 948G01  
resistances (R ) are much more linear over input voltage than R  
ON  
ON  
of metalgate CMOS analog switches.  
The ON/OFF control inputs are compatible with standard CMOS  
outputs; with pullup resistors, they are compatible with LSTTL  
outputs. For analog switches with voltagelevel translators, see the  
VHC4316.  
ORDERING INFORMATION  
MC74VHCXXXXD  
MC74VHCXXXXDT  
SOIC  
TSSOP  
Fast Switching and Propagation Speeds  
High ON/OFF Output Voltage Ratio  
Low Crosstalk Between Switches  
Diode Protection on All Inputs/Outputs  
PIN ASSIGNMENT  
V
CC  
X
A
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Wide PowerSupply Voltage Range (V GND) = 2.0 to 12.0 Volts  
CC  
A ON/OFF  
CONTROL  
Y
A
Analog Input Voltage Range (V GND) = 2.0 to 12.0 Volts  
CC  
D ON/OFF  
CONTROL  
Y
B
Improved Linearity and Lower ON Resistance over Input Voltage  
than the MC14016 or MC14066  
Low Noise  
X
B
X
D
B ON/OFF  
CONTROL  
Y
Y
X
D
C
C ON/OFF  
CONTROL  
Chip Complexity: 44 FETs or 11 Equivalent Gates  
8
GND  
w These devices are available in Pbfree package(s). Specifications herein  
apply to both standard and Pbfree devices. Please see our website at  
www.onsemi.com for specific Pbfree orderable part numbers, or  
contact your local ON Semiconductor sales office or representative.  
C
FUNCTION TABLE  
On/Off Control  
State of  
Input  
Analog Switch  
L
H
Off  
On  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
March, 2006 Rev. 5  
MC74VHC4066/D  
1
2
3
X
Y
A
A
13  
4
A ON/OFF CONTROL  
X
B
Y
B
Y
C
Y
D
ANALOG  
5
B ON/OFF CONTROL  
OUTPUTS/INPUTS  
8
9
X
C
6
C ON/OFF CONTROL  
ANALOG INPUTS/OUTPUTS = X , X , X , X  
D
A
B
C
11  
12  
10  
PIN 14 = V  
CC  
PIN 7 = GND  
X
D
D ON/OFF CONTROL  
Figure 1. Logic Diagram  
MAXIMUM RATINGS*  
Symbol  
V
Parameter  
Value  
Unit  
V
This device contains protection  
circuitry to guard against damage  
due to high static voltages or electric  
fields. However, precautions must  
be taken to avoid applications of any  
voltage higher than maximum rated  
voltages to this highimpedance cir-  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage (Referenced to GND)  
Digital Input Voltage (Referenced to GND)  
DC Current Into or Out of Any Pin  
– 0.5 to + 14.0  
CC  
V
IS  
– 0.5 to V + 0.5  
V
CC  
V
in  
– 0.5 to V + 0.5  
V
CC  
I
± 25  
mA  
mW  
cuit. For proper operation, V and  
in  
P
D
Power Dissipation in Still Air,  
SOIC Package†  
TSSOP Package†  
500  
450  
V
out  
should be constrained to the  
range GND v (V or V ) v V  
.
in  
out  
CC  
T
stg  
Storage Temperature  
– 65 to + 150  
260  
_C  
_C  
Unused inputs must always be  
tied to an appropriate logic voltage  
T
L
Lead Temperature, 1 mm from Case for 10 Seconds  
level (e.g., either GND or V ).  
CC  
*Maximum Ratings are those values beyond which damage to the device may occur.  
Unused outputs must be left open.  
I/O pins must be connected to a  
properly terminated line or bus.  
