MMBT5087 [ONSEMI]

Low Noise Transistor; 低噪声晶体管
MMBT5087
型号: MMBT5087
厂家: ONSEMI    ONSEMI
描述:

Low Noise Transistor
低噪声晶体管

晶体 晶体管
文件: 总8页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBT5087LT1/D  
SEMICONDUCTOR TECHNICAL DATA  
COLLECTOR  
3
PNP Silicon  
Motorola Preferred Device  
1
BASE  
2
EMITTER  
3
MAXIMUM RATINGS  
Rating  
Collector–Emitter Voltage  
Symbol  
Value  
–50  
Unit  
Vdc  
1
2
V
CEO  
V
CBO  
V
EBO  
Collector–Base Voltage  
Emitter–Base Voltage  
–50  
Vdc  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
–3.0  
–50  
Vdc  
Collector Current — Continuous  
DEVICE MARKING  
I
C
mAdc  
MMBT5087LT1 = 2Q  
THERMAL CHARACTERISTICS  
Characteristic  
(1)  
Symbol  
Max  
Unit  
Total Device Dissipation FR-5 Board  
= 25°C  
Derate above 25°C  
P
D
225  
mW  
T
A
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
θJA  
P
D
(2)  
Alumina Substrate,  
T = 25°C  
A
Derate above 25°C  
2.4  
417  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
R
θJA  
T , T  
55 to +150  
J
stg  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
OFF CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
Collector–Emitter Breakdown Voltage  
V
V
–50  
–50  
Vdc  
Vdc  
(BR)CEO  
(I = –1.0 mAdc, I = 0)  
C
B
Collector–Base Breakdown Voltage  
(I = –100 µAdc, I = 0)  
(BR)CBO  
C
E
Collector Cutoff Current  
I
nAdc  
CBO  
(V  
CB  
(V  
CB  
= –10 Vdc, I = 0)  
–10  
–50  
E
= –35 Vdc, I = 0)  
E
1. FR–5 = 1.0 x 0.75 x 0.062 in.  
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
ON CHARACTERISTICS  
DC Current Gain  
h
FE  
(I = –100 µAdc, V  
= –5.0 Vdc)  
= –5.0 Vdc)  
= –5.0 Vdc)  
250  
250  
250  
800  
C
CE  
CE  
CE  
(I = –1.0 mAdc, V  
C
(I = –10 mAdc, V  
C
Collector–Emitter Saturation Voltage  
(I = –10 mAdc, I = –1.0 mAdc)  
V
V
–0.3  
0.85  
Vdc  
Vdc  
CE(sat)  
C
B
Base–Emitter Saturation Voltage  
(I = –10 mAdc, I = –1.0 mAdc)  
BE(sat)  
C
B
SMALL–SIGNAL CHARACTERISTICS  
Current–Gain — Bandwidth Product  
f
40  
MHz  
pF  
T
(I = –500 µAdc, V  
= –5.0 Vdc, f = 20 MHz)  
C
CE  
Output Capacitance  
C
4.0  
900  
obo  
(V  
CB  
= –5.0 Vdc, I = 0, f = 1.0 MHz)  
E
Small–Signal Current Gain  
h
250  
fe  
(I = –1.0 mAdc, V  
C
= –5.0 Vdc, f = 1.0 kHz)  
CE  
Noise Figure  
NF  
dB  
(I = –20 mAdc, V  
(I = –100 µAdc, V  
C
= –5.0 Vdc, R = 10 k, f = 1.0 kHz)  
2.0  
2.0  
C
CE  
S
= –5.0 Vdc, R = 3.0 k, f = 1.0 kHz)  
S
CE  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL NOISE CHARACTERISTICS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
10  
7.0  
5.0  
1.0  
7.0  
5.0  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
R
0  
S
R
≈∞  
S
I = 1.0 mA  
C
I
= 10  
µA  
3.0  
2.0  
C
300  
100  
µA  
30  
100  
300  
µA  
1.0  
3.0  
2.0  
µA  
0.7  
0.5  
µA  
µA  
1.0 mA  
0.3  
0.2  
30  
10  
µ
A
A
µ
1.0  
0.1  
10  
20  
50  
100  
200  
500 1.0 k 2.0 k  
5.0 k 10 k  
10  
20  
50  
100 200  
500  
1.0 k 2.0 k  
