MMUN2113LT1 [ONSEMI]

PNP SILICON BIAS RESISTOR TRANSISTOR; PNP硅偏置电阻晶体管
MMUN2113LT1
型号: MMUN2113LT1
厂家: ONSEMI    ONSEMI
描述:

PNP SILICON BIAS RESISTOR TRANSISTOR
PNP硅偏置电阻晶体管

晶体 小信号双极晶体管 光电二极管
文件: 总12页 (文件大小:122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MMUN2111LT1 Series  
Preferred Devices  
Bias Resistor Transistors  
PNP Silicon Surface Mount Transistors  
with Monolithic Bias Resistor Network  
This new series of digital transistors is designed to replace a single  
device and its external resistor bias network. The BRT (Bias Resistor  
Transistor) contains a single transistor with a monolithic bias network  
consisting of two resistors; a series base resistor and a base-emitter  
resistor. The BRT eliminates these individual components by  
integrating them into a single device. The use of a BRT can reduce  
both system cost and board space. The device is housed in the SOT-23  
package which is designed for low power surface mount applications.  
http://onsemi.com  
PIN 3  
COLLECTOR  
(OUTPUT)  
PIN 1  
BASE  
(INPUT)  
R1  
R2  
PIN 2  
EMITTER  
(GROUND)  
Simplifies Circuit Design  
Reduces Board Space  
Reduces Component Count  
The SOT-23 package can be soldered using wave or reflow. The  
modified gull-winged leads absorb thermal stress during soldering  
eliminating the possibility of damage to the die.  
3
1
Available in 8 mm embossed tape and reel. Use the Device Number  
to order the 7 inch/3000 unit reel. Replace “T1” with “T3” in the  
Device Number to order the 13 inch/10,000 unit reel.  
2
SOT–23  
CASE 318  
STYLE 6  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
Rating  
Collector-Base Voltage  
Collector-Emitter Voltage  
Collector Current  
Symbol  
Value  
50  
Unit  
Vdc  
MARKING DIAGRAM  
V
CBO  
CEO  
V
50  
Vdc  
I
C
100  
mAdc  
A6x  
M
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
A6x  
x
Page 2)  
M
= Device Marking  
= A – L (See  
Total Device Dissipation  
P
D
246 (Note 1.)  
400 (Note 2.)  
1.5 (Note 1.)  
2.0 (Note 2.)  
mW  
T
= 25°C  
A
Derate above 25°C  
°C/W  
°C/W  
°C/W  
°C  
= Date Code  
Thermal Resistance –  
Junction-to-Ambient  
R
508 (Note 1.)  
311 (Note 2.)  
θJA  
DEVICE MARKING INFORMATION  
See specific marking information in the device marking table  
on page 2 of this data sheet.  
Thermal Resistance –  
Junction-to-Lead  
R
174 (Note 1.)  
208 (Note 2.)  
θJL  
Junction and Storage  
Temperature Range  
T , T  
J stg  
–55 to +150  
Preferred devices are recommended choices for future use  
and best overall value.  
1. FR–4 @ Minimum Pad  
2. FR–4 @ 1.0 x 1.0 inch Pad  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
November, 2001 – Rev. 2  
MMUN2111LT1/D  
MMUN2111LT1 Series  
DEVICE MARKING AND RESISTOR VALUES  
Device  
Package  
Marking  
R1 (K)  
R2 (K)  
Shipping  
MMUN2111LT1  
MMUN2111LT3  
SOT–23  
A6A  
10  
10  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2112LT1  
MMUN2112LT3  
SOT–23  
SOT–23  
SOT–23  
SOT–23  
SOT–23  
SOT–23  
SOT–23  
SOT–23  
SOT–23  
SOT–23  
A6B  
A6C  
A6D  
A6E  
A6F  
A6G  
A6H  
A6J  
A6K  
A6L  
22  
47  
22  
47  
47  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2113LT1  
MMUN2113LT3  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2114LT1  