Functional operation should be restricted to the Recommended Operating Conditions.  
†Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C  
TSSOP Package: 6.1 mW/_C from 65_ to 125_C  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
2.0  
Max  
Unit  
V
V
CC  
Positive DC Supply Voltage (Referenced to GND)  
Analog Input Voltage (Referenced to GND)  
Digital Input Voltage (Referenced to GND)  
Static or Dynamic Voltage Across Switch  
Operating Temperature, All Package Types  
Input Rise and Fall Time, ON/OFF Control  
12.0  
V
IS  
GND  
GND  
V
CC  
V
CC  
V
V
in  
V
V *  
IO  
1.2  
V
T
A
– 55 + 125  
_C  
ns  
t , t  
r
f
Inputs (Figure 14)  
V
V
V
V
= 2.0 V  
= 3.0 V  
= 4.5 V  
= 9.0 V  
0
0
0
0
0
1000  
600  
500  
400  
250  
CC  
CC  
CC  
CC  
V
CC  
= 12.0 V  
*For voltage drops across the switch greater than 1.2 V (switch on), excessive V current may  
CC  
be drawn; i.e., the current out of the switch may contain both V  
and switch input  
CC  
components. The reliability of the device will be unaffected unless the Maximum Ratings are  
exceeded.  
http://onsemi.com  
2
DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
– 55 to  
v
V
V
CC  
25_C  
125_C  
v 85_C  
Symbol  
Parameter  
Test Conditions  
= Per Spec  
Unit  
V
IH  
Minimum HighLevel Voltage  
ON/OFF Control Inputs  
R
R
2.0  
3.0  
1.5  
2.1  
1.5  
2.1  
1.5  
2.1  
V
on  
on  
4.5  
9.0  
12.0  
3.15  
6.3  
8.4  
3.15  
6.3  
8.4  
3.15  
6.3  
8.4  
V
IL  
Maximum LowLevel Voltage  
ON/OFF Control Inputs  
= Per Spec  
2.0  
3.0  
0.5  
0.9  
0.5  
0.9  
0.5  
0.9  
V
4.5  
9.0  
1.35  
2.7  
1.35  
2.7  
1.35  
2.7  
12.0  
3.6  
3.6  
3.6  
I
Maximum Input Leakage  
Current  
ON/OFF Control Inputs  
V
= V or GND  
12.0  
± 0.1  
± 1.0  
± 1.0  
μA  
μA  
in  
in  
CC  
I
Maximum Quiescent Supply  
Current (per Package)  
V
V
= V or GND  
6.0  
12.0  
2
4
20  
40  
40  
160  
CC  
in  
IO  
CC  
= 0 V  
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)  
Guaranteed Limit  
– 55 to  
v
V
V
CC  
25_C  
125_C  
v 85_C  
Symbol  
Parameter  
Test Conditions  
Unit  
R
Maximum “ON” Resistance  
Ω
V
V
I
= V  
2.0†  
3.0†  
4.5  
9.0  
12.0  
200  
100  
100  
on  
in  
IH  
= V to GND  
v 2.0 mA  
IS  
CC  
120  
70  
70  
160  
85  
85  
S
(Figures 2 through 7)  
V
V
I
= V  
2.0  
3.0  
4.5  
9.0  
12.0  
70  
50  
30  
85  
60  
60  
100  
80  
in  
IH  
= V or GND (Endpoints)  
v 2.0 mA  
IS  
CC  
S
(Figures 2 through 7)  
80  
ΔR  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package  
V
V
I
= V  
IH  
= 1/2 (V GND)  
v 2.0 mA  
2.0  
4.5  
9.0  
20  
15  
15  
25  
20  
20  
30  
25  
25  
Ω
on  
in  
IS  
CC  
S
12.0  
I
I
Maximum OffChannel  
Leakage  
Current, Any One Channel  
V
V
= V  
IL  
12.0  
12.0  
0.1  
0.5  
1.0  
μA  
μA  
off  
in  
= V or GND  
IO  
CC  
Switch Off (Figure NO TAG)  
Maximum OnChannel  
Leakage  
V
V
= V  
IH  
0.1  
0.5  
1.0  
on  
in  
= V or GND  
IS  
CC  
Current, Any One Channel  
(Figure NO TAG)  