5.0 k 10 k  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 1. Noise Voltage  
Figure 2. Noise Current  
NOISE FIGURE CONTOURS  
(V  
= 5.0 Vdc, T = 25°C)  
CE  
A
1.0 M  
500 k  
1.0 M  
500 k  
BANDWIDTH = 1.0 Hz  
BANDWIDTH = 1.0 Hz  
200 k  
100 k  
50 k  
200 k  
100 k  
50 k  
20 k  
10 k  
20 k  
10 k  
0.5 dB  
0.5 dB  
5.0 k  
2.0 k  
5.0 k  
2.0 k  
1.0 dB  
1.0 dB  
2.0 dB  
2.0 dB  
1.0 k  
500  
1.0 k  
500  
3.0 dB  
5.0 dB  
3.0 dB  
200  
100  
200  
100  
5.0 dB  
500 700 1.0 k  
10  
20 30  
50 70 100  
200 300  
A)  
500 700 1.0 k  
10  
20 30  
50 70 100  
200 300  
I
, COLLECTOR CURRENT (  
µ
I , COLLECTOR CURRENT (µ  
C
A)  
C
Figure 3. Narrow Band, 100 Hz  
Figure 4. Narrow Band, 1.0 kHz  
1.0 M  
500 k  
10 Hz to 15.7 kHz  
200 k  
100 k  
Noise Figure is Defined as:  
50 k  
2
R
n S  
2
1 2  
2
e
n
4KTR  
4KTR  
I
S
20 k  
10 k  
NF  
20 log  
10  
S
0.5 dB  
e
= Noise Voltage of the Transistor referred to the input. (Figure 3)  
= Noise Current of the Transistor referred to the input. (Figure 4)  
n
5.0 k  
2.0 k  
I
n
1.0 dB  
2.0 dB  
–23  
= Boltzman’s Constant (1.38 x 10  
K
T
R
j/°K)  
1.0 k  
500  
= Temperature of the Source Resistance (°K)  
= Source Resistance (Ohms)  
S
3.0 dB  
5.0 dB  
200  
100  
20  
30  
50 70 100  
200 300  
500 700 1.0 k  
10  
I
, COLLECTOR CURRENT (µA)  
C
Figure 5. Wideband  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
TYPICAL STATIC CHARACTERISTICS  
1.0  
0.8  
100  
I
B
= 400 µA  
T
= 25°C  
T
= 25  
°
C
A
A
PULSE WIDTH = 300  
DUTY CYCLE 2.0%  
µ
s
350 µA  
80  
60  
300 µA  
250  
200  
µA  
I
= 1.0 mA  
10 mA  
50 mA  
100 mA  
C
0.6  
0.4  
0.2  
0
µA  
150 µA  
40  
20  
0
100  
50  
µA  
µA  
0.002 0.005 0.01 0.02 0.05 0.1 0.2  
0.5 1.0 2.0  
5.0 10 20  
0
5.0  
10  
15  
20  
25  
30  
35  
40  
I
, BASE CURRENT (mA)  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
B
CE  
Figure 6. Collector Saturation Region  
Figure 7. Collector Characteristics  
1.4  
1.2  
1.6  
0.8  
0
T
= 25°C  
J
*APPLIES for I /I  
C B  
h
/2  
FE  
1.0  
0.8  
0.6  
0.4  
25°C to 125°C  
*
for V  
CE(sat)  
VC  
55°C to 25°C  
V
@ I /I = 10  
C B  
BE(sat)  
0.8  
1.6  
2.4  
V
@ V = 1.0 V  
CE  
BE(on)  
25°C to 125°C  
55°C to 25°C  
for V  
BE  
0.2  
0
VB  
V
@ I /I = 10  
C B  
CE(sat)  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50 100  
0.1  
0.2  
0.5  
I
1.0  
2.0  
5.0  
10  
20  
50  
100  
I
, COLLECTOR CURRENT (mA)  
, COLLECTOR CURRENT (mA)  
C
C
Figure 8. “On” Voltages  
Figure 9. Temperature Coefficients  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
TYPICAL DYNAMIC CHARACTERISTICS  
500  
1000  
V
I
= 3.0 V  
/I = 10  
= I  
= 25°C  
V
I
= 3.0 V  
CC  
C B  
CC  
/I = 10  
700  
500  
300  
200  
C B  
I
T
T
= 25°C  
B1 B2  
J
t
s
300  
200  
J
100  
70  
50  
100  
70  
50  
30  
20  
t
r
t
f
30  
20  
t
@ V  
BE(off)  
= 0.5 V  
10  
d
10  
7.0  
5.0  
1.0  
10  
–1.0  
2.0 3.0  
5.0 7.0  
20  
30  