MMUN2114LT3  
10  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2115LT1 (Note 3.)  
MMUN2115LT3  
10  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2116LT1 (Note 3.)  
MMUN2116LT3  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2130LT1 (Note 3.)  
MMUN2130LT3  
1.0  
2.2  
4.7  
47  
47  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2131LT1 (Note 3.)  
MMUN2131LT3  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2132LT1 (Note 3.)  
MMUN2132LT3  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2133LT1 (Note 3.)  
MMUN2133LT3  
3000/Tape & Reel  
10,000/Tape & Reel  
MMUN2134LT1 (Note 3.)  
MMUN2134LT3  
3000/Tape & Reel  
10,000/Tape & Reel  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector-Base Cutoff Current (V  
= 50 V, I = 0)  
I
I
100  
500  
nAdc  
nAdc  
mAdc  
CB  
E
CBO  
Collector-Emitter Cutoff Current (V  
= 50 V, I = 0)  
B
CE  
CEO  
Emitter-Base Cutoff Current  
MMUN2111LT1  
I
0.5  
0.2  
0.1  
0.2  
0.9  
1.9  
4.3  
2.3  
1.5  
0.18  
0.13  
EBO  
(V  
EB  
= 6.0 V, I = 0)  
MMUN2112LT1  
MMUN2113LT1  
MMUN2114LT1  
MMUN2115LT1  
MMUN2116LT1  
MMUN2130LT1  
MMUN2131LT1  
MMUN2132LT1  
MMUN2133LT1  
MMUN2134LT1  
C
Collector-Base Breakdown Voltage (I = 10 µA, I = 0)  
V
V
50  
50  
Vdc  
Vdc  
C
E
(BR)CBO  
Collector-Emitter Breakdown Voltage (Note 4.)  
(BR)CEO  
(I = 2.0 mA, I = 0)  
C
B
3. New devices. Updated curves to follow in subsequent data sheets.  
4. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
http://onsemi.com  
2
MMUN2111LT1 Series  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
ON CHARACTERISTICS (Note 5.)  
DC Current Gain  
Symbol  
Min  
Typ  
Max  
Unit  
MMUN2111LT1  
MMUN2112LT1  
MMUN2113LT1  
MMUN2114LT1  
MMUN2115LT1  
MMUN2116LT1  
MMUN2130LT1  
MMUN2131LT1  
MMUN2132LT1  
MMUN2133LT1  
MMUN2134LT1  
h
FE  
35  
60  
80  
60  
100  
140  
140  
250  
250  
5.0  
15  
(V  
CE  
= 10 V, I = 5.0 mA)  
C
80  
160  
160  
3.0  
8.0  
15  
27  
140  
130  
80  
80  
Collector-Emitter Saturation Voltage  
(I = 10 mA, I = 0.3 mA)  
V
0.25  
Vdc  
Vdc  
CE(sat)  
C
E
(I = 10 mA, I = 5 mA) MMUN2130LT1/MMUN2131LT1  
C
B
(I = 10 mA, I = 1 mA) MMUN2115LT1/MMUN2116LT1/  
C
B
MMUN2132LT1/MMUN2133LT1/MMUN2134LT1  
Output Voltage (on)  
(V = 5.0 V, V = 2.5 V, R = 1.0 k)  
V
OL  
MMUN2111LT1  
MMUN2112LT1  
MMUN2114LT1  
MMUN2115LT1  
MMUN2116LT1  
MMUN2130LT1  
MMUN2131LT1  
MMUN2132LT1  
MMUN2133LT1  
MMUN2134LT1  
MMUN2113LT1  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
CC  
B
L
(V  
CC  
= 5.0 V, V = 3.5 V, R = 1.0 k)  
B L  
Output Voltage (off)  
V
OH  
4.9  
Vdc  
(V  
CC  
(V  
CC  
= 5.0 V, V = 0.5 V, R = 1.0 k)  
B L  
= 5.0 V, V = 0.25 V, R = 1.0 k)  
MMUN2115LT1  
MMUN2116LT1  
MMUN2131LT1  
MMUN2132LT1  
B
L
(V  
CC  
= 5.0 V, V = 0.050 V, R = 1.0 k) MMUN2130LT1  
B L  
Input Resistor  
MMUN2111LT1  
MMUN2112LT1  
MMUN2113LT1  
MMUN2114LT1  
MMUN2115LT1  
MMUN2116LT1  
MMUN2130LT1  
MMUN2131LT1  
MMUN2132LT1  
MMUN2133LT1  
MMUN2134LT1  
R1  
7.0  
15.4  
32.9  
7.0  
7.0  
3.3  
0.7  
1.5  
3.3  
3.3  
10  
22  
47  
10  
10  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
13  
28.6  
61.1  
13  
k Ω  
13  
6.1  
1.3  
2.9  
6.1  
6.1  
28.6  
15.4  