†At supply voltage (V ) approaching 3 V the analog switchon resistance becomes extremely nonlinear. Therefore, for lowvoltage  
CC  
operation, it is recommended that these devices only be used to control digital signals.  
http://onsemi.com  
3
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, ON/OFF Control Inputs: t = t = 6 ns)  
L
r
f
Guaranteed Limit  
– 55 to  
v
V
V
CC  
25_C  
125_C  
v 85_C  
Symbol  
Parameter  
Unit  
t
t
t
,
Maximum Propagation Delay, Analog Input to Analog Output  
(Figures 18 and 13)  
2.0  
3.0  
4.5  
40  
30  
5
50  
40  
7
60  
50  
8
ns  
PLH  
t
PHL  
9.0  
12.0  
5
5
7
7
8
8
,
Maximum Propagation Delay, ON/OFF Control to Analog Output  
(Figures 14 and 15)  
2.0  
3.0  
4.5  
9.0  
12.0  
80  
60  
20  
20  
20  
90  
70  
25  
25  
25  
110  
80  
35  
35  
35  
ns  
ns  
pF  
PLZ  
t
PHZ  
,
Maximum Propagation Delay, ON/OFF Control to Analog Output  
(Figures 14 and 15)  
2.0  
3.0  
4.5  
9.0  
12.0  
80  
45  
20  
20  
20  
90  
50  
25  
25  
25  
100  
60  
30  
30  
30  
PZL  
t
PZH  
C
Maximum Capacitance  
ON/OFF Control Input  
10  
10  
10  
Control Input = GND  
Analog I/O  
35  
1.0  
35  
1.0  
35  
1.0  
Feedthrough  
Typical @ 25°C, V = 5.0 V  
CC  
15  
C
Power Dissipation Capacitance (Per Switch) (Figure 17)*  
pF  
PD  
2
* Used to determine the noload dynamic power consumption: P = C  
V
f + I  
V
.
D
PD CC  
CC CC  
http://onsemi.com  
4
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)  
Limit*  
25_C  
74HC  
V
V
CC  
Symbol  
Parameter  
Test Conditions  
= 1 MHz Sine Wave  
Unit  
BW  
Maximum OnChannel Bandwidth or  
Minimum Frequency Response  
(Figure NO TAG)  
f
in  
4.5  
9.0  
12.0  
150  
160  
160  
MHz  
Adjust f Voltage to Obtain 0 dBm at V  
in  
OS  
Increase f Frequency Until dB Meter Reads  
in  
– 3 dB  
R = 50 Ω, C = 10 pF  
L
L
OffChannel Feedthrough Isolation  
(Figure NO TAG)  
f
Sine Wave  
4.5  
9.0  
12.0  
50  
50  
50  
dB  
in  
Adjust f Voltage to Obtain 0 dBm at V  
in IS  
f
in  
= 10 kHz, R = 600 Ω, C = 50 pF  
L
L
f
in  
= 1.0 MHz, R = 50 Ω, C = 10 pF  
4.5  
9.0  
12.0  
40  
40  
40  
L
L
Feedthrough Noise, Control to  
Switch  
(Figure NO TAG)  
V
v 1 MHz Square Wave (t = t = 6 ns)  
4.5  
9.0  
12.0  
60  
130  
200  
mV  
in  
r
f
PP  
Adjust R at Setup so that I = 0 A  
L
S
R = 600 Ω, C = 50 pF  
L
L
R = 10 kΩ, C = 10 pF  
4.5  
9.0  
30  
65  
L
L
12.0  
100  
Crosstalk Between Any Two  
Switches  
(Figure 16)  
f
Sine Wave  
4.5  
9.0  
12.0  
– 70  
– 70  
– 70  
dB  
%
in  
Adjust f Voltage to Obtain 0 dBm at V  
in  
IS  
f
in  
= 10 kHz, R = 600 Ω, C = 50 pF  
L
L
f
in  
= 1.0 MHz, R = 50 Ω, C = 10 pF  
4.5  
9.0  
12.0  
– 80  
– 80  
– 80  
L
L
THD  
Total Harmonic Distortion  
(Figure 20)  
f
in  
= 1 kHz, R = 10 kΩ, C = 50 pF  
L
L
THD = THD  
THD  
Measured  
Source  
V
V
= 4.0 V sine wave  
4.5  
9.0  
12.0  
0.10  
0.06  
0.04  
IS  
IS  
PP  
= 8.0 V sine wave  
PP  
V
IS  
= 11.0 V sine wave  
PP  
