MJE18004D2BS [ONSEMI]

暂无描述;
MJE18004D2BS
型号: MJE18004D2BS
厂家: ONSEMI    ONSEMI
描述:

暂无描述

晶体 晶体管
文件: 总12页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MJE18004D2/D  
SEMICONDUCTOR TECHNICAL DATA  
POWER TRANSISTORS  
5 AMPERES  
1000 VOLTS  
75 WATTS  
The MJE18004D2 is state–of–art High Speed High gain BIPolar transistor (H2BIP).  
High dynamic characteristics and lot to lot minimum spread (±150 ns on storage time)  
make it ideally suitable for light ballast applications. Therefore, there is no need to  
guarantee an h  
window.  
FE  
Main features:  
Low Base Drive Requirement  
High Peak DC Current Gain (55 Typical) @ I = 100 mA  
Extremely Low Storage Time Min/Max Guarantees Due to the  
H2BIP Structure which Minimizes the Spread  
C
Integrated Collector–Emitter Free Wheeling Diode  
Fully Characterized and Guaranteed Dynamic V  
CE(sat)  
“6 Sigma” Process Providing Tight and Reproductible Parameter Spreads  
It’s characteristics make it also suitable for PFC application.  
CASE 221A–06  
TO–220AB  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
450  
Unit  
Vdc  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Sustaining Voltage  
Collector–Base Breakdown Voltage  
Collector–Emitter Breakdown Voltage  
Emitter–Base Voltage  
V
V
CEO  
1000  
1000  
12  
CBO  
V
V
CES  
EBO  
Collector Current — Continuous  
Collector Current — Peak (1)  
I
C
5
10  
I
CM  
Base Current — Continuous  
Base Current — Peak (1)  
I
2
4
Adc  
B
I
BM  
*Total Device Dissipation @ T = 25 C  
C
*Derate above 25°C  
P
D
75  
0.6  
Watt  
W/ C  
Operating and Storage Temperature  
T , T  
65 to 150  
C
J
stg  
THERMAL CHARACTERISTICS  
Thermal Resistance — Junction to Case  
Thermal Resistance — Junction to Ambient  
R
R
1.65  
62.5  
C/W  
C
θJC  
θJA  
Maximum Lead Temperature for Soldering Purposes:  
1/8from case for 5 seconds  
T
260  
L
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector–Emitter Sustaining Voltage  
(I = 100 mA, L = 25 mH)  
C
V
450  
1000  
12  
547  
1100  
14  
Vdc  
Vdc  
CEO(sus)  
Collector–Base Breakdown Voltage  
V
V
CBO  
EBO  
CEO  
(I  
CBO  
= 1 mA)  
Emitter–Base Breakdown Voltage  
(I = 1 mA)  
Vdc  
EBO  
Collector Cutoff Current  
(V = Rated V , I = 0)  
I
100  
µAdc  
µAdc  
CE CEO  
B
Collector Cutoff Current (V  
= Rated V  
, V  
CES EB  
= 0)  
@ T = 25°C  
I
100  
500  
100  
CE  
C
CES  
@ T = 125°C  
C
Collector Cutoff Current (V  
Emitter–Cutoff Current  
= 500 V, V  
= 0)  
@ T = 125°C  
C
CE  
EB  
I
100  
µAdc  
EBO  
(V  
EB  
= 10 Vdc, I = 0)  
C
ON CHARACTERISTICS  
Base–Emitter Saturation Voltage  
(I = 0.8 Adc, I = 80 mAdc)  
V
Vdc  
BE(sat)  
@ T = 25°C  
0.8  
0.7  
1
0.9  
C
B
C
@ T = 125°C  
C
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.9  