Resistor Ratio MMUN2111LT1/MMUN2112LT1/MMUN2113LT1  
MMUN2114LT1  
R /R  
0.8  
0.17  
1.0  
0.21  
1.2  
0.25  
1
2
MMUN2115LT1/MMUN2116LT1  
MMUN2130LT1/MMUN2131LT1/MMUN2132LT1  
MMUN2133LT1  
0.8  
0.055  
1.0  
0.1  
1.2  
0.185  
5. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
http://onsemi.com  
3
MMUN2111LT1 Series  
TYPICAL ELECTRICAL CHARACTERISTICS  
MMUN2111LT1  
250  
200  
1
I /I Ă=Ă10  
C B  
T Ă=Ă-25°C  
A
25°C  
150  
100  
50  
75°C  
ā0.1  
R
θJA  
= 625°C/W  
ā0.01  
0
-50  
0
50  
100  
150  
20  
0
ā40  
ā60  
ā80  
50  
ā50  
T , AMBIENT TEMPERATURE (°C)  
A
I , COLLECTOR CURRENT (mA)  
C
Figure 1. Derating Curve  
Figure 2. V  
versus I  
CE(sat) C  
1000  
4
3
V
CE  
= 10 V  
f = 1 MHz  
= 0 V  
l
E
T = 25°C  
A
T Ă=Ă75°C  
A
25°C  
100  
2
1
0
-25°C  
10  
1
10  
100  
0
10  
20  
30  
40  
I , COLLECTOR CURRENT (mA)  
C
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
Figure 3. DC Current Gain  
Figure 4. Output Capacitance  
100  
10  
1
100  
10  
25°C  
75°C  
V
= 0.2 V  
O
T Ă=Ă-25°C  
A
T Ă=Ă-25°C  
A
25°C  
75°C  
ā0.1  
1
ā0.01  
V
O
= 5 V  
ā0.1  
ā0.001  
0
1
ā2  
ā3  
ā4  
ā5  
ā6  
ā7  
ā8  
ā9  
10  
0
10  
ā20  
ā30  
ā40  
V , INPUT VOLTAGE (VOLTS)  
in  
I , COLLECTOR CURRENT (mA)  
C
Figure 5. Output Current versus Input Voltage  
Figure 6. Input Voltage versus Output Current  
http://onsemi.com  
4
MMUN2111LT1 Series  
TYPICAL ELECTRICAL CHARACTERISTICS  
MMUN2112LT1  
1000  
10  
I /I Ă=Ă10  
C B  
V
CE  
= 10 V  
T Ă=Ă-25°C  
A
25°C  
75°C  
T Ă=Ă75°C  
A
1
25°C  
-25°C  
100  
ā0.1  
10  
ā0.01  
1
10  
0
ā20  
ā40  
ā60  
ā80  
100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 7. V  
versus I  
Figure 8. DC Current Gain  
CE(sat)  
C
4
3
2
100  
10  
1
25°C  
75°C  
f = 1 MHz  
= 0 V  
T Ă=Ă-25°C  
A
l
E
T = 25°C  
A
ā0.1  
1
0
V
= 5 V  
O
ā0.01  
ā0.001  
0
1
ā2  
ā3  
ā4  
ā5  
ā6  
ā7  
ā8  
ā9  
10  
0
10  
20  
30  
40  
50  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 9. Output Capacitance  
Figure 10. Output Current versus Input Voltage  
100  
V
O
= 0.2 V  
T Ă=Ă-25°C  
A
25°C  
10  
75°C  
1
ā0.1  
0
10  
ā20  
ā30  
ā40  
ā50  
I , COLLECTOR CURRENT (mA)  
C
Figure 11. Input Voltage versus Output Current  
http://onsemi.com  
5
MMUN2111LT1 Series  
TYPICAL ELECTRICAL CHARACTERISTICS  
MMUN2113LT1  
1
1000  
I /I Ă=Ă10  
C B  
T Ă=Ă75°C  
A
T Ă=Ă-25°C  
A
25°C  
25°C  
-25°C  
75°C  
100  
ā0.1  
ā0.01  
10  
0
10  
20  
30  
40  
1
10  
I , COLLECTOR CURRENT (mA)  
100  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 12. V  
versus I  
Figure 13. DC Current Gain  
CE(sat)  
C
1
100  
T Ă=Ă75°C  
25°C  
A
f = 1 MHz  
= 0 V  
l
E
0.8  
-25°C  
10  
1
T = 25°C  
A
0.6  
0.4  
ā0.1  
ā0.01  
0.2  
0
V
= 5 V  
ā5  
O
ā0.001  
0
1
ā2  
ā3  
ā4  
ā6  
ā7  
ā8  
Ă9  
10  
0
10  
20  
30  
40  
50  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 14. Output Capacitance  
Figure 15. Output Current versus Input Voltage  
100  
V
O
= 2 V  
T Ă=Ă-25°C  
A
25°C  
75°C  
10  
1
Ă0.1  
0
10  
ā20  
30  
ā40  
ā50  
I , COLLECTOR CURRENT (mA)  
C
Figure 16. Input Voltage versus Output Current  
http://onsemi.com  
6
MMUN2111LT1 Series  
TYPICAL ELECTRICAL CHARACTERISTICS  
MMUN2114LT1  
1
180  
T Ă=Ă75°C  
A
I /I Ă=Ă10  
C B  
V
CE  