*Guaranteed limits not tested. Determined by design and verified by qualification.  
400  
350  
300  
250  
200  
150  
+25 _C  
+125_C  
55_C  
100  
50  
0
0.00  
0.20  
0.40  
0.60  
0.80  
1.00  
1.20  
1.40  
1.60  
1.80  
2.00  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO GROUND  
is  
Figure 2. Typical On Resistance, VCC = 2.0 V  
http://onsemi.com  
5
200  
180  
160  
140  
120  
100  
80  
+25 _C  
+125_C  
55_C  
60  
40  
20  
0
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
4.50  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO GROUND  
is  
Figure 3. Typical On Resistance, VCC = 4.5 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+25 _C  
+125_C  
55_C  
0.00  
0.50  
1.00  
1.50  
2.00  
2.50  
3.00  
3.50  
4.00  
4.50  
5.00  
5.50  
6.00  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO GROUND  
is  
Figure 4. Typical On Resistance, VCC = 6.0 V  
http://onsemi.com  
6
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+25 _C  
+125_C  
55_C  
0.00  
1.00  
2.00  
3.00  
4.00  
5.00  
6.00  
7.00  
8.00  
9.00  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO GROUND  
is  
Figure 5. Typical On Resistance, VCC = 9.0 V  
60  
50  
40  
30  
20  
10  
0
+25 _C  
+125_C  
55_C  
0.00  
1.00  
2.00  
3.00  
4.00  
5.00  
6.00  
7.00  
8.00  
9.00 10.00 11.00 12.00  
V , INPUT VOLTAGE (VOLTS), REFERENCED TO GROUND  
is  
Figure 6. Typical On Resistance, VCC = 12 V  
http://onsemi.com  
7
PLOTTER  
V
CC  
V
CC  
PROGRAMMABLE  
POWER  
SUPPLY  
MINI COMPUTER  
DC ANALYZER  
14  
GND  
A
OFF  
V
CC  
+
V
CC  
DEVICE  
UNDER TEST  
SELECTED  
CONTROL  
INPUT  
V
IL  
ANALOG IN  
COMMON OUT  
7
GND  
Figure 7. On Resistance Test SetUp  
Figure 8. Maximum Off Channel Leakage Current,  
Any One Channel, Test SetUp  
V
OS  
V
CC  
V
CC  
14  
V
CC  
14  
f
in  
ON  
dB  
N/C  
A
ON  
0.1μF  
C *  
L
METER  
GND  
SELECTED  
CONTROL  
INPUT  
V
CC  
SELECTED  
CONTROL  
INPUT  
V
IH  
7
7
*Includes all probe and jig capacitance.  
Figure 9. Maximum On Channel Leakage Current,  
Figure 10. Maximum OnChannel Bandwidth  
Test SetUp  
Test SetUp  
V
CC  
V
CC/2  
V
CC/2  
V
OS  
V
CC  
V
IS  
14  
14  
f
in  
OFF  
R
R
L
L
dB  
V
OS  
0.1μF  
C *  
L
R
L
METER  
I
OFF/ON  
S
C *  
L
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
7
V 1 MHz  
7
in  
t = t = 6 ns  
r
f
V
CC  
CONTROL  
*Includes all probe and jig capacitance.  
GND  
*Includes all probe and jig capacitance.  
Figure 11. OffChannel Feedthrough Isolation,  
Test SetUp  
Figure 12. Feedthrough Noise, ON/OFF Control to  
Analog Out, Test SetUp  
http://onsemi.com  
8
V
CC  
14  
V
CC  
ANALOG IN  
ANALOG OUT  
C *  
TEST  
ON  
POINT  
50%  
ANALOG IN  
L
GND  
t
t
PHL  
PLH  
SELECTED  
CONTROL  
INPUT  
V
CC  
50%  
7
ANALOG OUT  
*Includes all probe and jig capacitance.  
Figure 18. Propagation Delays, Analog In to  
Analog Out  
Figure 13. Propagation Delay Test SetUp  
1
POSITIONꢀꢀꢁWHEN TESTING t  
AND t  
PZH  
PHZ  
2
POSITIONꢀꢀWHEN TESTING t AND t  
t
r
t
f
PLZ  