50 70 100  
2.0 3.0  
–10  
20 30  
, COLLECTOR CURRENT (mA)  
C
–100  
50 70  
5.0 7.0  
I
, COLLECTOR CURRENT (mA)  
I
C
Figure 10. Turn–On Time  
Figure 11. Turn–Off Time  
500  
10  
7.0  
5.0  
T
J
= 25°C  
T
= 25°C  
J
V
= 20 V  
300  
200  
CE  
C
ib  
5.0 V  
3.0  
2.0  
100  
70  
C
ob  
50  
1.0  
0.05 0.1  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
20  
30  
50  
0.2  
0.5  
V , REVERSE VOLTAGE (VOLTS)  
R
1.0  
2.0  
5.0  
10  
20  
50  
I
, COLLECTOR CURRENT (mA)  
C
Figure 12. Current–Gain — Bandwidth Product  
Figure 13. Capacitance  
1.0  
0.7  
0.5  
D = 0.5  
0.2  
0.3  
0.2  
0.1  
0.1  
0.07  
0.05  
FIGURE 16  
1
0.05  
DUTY CYCLE, D = t /t  
1 2  
P
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
(pk)  
0.02  
0.01  
0.03  
0.02  
t
READ TIME AT t (SEE AN–569)  
1
θ
(pk)  
Z
T
= r(t)  
R
SINGLE PULSE  
θ
J(pk)  
JA(t)  
JA  
t
2
– T = P  
Z
θJA(t)  
A
0.01  
0.01 0.02  
0.05 0.1 0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100 200  
500 1.0 k 2.0 k  
5.0 k 10 k 20 k  
100 k  
50 k  
t, TIME (ms)  
Figure 14. Thermal Response  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
4
10  
10  
10  
DESIGN NOTE: USE OF THERMAL RESPONSE DATA  
V
= 30 V  
CC  
A train of periodical power pulses can be represented by the model  
as shown in Figure 16. Using the model and the device thermal  
response the normalized effective transient thermal resistance of  
Figure 14 was calculated for various duty cycles.  
3
2
I
CEO  
To find Z  
steady state value R  
, multiply the value obtained from Figure 14 by the  
θJA(t)  
.
1
θJA  
10  
10  
I
CBO  
Example:  
AND  
Dissipating 2.0 watts peak under the following conditions:  
= 1.0 ms, t = 5.0 ms (D = 0.2)  
I
@ V  
= 3.0 V  
0
CEX  
BE(off)  
t
1
2
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading of  
r(t) is 0.22.  
–1  
10  
10  
The peak rise in junction temperature is therefore  
–2  
T = r(t) x P  
(pk)  
x R  
= 0.22 x 2.0 x 200 = 88°C.  
θJA  
–4  
0
–2  
0
0
+20 +40 +60 +80 +100 +120 +140 +160  
T , JUNCTION TEMPERATURE ( C)  
For more information, see AN–569.  
°
J
Figure 15. Typical Collector Leakage Current  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
ISSUE AE  
SOT–23 (TO–236AB)  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBT5087LT1/D  

相关型号:

MMBT5087/L99Z

100mA, 50V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-236AB
TI

MMBT5087L

50mA, 50V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-236AB, CASE 318-07, 3 PIN
MOTOROLA

MMBT5087LT1

Low Noise Transistor
MOTOROLA

MMBT5087LT1

Low Noise Transistor(PNP Silicon)
LRC

MMBT5087LT1

Low Noise Transistor
ONSEMI

MMBT5087LT1D

Low Noise Transistor
ONSEMI

MMBT5087LT1G

Low Noise Transistor
ONSEMI

MMBT5087LT3

Low Noise Transistor
ONSEMI

MMBT5087LT3G

Low Noise Transistor
ONSEMI

MMBT5087_NL

暂无描述
FAIRCHILD

MMBT5088

NPN (LOW NOISE TRANSISTOR)
SAMSUNG

MMBT5088

NPN General Purpose Amplifier
FAIRCHILD