0.8  
1
0.9  
C
B
C
@ T = 125°C  
C
Collector–Emitter Saturation Voltage  
(I = 0.8 Adc, I = 80 mAdc)  
V
Vdc  
CE(sat)  
@ T = 25°C  
0.38  
0.55  
0.5  
0.75  
C
B
C
@ T = 125°C  
C
(I = 2 Adc, I = 0.4 Adc)  
@ T = 25°C  
0.45  
0.75  
0.75  
1
C
B
C
@ T = 125°C  
C
(I = 0.8 Adc, I = 40 mAdc)  
@ T = 25°C  
0.9  
1.6  
1.5  
C
B
C
@ T = 125°C  
C
(I = 1 Adc, I = 0.2 Adc)  
@ T = 25°C  
0.25  
0.28  
0.5  
0.6  
C
B
C
@ T = 125°C  
C
DC Current Gain  
(I = 0.8 Adc, V  
h
FE  
= 1 Vdc)  
@ T = 25°C  
15  
10  
28  
14  
C
CE  
C
@ T = 125°C  
C
(I = 2 Adc, V  
= 1 Vdc)  
@ T = 25°C  
6
4
8
6
C
CE  
CE  
C
@ T = 125°C  
C
(I = 1 Adc, V  
C
= 2.5 Vdc)  
@ T = 25°C  
18  
14  
28  
20  
C
@ T = 125°C  
C
DYNAMIC SATURATION VOLTAGE  
= 1 Adc  
@ 1 µs  
@ 3 µs  
@ 1 µs  
@ 3 µs  
@ T = 25°C  
V
9
16  
V
C
CE(dsat)  
I
C
@ T = 125°C  
C
I
V
= 100 mA  
Dynamic Saturation  
Voltage:  
B1  
@ T = 25°C  
3.1  
9
C
= 300 V  
CC  
@ T = 125°C  
C
Determined 1 µs and  
3 µs respectively after  
@ T = 25°C  
11  
18  
C
rising I reaches  
90% of final I  
B1  
I
= 2 Adc  
= 0.4 A  
= 300 V  
B1  
@ T = 125°C  
C
C
I
B1  
@ T = 25°C  
1.4  
8
C
V
CC  
@ T = 125°C  
C
2
Motorola Bipolar Power Transistor Device Data  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
DIODE CHARACTERISTICS  
Forward Diode Voltage  
V
EC  
1.5  
V
(I  
= 1 Adc)  
@ T = 25°C  
0.96  
0.72  
EC  
EC  
C
@ T = 125°C  
C
(I  
= 2 Adc)  
@ T = 25°C  
1.15  
0.8  
1.7  
C
@ T = 125°C  
C
Forward Recovery Time  
(I = 0.4 Adc, di/dt = 10 A/µs)  
t
fr  
440  
ns  
@ T = 25°C  
F
C
(I = 1 Adc, di/dt = 10 A/µs)  
@ T = 25°C  
335  
335  
F
C
(I = 2 Adc, di/dt = 10 A/µs)  
F
@ T = 25°C  
C
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth  
f
13  
60  
MHz  
pF  
T
(I = 0.5 Adc, V  
C CE  
= 10 Vdc, f = 1 MHz)  
Output Capacitance  
C
100  
750  
ob  
(V  
CB  
= 10 Vdc, I = 0, f = 1 MHz)  
E
Input Capacitance  
(I = 0.5 Adc, V  
C
450  
pF  
ib  
= 10 Vdc, f = 1 MHz)  
C
CE  
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 40 µs)  
Turn–on Time  
Turn–off Time  
Turn–on Time  
@ T = 25°C  
t
500  
750  
1.4  
ns  
µs  
ns  
I
= 2.5 Adc, I = 0.5 Adc  
B1  
C
on  
C
I
= 1 Adc  
B2  
CC  
@ T = 25°C  
t
1.1  
C
off  
V
= 250 Vdc  
@ T = 25°C  
t
on  
100  
150  
150  
C
I
= 2 Adc, I = 0.4 Adc  
@ T = 125°C  
C
B1  
C
I
= 1 Adc  
= 300 Vdc  
B2  
Turn–off Time  
Turn–on Time  
Turn–off Time  
@ T = 25°C  
t
1.15  
1.6  
1.3  
150  
2.15  
µs  
ns  
µs  
C
off  
V
CC  
@ T = 125°C  
C
@ T = 25°C  
t
on  
120  
500  
C
I
C
= 2.5 Adc, I = 0.5 Adc  
B1  
@ T = 125°C  
C
I
= 0.5 Adc  
= 300 Vdc  
B2  
@ T = 25°C  
t
1.85  
C
off  
V
CC  
@ T = 125°C  
2.6  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 15 V)  
CC  
Fall Time  