PZL  
1
2
V
CC  
90%  
50%  
10%  
V
CC  
CONTROL  
V
CC  
1 kΩ  
14  
GND  
1
2
t
t
t
PLZ  
TEST  
POINT  
PZL  
HIGH  
ON/OFF  
IMPEDANCE  
C *  
L
50%  
50%  
10%  
90%  
V
OL  
SELECTED  
CONTROL  
INPUT  
ANALOG  
OUT  
t
PZH  
PHZ  
V
OH  
7
HIGH  
IMPEDANCE  
*Includes all probe and jig capacitance.  
Figure 14. Propagation Delay, ON/OFF Control  
to Analog Out  
Figure 15. Propagation Delay Test SetUp  
V
IS  
V
CC  
V
CC  
14  
R
L
V
OS  
A
f
in  
ON  
0.1 μF  
14  
OFF  
N/C  
OFF/ON  
N/C  
V
CC  
OR GND  
R
L
C *  
L
R
L
C *  
L
R
L
SELECTED  
CONTROL  
INPUT  
V
CC/2  
V
CC/2  
SELECTED  
CONTROL  
INPUT  
7
7
V
CC/2  
ON/OFF CONTROL  
*Includes all probe and jig capacitance.  
Figure 16. Crosstalk Between Any Two Switches,  
Figure 17. Power Dissipation Capacitance  
Test SetUp  
Test SetUp  
http://onsemi.com  
9
0
−ꢂ10  
−ꢂ20  
−ꢂ30  
−ꢂ40  
V
IS  
FUNDAMENTAL FREQUENCY  
V
CC  
V
OS  
0.1 μF  
TO  
f
in  
ON  
DISTORTION  
METER  
C *  
L
R
L
−ꢂ50  
−ꢂ60  
−ꢂ70  
−ꢂ80  
−ꢂ90  
DEVICE  
V
CC/2  
SOURCE  
SELECTED  
CONTROL  
INPUT  
V
CC  
7
1.0  
2.0  
FREQUENCY (kHz)  
3.0  
*Includes all probe and jig capacitance.  
Figure 20. Total Harmonic Distortion, Test SetUp  
Figure 19. Plot, Harmonic Distortion  
the example below, the difference between VCC and GND is  
twelve volts. Therefore, using the configuration in Figure 21,  
a maximum analog signal of twelve volts peaktopeak can  
be controlled.  
When voltage transients above VCC and/or below GND  
are anticipated on the analog channels, external diodes  
(Dx) are recommended as shown in Figure 22. These  
diodes should be small signal, fast turnon types able to  
absorb the maximum anticipated current surges during  
clipping. An alternate method would be to replace the Dx  
diodes with Mosorbs (high current surge protectors).  
Mosorbs are fast turnon devices ideally suited for precise  
DC protection with no inherent wear out mechanism.  
APPLICATION INFORMATION  
The ON/OFF Control pins should be at VCC or GND logic  
levels, VCC being recognized as logic high and GND being  
recognized as a logic low. Unused analog inputs/outputs  
may be left floating (not connected). However, it is  
advisable to tie unused analog inputs and outputs to VCC or  
GND through a low value resistor. This minimizes crosstalk  
and feedthrough noise that may be pickedup by the  
unused I/O pins.  
The maximum analog voltage swings are determined by  
the supply voltages VCC and GND. The positive peak  
analog voltage should not exceed VCC. Similarly, the  
negative peak analog voltage should not go below GND. In  
V
CC  
= 12 V  
V
CC  
V
CC  
14  
D
D
+ 12 V  
0 V  
D
D
+ 12 V  
0 V  
x
x
16  
ANALOG I/O  
ANALOG O/I  
ON  
ON  
x
x
SELECTED  
CONTROL  
INPUT  
SELECTED  
CONTROL  
INPUT  
V
CC  
OTHER CONTROL  
INPUTS  
(V OR GND)  
OTHER CONTROL  
INPUTS  
(V OR GND)  
7
CC  
7
CC  
Figure 21. 12 V Application  
Figure 22. Transient Suppressor Application  
http://onsemi.com  
10  
 