= 10 V  
160  
140  
120  
100  
80  
T Ă=Ă-25°C  
A
25°C  
-25°C  
25°C  
0.1  
75°C  
0.01  
60  
40  
20  
0.001  
0
0
20  
40  
60  
80  
1
2
4
6
8
10 15 20 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 17. V  
versus I  
Figure 18. DC Current Gain  
CE(sat)  
C
4.5  
4
100  
10  
1
T Ă=Ă75°C  
A
f = 1 MHz  
= 0 V  
25°C  
l
E
3.5  
3
T = 25°C  
A
-25°C  
2.5  
2
1.5  
1
V
= 5 V  
O
0.5  
0
0
2
4
6
8
10 15 20 25 30 35 40 45 50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 19. Output Capacitance  
Figure 20. Output Current versus Input Voltage  
+12 V  
10  
T Ă=Ă-25°C  
A
V
O
= 0.2 V  
25°C  
75°C  
Typical Application  
for PNP BRTs  
1
LOAD  
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 21. Input Voltage versus Output Current  
Figure 22. Inexpensive, Unregulated Current Source  
http://onsemi.com  
7
MMUN2111LT1 Series  
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
SOLDERING PRECAUTIONS  
The power dissipation of the SOT–23 is a function of the  
pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipa-  
tion. Power dissipation for a surface mount device is deter-  
The melting temperature of solder is higher than the  
rated temperature of the device. When the entire device is  
heated to a high temperature, failure to complete soldering  
within a short time could result in device failure. There-  
fore, the following items should always be observed in  
order to minimize the thermal stress to which the devices  
are subjected.  
mined byT  
of the die, R  
, the maximum rated junction temperature  
, the thermal resistance from the device  
J(max)  
θJA  
junction to ambient, and the operating temperature, T .  
A
Using the values provided on the data sheet for the SOT–23  
package, P can be calculated as follows:  
Always preheat the device.  
D
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
one can calculate the power dissipation of the device which  
in this case is 225 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 225 milli-  
watts. There are other alternatives to achieving higher  
power dissipation from the SOT–23 package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause exces-  
sive thermal shock and stress which can result in damage  
to the device.  
http://onsemi.com  
8
MMUN2111LT1 Series  
SOLDER STENCIL GUIDELINES  
Prior to placing surface mount components onto a printed  
The stencil opening size for the surface mounted package  
should be the same as the pad size on the printed circuit  
board, i.e., a 1:1 registration.  
circuit board, solder paste must be applied to the pads. A  
solder stencil is required to screen the optimum amount of  
solder paste onto the footprint. The stencil is made of brass  
or stainless steel with a typical thickness of 0.008 inches.  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of  
control settings that will give the desired heat pattern. The  
operator must set temperatures for several heating zones,  
and a figure for belt speed. Taken together, these control  
settings make up a heating “profile” for that particular  
circuit board. On machines controlled by a computer, the  
computer remembers these profiles from one operating  
session to the next. Figure 7 shows a typical heating profile  