@ T = 25°C  
t
130  
300  
175  
2.4  
500  
150  
2.4  
450  
90  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
µs  
ns  
C
f
@ T = 125°C  
I
= 2.5 Adc  
= 500 mAdc  
= 500 mAdc  
C
C
I
I
B1  
B2  
V
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
t
2.12  
2.6  
C
s
@ T = 125°C  
C
= 350 V  
= 300 µH  
Z
L
@ T = 25°C  
355  
750  
C
C
c
@ T = 125°C  
C
@ T = 25°C  
t
f
95  
230  
C
@ T = 125°C  
I
= 2 Adc  
C
C
I
I
= 400 mAdc  
= 400 mAdc  
B1  
B2  
V
Storage Time  
Crossover Time  
Fall Time  
@ T = 25°C  
t
s
t
c
2.1  
C
@ T = 125°C  
2.9  
C
= 300 V  
= 200 µH  
Z
L
@ T = 25°C  
300  
700  
C
C
@ T = 125°C  
C
@ T = 25°C  
t
f
70  
100  
C
@ T = 125°C  
I
= 1 Adc  
C
C
I
I
= 100 mAdc  
= 500 mAdc  
B1  
B2  
V
Storage Time  
Crossover Time  
@ T = 25°C  
t
0.7  
1.05  
0.9  
120  
C
s
c
@ T = 125°C  
C
= 300 V  
= 200 µH  
Z
L
@ T = 25°C  
t
75  
160  
C
C
@ T = 125°C  
C
3
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
T
= 125°C  
J
V
= 1 V  
V
= 5 V  
CE  
CE  
T
= 20°C  
T = 20°C  
J
J
T
= 25°C  
T
= 25°C  
J
J
10  
10  
T
= 125°C  
J
1
0.001  
1
0.001  
0.01  
0.1  
1
10  
10  
10  
0.01  
0.1  
1
10  
10  
10  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volt  
3
10  
T
= 25°C  
J
T
= 125°C  
I
/I = 5  
J
C B  
5 A  
2
4 A  
T
= 25°C  
J
1
3 A  
2 A  
1
0
1 A  
T
= 20  
°
C
J
I
= 500 mA  
C
0.1  
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
I
, BASE CURRENT (mA)  
I , COLLECTOR CURRENT (AMPS)  
C
B
Figure 3. Collector Saturation Region  
Figure 4. Collector–Emitter Saturation Voltage  
10  
10  
T
= 125  
°
C
I
/I = 20  
T = 125°C  
J
J
C B  
I
/I = 10  
C B  
T
= 20°C  
J
1
1
T
= 25°C  
J
T
= 25°C  
J
T
= 20°C  
J
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
0.01  
0.1  
1
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 5. Collector–Emitter Saturation Voltage  
Figure 6. Collector–Emitter Saturation Voltage  
4
Motorola Bipolar Power Transistor Device Data  
TYPICAL STATIC CHARACTERISTICS  
10  
10  
I
/I = 10  
I
/I = 5  
C B  
C B  
1
1
T
= 20°C  
T
= 20°C  
J
J
T
= 25°C  
T
= 125°C  
T
= 125°C  
T = 25°C  
J
J
J
J
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 7. Base–Emitter Saturation Region  
Figure 8. Base–Emitter Saturation Region  
10  
10  
I
/I = 20  
C B  
25°C  
1
1
T
= 20°C  
J
T
= 125°C  
T = 25°C  
J
J
125°C  
0.1  
0.001  
0.1  
0.01  
0.01  
0.1  
1
10  
0.1  
1
10  
I
, COLLECTOR CURRENT (AMPS)  
REVERSE EMITTER–COLLECTOR CURRENT (AMPS)  
C
Figure 9. Base–Emitter Saturation Region  
Figure 10. Forward Diode Voltage  
1000  
100  
10  
1200  
1000  
C
(pF)  
ib  
T
= 25°C  
T
f
= 25°C  
C
J
= 1 MHz  
BVCER @ ICER = 10 mA  
(test)  
800  
600  
C
ob  
BVCER(sus) @  
ICER = 200 mA,  
Lc = 25 mH  
1
10  