+
                                          
5 V  
+ꢂ5 V  
14  
14  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
VHCT  
R* R* R* R*  
VHC4066  
VHC4066  
LSTTL/  
NMOS  
LSTTL/  
NMOS  
BUFFER  
5
6
5
6
CONTROL  
INPUTS  
CONTROL  
INPUTS  
14  
15  
14  
15  
7
7
R* = 2 TO 10 kΩ  
a. Using Pull-Up Resistors  
b. Using HCT Buffer  
Figure 23. LSTTL/NMOS to HCMOS Interface  
V
DD  
= 5 V  
V
CC  
= 5 TO 12 V  
1
16  
14  
13  
3
ANALOG  
SIGNALS  
ANALOG  
SIGNALS  
VHC4066  
5
7
2
5
6
MC14504  
9
4
CONTROL  
INPUTS  
11  
14  
6
14  
15  
10  
8
7
Figure 24. TTL/NMOStoCMOS Level Converter Analog Signal  
PeaktoPeak Greater than 5 V  
(Also see VHC4316)  
1 OF 4  
CHANNEL 4  
CHANNEL 3  
CHANNEL 2  
CHANNEL 1  
SWITCHES  
1 OF 4  
SWITCHES  
COMMON I/O  
1 OF 4  
+
SWITCHES  
OUTPUT  
1 OF 4  
INPUT  
LF356 OR  
SWITCHES  
EQUIVALENT  
1 OF 4  
SWITCHES  
0.01 μF  
1
2
3
4
CONTROL INPUTS  
Figure 25. 4Input Multiplexer  
Figure 26. Sample/Hold Amplifier  
http://onsemi.com  
11  
OUTLINE DIMENSIONS  
D SUFFIX  
SOIC14  
CASE 751A03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
A−  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
B−  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
0.337  
0.150  
0.054  
0.014  
0.016  
T−  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T
B
A
K
M
P
R
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
DT SUFFIX  
TSSOP  
CASE 948G01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
14X K REF  
M
S
S
0.10 (0.004)  
T
U
V
S
0.15 (0.006) T  
U
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
U−  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
L
N
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE −W−.  
S
K
0.15 (0.006) T  
U
A
V−  
MILLIMETERS  
INCHES  
MIN  
K1  
DIM MIN  
MAX  
5.10  
4.50  
1.20  
0.15  
0.75  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
A
B
4.90  
4.30  
−−−  
0.193  
0.169  
−−−  
J J1  
C
D
0.05  
0.50  
0.002  
0.020  
F
SECTION NN  
G
H
0.65 BSC  
0.026 BSC  
0.50  
0.09  
0.09  
0.19  
0.19  
0.60  
0.20  
0.16  
0.30  
0.25  
0.020  
0.004  
0.004  
0.007  
0.007  
0.024  
0.008  
0.006  
0.012  
0.010  
J
J1  
K
W−  
C
K1  
L
6.40 BSC  
_
0.252 BSC  
0
0.10 (0.004)  
M
0
8
8
_
_
_
SEATING  
PLANE  
T−  
H
G
DETAIL E  
D
http://onsemi.com  
12  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 850821312 USA  
Phone: 4808297710 or 8003443860 Toll Free USA/Canada  
Fax: 4808297709 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
291 Kamimeguro, Meguroku, Tokyo, Japan 1530051  
Phone: 81357733850  
For additional information, please contact your  
local Sales Representative.  
MC74VHC4066/D  

相关型号:

MC74VHT4051

Analog Multiplexer Demultiplexer
FREESCALE

MC74VQ02

LOW-VOLTAGE QUIET CMOS QUAD 2-INPUT NOR GATE
MOTOROLA

MC75107P

LINE RECEIVER, PDIP14, 646-06
MOTOROLA

MC75108P

Line Receiver, 1 Func, 2 Rcvr, BIPolar, PDIP14, 646-06
MOTOROLA

MC75110P

Line Driver
ROCHESTER

MC75110P

Line Driver/Receiver, 2 Driver, BIPolar, PDIP14
MOTOROLA

MC75172B

QUAD EIA-485 LINE DRIVERS
ONSEMI

MC75172B

QUAD EIA-485 LINE DRIVERS WITH THREE-STATE OUTPUTS
MOTOROLA

MC75172BDW

QUAD EIA-485 LINE DRIVERS
ONSEMI

MC75172BDW

QUAD EIA-485 LINE DRIVERS WITH THREE-STATE OUTPUTS
MOTOROLA

MC75172BDWG

Quad EIA−485 Line Drivers with Three−State Outputs
ONSEMI

MC75172BDWR2

Quad EIA−485 Line Drivers with Three−State Outputs
ONSEMI