for use when soldering a surface mount device to a printed  
circuit board. This profile will vary among soldering  
systems but it is a good starting point. Factors that can  
affect the profile include the type of soldering system in  
use, density and types of components on the board, type of  
solder used, and the type of board or substrate material  
being used. This profile shows temperature versus time.  
The line on the graph shows the actual temperature that  
might be experienced on the surface of a test board at or  
near a central solder joint. The two profiles are based on a  
high density and a low density board. The Vitronics  
SMD310 convection/infrared reflow soldering system was  
used to generate this profile. The type of solder used was  
62/36/2 Tin Lead Silver with a melting point between  
177–189°C. When this type of furnace is used for solder  
reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
STEP 5  
HEATING  
ZONES 4 & 7  
SPIKE"  
STEP 6 STEP 7  
VENT COOLING  
STEP 1  
PREHEAT  
ZONE 1  
RAMP"  
STEP 2  
VENT  
STEP 3  
HEATING  
STEP 4  
HEATING  
ZONES 3 & 6  
SOAK"  
SOAK" ZONES 2 & 5  
RAMP"  
205° TO 219°C  
PEAK AT  
SOLDER JOINT  
200°C  
150°C  
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
160°C  
150°C  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
140°C  
100°C  
MASS OF ASSEMBLY)  
100°C  
50°C  
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 23. Typical Solder Heating Profile  
http://onsemi.com  
9
MMUN2111LT1 Series  
PACKAGE DIMENSIONS  
SOT–23  
TO–236AB  
CASE 318–08  
ISSUE AF  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. MAXIMUM LEAD THICKNESS INCLUDES LEAD  
FINISH THICKNESS. MINIMUM LEAD THICKNESS  
IS THE MINIMUM THICKNESS OF BASE  
MATERIAL.  
A
L
3
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
C
B
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
MAX  
3.04  
1.40  
1.11  
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
1
2
A
B
C
D
G
H
J
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
V
G
0.0005 0.0040 0.013  
0.0034 0.0070 0.085  
K
L
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
0.35  
0.89  
2.10  
0.45  
S
V
H
J
D
K
STYLE 6:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
http://onsemi.com  
10  
MMUN2111LT1 Series  
Notes  
http://onsemi.com  
11  
MMUN2111LT1 Series  
Thermal Clad is a trademark of the Bergquist Company.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
MMUN2111LT1/D  

相关型号:

MMUN2113LT1G

PNP Bipolar Digital Transistor (BRT), SOT-23 (TO-236) 3 LEAD, 3000-REEL
ONSEMI

MMUN2113LT3

Bias Resistor Transistors
LRC

MMUN2113LT3G

PNP 双极数字晶体管 (BRT)
ONSEMI

MMUN2113RLT1

Bias Resistor Transistor
LRC

MMUN2113T1

100mA, 50V, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-236AB
MOTOROLA

MMUN2113T3

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 1-Element, PNP, Silicon, TO-236AB,
MOTOROLA

MMUN2114

Bias Resistor Transistor
LRC

MMUN2114

Bias Resistor Transistor PNP Silicon
WEITRON

MMUN2114L

Digital Transistors (BRT) R1 = 10 k, R2 = 47 k
ONSEMI

MMUN2114LT1

PNP SILICON BIAS RESISTOR TRANSISTOR
MOTOROLA

MMUN2114LT1

PNP SILICON BIAS RESISTOR TRANSISTOR
ONSEMI

MMUN2114LT1

Bias Resistor Transistors
LRC