, REVERSE VOLTAGE (VOLTS)  
100  
10  
100  
1000  
V
BASE–EMITTER RESISTOR (  
)  
R
Figure 11. Capacitance  
Figure 12. BVCER = f(R  
)
BE  
5
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
3200  
2400  
1600  
5
I
= I  
= 300 V  
T
T
= 125°C  
= 25°C  
Bon Boff  
J
J
I
= I  
= 300 V  
Bon Boff  
V
I
/I = 10  
CC  
PW = 20  
C B  
V
CC  
PW = 20  
µs  
4
3
2
µs  
I
/I = 10  
C B  
800  
0
1
0
T
T
= 125°C  
J
J
= 25°C  
I
/I = 5  
I
/I = 5  
C B  
C B  
1
3
4
1
2
3
4
2
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 13. Resistive Switch Time, t  
on  
Figure 14. Resistive Switch Time, t  
off  
4
3
2
4
3
2
I
/I = 5  
I
/I = 10  
C B  
C B  
I
= I  
I
= I  
Bon Boff  
Bon Boff  
1
0
1
0
V
V
L
= 15 V  
V
V
L
= 15 V  
CC  
= 300 V  
CC  
= 300 V  
Z
T
T
= 125  
°
C
T
T
= 125°C  
J
J
J
J
Z
= 25°C  
= 25°C  
= 200  
µH  
= 200  
µH  
C
C
0
1
2
3
4
0
1
2
3
4
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 15. Inductive Storage Time,  
@ I /I = 5  
Figure 16. Inductive Storage Time,  
@ I /I = 10  
t
t
si  
si  
C B  
C B  
1000  
800  
600  
400  
1000  
800  
600  
400  
T
T
= 125  
°
C
T
T
= 125°C  
= 25°C  
J
J
J
J
I
/I = 5  
I
/I = 10  
C B  
C B  
= 25°C  
I
V
V
L
= I  
I
V
V
= I  
Boff Bon  
Bon Boff  
= 15 V  
CC  
t
= 15 V  
c
CC  
Z
C
= 300 V  
= 300 V  
Z
C
= 200  
µH  
L
= 200  
µH  
t
fi  
200  
0
200  
0
0
1
2
3
4
0
1
2
3
4
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 17. Inductive Switching Time,  
Figure 18. Inductive Switching Time,  
@ I /I = 10  
t & t @ I /I = 5  
t
fi  
c
fi C B  
C B  
6
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
1600  
1200  
800  
5
I
/I = 10  
I
V
V
= I  
= 15 V  
= 300 V  
= 200 µH  
C B  
Bon Boff  
CC  
Z
C
T
T
= 125°C  
= 25°C  
I
V
V
= I  
= 15 V  
= 300 V  
= 200 µH  
J
J
Boff Bon  
CC  
Z
C
I
= 1 A  
C
L
L
4
3
2
I
= 2 A  
C
400  
0
T
T
= 125°C  
= 25°C  
J
J
0
1
2
3
4
20  
4
0
5
10  
, FORCED GAIN  
15  
20  
I
, COLLECTOR CURRENT (AMPS)  
h
C
FE  
Figure 19. Inductive Switching, t @ I /I = 10  
C B  
Figure 20. Inductive Storage Time  
c
1000  
800  
600  
400  
2000  
1500  
1000  
T
T
= 125°C  
= 25°C  
I
= I  
= 15 V  
= 300 V  
= 200  
I
= I  
= 15 V  
= 300 V  
J
J
I
= 2 A  
T
T
= 125°C  
= 25°C  
Boff Bon  
V
V
Bon Boff  
C
J
J
V
CC  
CC  
V
Z
Z
L
µH  
L
= 200  
µ
H
C
C
I
= 2 A  
C
I
= 1 A  
C
500  
0
200  
0
I
= 1 A  
C
2
4
6
8
10  
12  
14  
16  
18  
2
8
14  
20  
h
, FORCED GAIN  
h
, FORCED GAIN  
FE  
FE  
Figure 21. Inductive Fall Time  
Figure 22. Inductive Crossover Time  
4
3
420  
380  
340  
300  
I
V
V
= I  
Bon Boff  
dI/dt = 10 A/  
µs  
= 15 V  
= 300 V  
= 200 µH  
CC  
Z
C
T
= 25  
°C  
C
I
= 50 mA  
B
L
2
1
I
= 100 mA  
B
I
= 200 mA  
B
I
= 500 mA  
B
I
= 1 A  
B
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
