MMBT5551LT1 [ONSEMI]

High Voltage Transistors(NPN Silicon); 高压晶体管( NPN硅)
MMBT5551LT1
型号: MMBT5551LT1
厂家: ONSEMI    ONSEMI
描述:

High Voltage Transistors(NPN Silicon)
高压晶体管( NPN硅)

晶体 小信号双极晶体管 高压
文件: 总6页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBT5550LT1/D  
SEMICONDUCTOR TECHNICAL DATA  
COLLECTOR  
3
NPN Silicon  
*Motorola Preferred Device  
1
BASE  
2
3
EMITTER  
MAXIMUM RATINGS  
1
Rating  
CollectorEmitter Voltage  
CollectorBase Voltage  
Symbol  
Value  
Unit  
Vdc  
2
V
CEO  
V
CBO  
V
EBO  
140  
160  
6.0  
Vdc  
CASE 31808, STYLE 6  
SOT23 (TO236AB)  
EmitterBase Voltage  
Vdc  
Collector Current — Continuous  
THERMAL CHARACTERISTICS  
Characteristic  
I
600  
mAdc  
C
Symbol  
Max  
Unit  
(1)  
Total Device Dissipation FR5 Board  
P
225  
mW  
D
T
= 25°C  
A
Derate above 25°C  
1.8  
556  
300  
mW/°C  
°C/W  
mW  
Thermal Resistance, Junction to Ambient  
Total Device Dissipation  
R
JA  
D
P
(2)  
Alumina Substrate,  
T
A
= 25°C  
Derate above 25°C  
2.4  
417  
mW/°C  
°C/W  
°C  
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
JA  
T , T  
J stg  
55 to +150  
MMBT5550LT1 = M1F; MMBT5551LT1 = G1  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
(3)  
CollectorEmitter Breakdown Voltage  
V
Vdc  
(BR)CEO  
(I = 1.0 mAdc, I = 0)  
MMBT5550  
MMBT5551  
140  
160  
C
B
CollectorBase Breakdown Voltage  
(I = 100 Adc, I = 0)  
V
Vdc  
Vdc  
(BR)CBO  
MMBT5550  
MMBT5551  
160  
180  
C
E
EmitterBase Breakdown Voltage  
(I = 10 Adc, I = 0)  
V
(BR)EBO  
6.0  
E
C
Collector Cutoff Current  
I
CBO  
(V  
CB  
(V  
CB  
(V  
CB  
(V  
CB  
= 100 Vdc, I = 0)  
MMBT5550  
MMBT5551  
MMBT5550  
MMBT5551  
100  
50  
100  
50  
nAdc  
E
= 120 Vdc, I = 0)  
E
= 100 Vdc, I = 0, T = 100°C)  
µAdc  
E
A
A
= 120 Vdc, I = 0, T = 100°C)  
E
Emitter Cutoff Current  
(V = 4.0 Vdc, I = 0)  
I
nAdc  
EBO  
50  
EB  
1. FR5 = 1.0  
C
0.75 0.062 in.  
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.  
3. Pulse Test: Pulse Width = 300 s, Duty Cycle = 2.0%.  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
ON CHARACTERISTICS  
Symbol  
Min  
Max  
Unit  
DC Current Gain  
(I = 1.0 mAdc, V  
C
h
FE  
= 5.0 Vdc)  
= 5.0 Vdc)  
= 5.0 Vdc)  
MMBT5550  
MMBT5551  
60  
80  
CE  
CE  
CE  
(I = 10 mAdc, V  
C
MMBT5550  
MMBT5551  
60  
80  
250  
250  
(I = 50 mAdc, V  
C
MMBT5550  
MMBT5551  
20  
30  
CollectorEmitter Saturation Voltage  
(I = 10 mAdc, I = 1.0 mAdc)  
V
V
Vdc  
Vdc  
CE(sat)  
Both Types  
0.15  
C
B
(I = 50 mAdc, I = 5.0 mAdc)  
MMBT5550  
MMBT5551  
0.25  
0.20  
C
B
BaseEmitter Saturation Voltage  
(I = 10 mAdc, I = 1.0 mAdc)  
BE(sat)  
Both Types  
1.0  
C
B
(I = 50 mAdc, I = 5.0 mAdc)  
MMBT5550  
MMBT5551  
1.2  
1.0  
C
B
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
500  
300  
200  
V
V
= 1.0 V  
= 5.0 V  
CE  
CE  
T
= 125°C  
J
25°C  
100  
55°C  
50  
30  
20  
10  
7.0  
5.0  
0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
3.0  
, COLLECTOR CURRENT (mA)  
2.0  
5.0  
7.0  
10  
20  
30  
50  
70  
100  
I
C
Figure 1. DC Current Gain  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
= 1.0 mA  
10 mA  
100 mA  
C
30 mA  
0.005  
0.01  
0.02  
0.05  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
I
, BASE CURRENT (mA)  
B
Figure 2. Collector Saturation Region  
1
10  
1.0  
T
= 25°C  
J
V
= 30 V  
CE  
0
10  
0.8  
0.6  
0.4  
T
J
= 125°C  
V
@ I /I = 10  
C B  
–1  
BE(sat)  
10  
I
= I  
CES  
C
–2  
–3  
10  
75  
REVERSE  
25  
°C  
FORWARD  
10  
°
C
0.2  
0
–4  
–5  
10  
V
@ I /I = 10  
C B  
CE(sat)  
10  
0.4  
0.3  
0.2  
V
0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.1  
0.2 0.3 0.5  
1.0  
2.0 3.0 5.0  
10  
20 30 50  
100  
, BASE–EMITTER VOLTAGE (VOLTS)  
I
, COLLECTOR CURRENT (mA)  
BE  
C
Figure 3. Collector Cut–Off Region  
Figure 4. “On” Voltages  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
2.5  
2.0  
T
= 55°C to +135°C  
J
1.5  
1.0  
0.5  
0
V
F
V
BB  
8.8 V  
CC  
30 V  
10.2 V  
for V  
CE(sat)  
VC  
V
in  
100  
R
3.0 k  
R
C
V
0.25  
µ
0.5  
1.0  
1.5  
2.0  
2.5  
10  
µs  
B
INPUT PULSE  
out  
5.1 k  
100  
for V  
BE(sat)  
VB  
t , t  
10 ns  
1N914  
r
f
V
in  
DUTY CYCLE = 1.0%  
0.1  
0.2 0.3 0.5  
1.0  
2.0 3.0 5.0  
10  
20 30 50  
100  
Values Shown are for I @ 10 mA  
C
I
, COLLECTOR CURRENT (mA)  
C
Figure 5. Temperature Coefficients  
Figure 6. Switching Time Test Circuit  
100  
1000  
500  
I
T
/I = 10  
C B  
70  
50  
T
= 25°C  
J
= 25°C  
J
t @ V  
CC  
= 120 V  
r
30  
20  
300  
200  
t @ V  
r
= 30 V  
CC  
10  
100  
50  
C
ibo  
7.0  
5.0  
t
@ V = 1.0 V  
EB(off)  
d
C
obo  
3.0  
2.0  
30  
20  
V
= 120 V  
CC  
1.0  
0.2 0.3  
10  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
20  
0.2 0.3 0.5  
1.0  
2.0 3.0 5.0  
10  
20 30 50  
100 200  
V
, REVERSE VOLTAGE (VOLTS)  
I
, COLLECTOR CURRENT (mA)  
R
C
Figure 7. Capacitances  
Figure 8. Turn–On Time  
5000  
I
T
/I = 10  
t @ V  
CC  
= 120 V  
C B  
f
3000  
2000  
= 25°C  
J
t @ V  
CC  
= 30 V  
f
1000  
500  
300  
t
@ V = 120 V  
CC  
s
200  
100  
50  
0.2 0.3 0.5  
1.0  
2.0 3.0 5.0  
10  
20 30 50  
100 200  
I
, COLLECTOR CURRENT (mA)  
C
Figure 9. Turn–Off Time  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
A
values provided on the data sheet for the SOT–23 package,  
P
can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
PACKAGE DIMENSIONS  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
L
2. CONTROLLING DIMENSION: INCH.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
3
S
B
1
2
INCHES  
MIN MAX  
MILLIMETERS  
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.45  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.60  
1.02  
2.50  
0.60  
V
G
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0180 0.0236  
0.0350 0.0401  
0.0830 0.0984  
0.0177 0.0236  
C
K
L
S
H
J
D
V
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 318–08  
SOT–23 (TO–236AB)  
ISSUE AE  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBT5550LT1/D  

相关型号:

MMBT5551LT1G

High Voltage Transistors
ONSEMI

MMBT5551LT1_15

NPN EPITAXIAL SILICON TRANSISTOR
WINNERJOIN

MMBT5551LT3

High Voltage Transistors
ONSEMI

MMBT5551LT3G

High Voltage Transistors
ONSEMI

MMBT5551M3T5G

NPN High Voltage Transistor
ONSEMI

MMBT5551W

Plastic-Encapsulate Transistor
SECOS

MMBT5551WT1

DUAL NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR
WILLAS

MMBT5551_07

Surface Mount General Purpose Si-Epi-Planar Transistors
DIOTEC

MMBT5551_08

NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMBT5551_1

NPN SMALL SIGNAL SURFACE MOUNT TRANSISTOR
DIODES

MMBT5551_10

HIGH VOLTAGE SWITCHING TRANSISTOR
UTC

MMBT5551_11

NPN Plastic Encapsulate Transistor
MCC