I
, COLLECTOR CURRENT (AMPS)  
I , FORWARD CURRENT (AMP)  
C
F
Figure 23. Inductive Storage Time, t  
si  
Figure 24. Forward Recovery Time, T  
FR  
7
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
10  
V
CE  
9
8
7
6
5
4
3
I
90% I  
C
C
dyn 1  
µs  
t
fi  
t
si  
dyn 3 µs  
10% I  
0 V  
C
V
10% V  
clamp  
clamp  
t
c
90% I  
B
I
90% I  
B1  
B
1 µs  
2
1
0
I
B
3
µs  
0
1
2
3
4
5
6
8
7
TIME  
TIME  
Figure 25. Dynamic Saturation  
Voltage Measurements  
Figure 26. Inductive Switching Measurements  
V
FRM  
V
(1.1 V unless otherwise specified)  
F
FR  
V
F
V
F
t
fr  
0.1 V  
F
0
I
F
10% I  
F
0
2
4
6
8
10  
Figure 27. t Measurements  
fr  
8
Motorola Bipolar Power Transistor Device Data  
TYPICAL SWITCHING CHARACTERISTICS  
Table 1. Inductive Load Switching Drive Circuit  
+15 V  
I
PEAK  
C
100 µF  
1
µ
F
MTP8P10  
MUR105  
MJE210  
100  
3 W  
150  
3 W  
V
PEAK  
CE  
MTP8P10  
V
CE  
MPF930  
R
R
B1  
I
1
B
I
MPF930  
+10 V  
out  
I
B
A
I
2
B
50  
B2  
COMMON  
V
Inductive Switching  
RBSOA  
L = 500  
RB2 = 0  
MTP12N10  
(BR)CEO(sus)  
L = 10 mH  
RB2 =  
150  
3 W  
L = 200  
µH  
µH  
500 µF  
RB2 = 0  
V
= 20 Volts  
= 100 mA  
V
= 15 Volts  
V
= 15 Volts  
CC  
CC  
CC  
1 µF  
I
RB1 selected for  
desired Ib1  
RB1 selected for  
desired Ib1  
C(pk)  
–V  
off  
TYPICAL CHARACTERISTICS  
100  
10  
6
T
125°C  
5  
= 2 mH  
C
GAIN  
5
1 µs  
L
C
1 ms  
10 µs  
4
3
2
5 ms  
EXTENDED  
SOA  
DC  
1
–5 V  
0.1  
1
0
0 V  
–1.5 V  
0.01  
10  
100  
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
1000  
200  
400  
600  
800  
1000  
V
V
CE  
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 28. Forward Bias Safe Operating Area  
Figure 29. Reverse Bias Safe Operating Area  
9
Motorola Bipolar Power Transistor Device Data  
TYPICAL CHARACTERISTICS  
There are two limitations on the power handling ability of  
a transistor: average junction temperature and second  
breakdown. Safe operating area curves indicate I –V  
1.0  
0.8  
0.6  
0.4  
C
CE  
SECOND  
BREAKDOWN  
DERATING  
limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to  
greater dissipation than the curves indicate. The data of  
Figure 28 is based on T = 25°C; T (pk) is variable  
C
J
depending on power level. Second breakdown pulse limits  
are valid for duty cycles to 10% but must be derated when  
T
> 25°C. Second breakdown limitations do not derate the  
C
same as thermal limitations. Allowable current at the  
voltages shown on Figure 28 may be found at any case  
temperature by using the appropriate curve on Figure 30.  
THERMAL  
DERATING  
0.2  
0
T (pk) may be calculated from the data in Figure 31. At  
J
any case temperatures, thermal limitations will reduce the  
power that can be handled to values less than the  
limitations imposed by second breakdown. For inductive  
loads, high voltage and current must be sustained simulta-  
neously during turn–off with the base–to–emitter junction  
reverse biased. The safe level is specified as a reverse–  
biased safe operating area (Figure 29). This rating is  
verified under clamped conditions so that the device is  
never subjected to an avalanche mode.  
20  
40  
60  
80  
100  
120  
C)  
140  
160  
T
, CASE TEMPERATURE (  
°
C
Figure 30. Forward Bias Power Derating  
TYPICAL THERMAL RESPONSE  
1
0.5  
0.2  
0.1  
P
0.1  
0.05  
(pk)  
R
R
(t) = r(t) R  
θ
θ
θ
JC  
JC  
JC  
°C/W MAX  
= 2.5  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.02  
t
1
READ TIME AT t  
SINGLE PULSE  
1
t
2
T
– T = P  
R (t)  
(pk) θJC  
J(pk)  
C
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 31. Typical Thermal Response (Z  
) for MJE18004D2  
θJC(t)  
10  
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
NOTES:  
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
MAX  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
–––  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
–––  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
–––  
A
K
Q
Z
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
–––  
1
2
3
U
H
L
R
J
V
G
T
U
V
D
N
Z
0.080  
2.04  
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
CASE 221A–06  
TO–220AB  
ISSUE Y  
11  
Motorola Bipolar Power Transistor Device Data  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MJE18004D2/D  

相关型号:

MJE18004D2BU

TRANSISTOR 5 A, 450 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

MJE18004D2BV

暂无描述
ONSEMI

MJE18004D2DW

TRANSISTOR 5 A, 450 V, NPN, Si, POWER TRANSISTOR, PLASTIC, TO-220AB, 3 PIN, BIP General Purpose Power
ONSEMI

MJE18004D2G

High Speed, High Gain Bipolar NPN Power Transistor with Integrated Collector-Emitter Diode and Built-in Efficient Antisaturation Network, TO-220 3 LEAD STANDARD, 50-TUBE
ONSEMI

MJE18004G

NPN Bipolar Power Transistor For Switching Power Supply Applications
ONSEMI

MJE18004L

Power Bipolar Transistor, 5A I(C), 450V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

MJE18004N

Power Bipolar Transistor, 5A I(C), 450V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

MJE18004S

Power Bipolar Transistor, 5A I(C), 450V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

MJE18004T

5A, 450V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

MJE18004U

5A, 450V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

MJE18004U2

Power Bipolar Transistor, 5A I(C), 450V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

MJE18004UA

Power Bipolar Transistor, 5A I(C), 450V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA