MT9M031I12STC-DPBR1 [ONSEMI]

1/3‐inch CMOS Digital Image Sensor;
MT9M031I12STC-DPBR1
型号: MT9M031I12STC-DPBR1
厂家: ONSEMI    ONSEMI
描述:

1/3‐inch CMOS Digital Image Sensor

时钟 传感器 换能器
文件: 总23页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MT9M021, MT9M031  
MT9M021/MT9M031  
1/3‐inch CMOS Digital  
Image Sensor  
Description  
The MT9M021/MT9M031 from ON Semiconductor is a 1/3-inch  
CMOS digital image sensor with an active-pixel array of 1280 (H) ×  
960 (V). It includes sophisticated camera functions such as auto  
exposure control, windowing, scaling, row skip mode, and both video  
and single frame modes. It is designed for low light performance and  
features a global shutter for accurate capture of moving scenes. It is  
programmable through a simple two-wire serial interface.  
The MT9M021/MT9M031 produces extraordinarily clear, sharp  
digital pictures, and its ability to capture both continuous video and  
single frames makes it the perfect choice for a wide range of  
applications, including scanning and HD video.  
www.onsemi.com  
IBGA63 9 y 9  
CASE 503AQ  
Table 1. KEY PERFORMANCE PARAMETERS  
Parameter  
Optical Format  
Typical Value  
1/3-inch (6 mm)  
Active Pixels  
1280 (H) × 960 (V) = 1.2 Mp  
3.75 mm  
ILCC48 10 y 10  
Pixel Size  
CASE 847AJ  
Color Filter Array  
Shutter Type  
RGB Bayer or Monochrome  
Global Shutter  
Input Clock Range  
Output Pixel Clock (Maximum)  
6–50 MHz  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
74.25 MHz  
Output  
Serial  
Parallel  
HiSPi (iBGA Package Only)  
12-bit  
Features  
Frame Rate  
Full Resolution  
720p  
Superior Low-light Performance  
HD Video (720p60)  
45 fps  
60 fps  
Global Shutter  
Responsivity  
Monochrome  
Color  
6.1 V/lux−sec  
5.3 V/lux−sec  
Video/Single Frame Mode  
Flexible Row-skip Modes  
On-chip AE and Statistics Engine  
Parallel and Serial Output  
Support for External LED or Flash  
Auto Black Level Calibration  
Context Switching  
SNR  
38 dB  
64 dB  
MAX  
Dynamic Range  
Supply Voltage  
I/O  
Digital  
Analog  
HiSPi  
1.8 or 2.8 V  
1.8 V  
2.8 V  
0.4 V  
Power Consumption  
< 400 mW  
Applications  
Operating Temperature (Ambient)  
Package Options  
–30°C to + 70°C  
Scene Processing  
Scanning and Machine Vision  
720p60 Video Applications  
9 × 9 mm 63-pin iBGA  
10 × 10 mm 48-pin iLCC  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
January, 2017 − Rev. 10  
MT9M021/D  
MT9M021, MT9M031  
ORDERING INFORMATION  
Table 2. AVAILABLE PART NUMBERS  
Part Number  
Product Description  
Orderable Product Attribute Description  
MT9M021IA3XTC−DPBR1  
MT9M021IA3XTC−DRBR  
MT9M021IA3XTM−DPBR1  
MT9M021IA3XTM−DRBR1  
MT9M021IA3XTMZ−DPBR  
MT9M021IA3XTMZ−DRBR  
MT9M021IA3XTMZ−TPBR  
MT9M031D00STMC24BC1−200  
MT9M031I12STC−DPBR1  
MT9M031I12STC−DRBR  
MT9M031I12STM−DPBR  
MT9M031I12STM−DRBR1  
MT9M031I12STMZ−DRBR  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
1 MP 1/6SOC  
Dry Pack with Protective Film, Double Side BBAR Glass  
Dry Pack without Protective Film, Double Side BBAR Glass  
Dry Pack with Protective Film, Double Side BBAR Glass  
Dry Pack without Protective Film, Double Side BBAR Glass  
Dry Pack with Protective Film, Double Side BBAR Glass  
Dry Pack without Protective Film, Double Side BBAR Glass  
Tape & Reel with Protective Film, Double Side BBAR Glass  
Die Sales, 200 mm Thickness  
1 MP 1/6SOC  
Dry Pack with Protective Film, Double Side BBAR Glass  
Dry Pack without Protective Film, Double Side BBAR Glass  
Dry Pack with Protective Film, Double Side BBAR Glass  
Dry Pack without Protective Film, Double Side BBAR Glass  
Dry Pack without Protective Film, Double Side BBAR Glass  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
1.2 MP 1/3GS CIS  
See the ON Semiconductor Device Nomenclature  
document (TND310/D) for a full description of the naming  
convention used for image sensors. For reference  
documentation, including information on evaluation kits,  
please visit our web site at www.onsemi.com.  
GENERAL DESCRIPTION  
The ON Semiconductor MT9M021/MT9M031 can be  
operated in its default mode or programmed for frame size,  
exposure, gain, and other parameters. The default mode  
output is a full-resolution image at 45 frames per second  
(fps). It outputs 12-bit raw data, using either the parallel or  
serial (HiSPi) output ports. The device may be operated in  
video (master) mode or in frame trigger mode.  
A dedicated FLASH pin can be programmed to control  
external LED or flash exposure illumination.  
The MT9M021/MT9M031 includes additional features  
to allow application-specific tuning: windowing, adjustable  
auto-exposure control, auto black level correction, on-board  
temperature sensor, and row skip and digital binning modes.  
The sensor is designed to operate in a wide temperature  
range (–30°C to +70°C).  
FRAME_VALID and LINE_VALID signals are output on  
dedicated pins, along with a synchronized pixel clock.  
FUNCTIONAL OVERVIEW  
The MT9M021/MT9M031 is a progressive-scan sensor  
that generates a stream of pixel data at a constant frame rate.  
It uses an on-chip, phase-locked loop (PLL) that can be  
optionally enabled to generate all internal clocks from  
a single master input clock running between 6 and 50 MHz.  
The maximum output pixel rate is 74.25 Mp/s,  
corresponding to a clock rate of 74.25 MHz. Figure 1 shows  
a block diagram of the sensor.  
Temperature  
Sensor  
External  
Clock  
OTPM  
Memory  
PLL  
Active Pixel Sensor  
(APS)  
Array  
Power  
Timing and Control  
(Sequencer)  
Auto Exposure  
and Stats Engine  
Serial  
Output  
Pixel Data Path  
(Signal Processing)  
Parallel  
Output  
Analog Processing and  
A/D Conversion  
Flash  
Trigger  
Two-wire  
Serial  
Control Registers  
Interface  
Figure 1. Block Diagram  
www.onsemi.com  
2
 
MT9M021, MT9M031  
User interaction with the sensor is through the two-wire  
from the columns is sequenced through an analog signal  
chain (providing offset correction and gain), and then  
through an analog-to-digital converter (ADC). The output  
from the ADC is a 12-bit value for each pixel in the array.  
The ADC output passes through a digital processing signal  
chain (which provides further data path corrections and  
applies digital gain). The pixel data are output at a rate of up  
to 74.25 Mp/s, in parallel to frame and line synchronization  
signals.  
serial bus, which communicates with the array control,  
analog signal chain, and digital signal chain. The core of the  
sensor is a 1.2 Mp Active-Pixel Sensor array. The  
MT9M021/MT9M031 features global shutter technology  
for accurate capture of moving images. The exposure of the  
entire array is controlled by programming the integration  
time by register setting. All rows simultaneously integrate  
light prior to readout. Once a row has been read, the data  
FEATURES OVERVIEW  
The MT9M021/MT9M031 Global Sensor shutter has  
a wide array of features to enhance functionality and to  
increase versatility. A summary of features follows. Please  
refer to the MT9M021/MT9M031 Developer Guide for  
detailed feature descriptions, register settings, and tuning  
guidelines and recommendations.  
PLL  
An on chip PLL provides reference clock flexibility and  
supports spread spectrum sources for improved EMI  
performance.  
Reset  
The MT9M021/MT9M031 may be reset by a register  
write, or by a dedicated input pin.  
Operating Modes  
The MT9M021/MT9M031 works in master (video),  
trigger (single frame), or Auto Trigger modes. In  
master mode, the sensor generates the integration and  
readout timing. In trigger mode, it accepts an external  
trigger to start exposure, then generates the exposure  
and readout timing. The exposure time is programmed  
through the two-wire serial interface for both modes.  
Output Enable  
The MT9M021/MT9M031 output pins may be  
tri-stated using a dedicated output enable pin.  
Temperature Sensor  
Black Level Correction  
Row Noise Correction  
Column Correction  
NOTE: Trigger mode is not compatible with the HiSPi  
interface.  
Test Patterns  
Several test patterns may be enabled for debug  
purposes. These include a solid color, color bar, fade to  
grey, and a walking 1s test pattern.  
Window Control  
Configurable window size and blanking times allow  
a wide range of resolutions and frame rates. Digital  
binning and skipping modes are supported, as are  
vertical and horizontal mirror operations.  
Context Switching  
Context switching may be used to rapidly switch  
between two sets of register values. Refer to the  
MT9M021/MT9M031 Developer Guide for a complete  
set of context switchable registers.  
Gain  
The MT9M021/MT9M031 Global Shutter sensor can  
be configured for analog gain of up to 8x, and digital  
gain of up to 8x.  
Automatic Exposure Control  
The integrated automatic exposure control may be used  
to ensure optimal settings of exposure and gain are  
computed and updated every other frame. Refer to the  
MT9M021/MT9M031 Developer Guide for more  
details.  
HiSPi  
The MT9M021/MT9M031 Global Shutter image sensor  
supports two or three lanes of Streaming-SP or  
Packetized-SP protocols of ON Semiconductor’s  
High-Speed Serial Pixel Interface.  
www.onsemi.com  
3
MT9M021, MT9M031  
TYPICAL CONFIGURATION AND PINOUT  
Digital  
I/O  
Digital  
Core  
HiSPi  
PLL  
Power  
Analog  
Analog  
1
1
1
1
1
1
Power  
Power  
Power  
Power  
Power  
V
DD  
_IO  
V
DD  
V
DD  
_SLVS  
V
DD  
_PLL  
V
AA  
V
AA  
_PIX  
SLVS0_P  
SLVS0_N  
SLVS1_P  
SLVS1_N  
SLVS2_P  
SLVS2_N  
Master Clock  
(6−50 MHz)  
EXTCLK  
To Controller  
7
S
S
DATA  
SLVS3_P  
7
CLK  
SLVS3_N  
From  
Controller  
OE_BAR  
SLVSC_P  
SLVSC_N  
STANDBY  
RESET_BAR  
FLASH  
TEST  
D
A
GND  
GND  
Digital  
Ground  
Analog  
Ground  
V
DD  
_IO  
V
DD  
V
DD  
_SLVS  
V
DD  
_PLL  
V
AA  
V
AA  
_PIX  
Notes:  
1. All power supplies must be adequately decoupled.  
2. ON Semiconductor recommends a resistor value of 1.5 kW, but a greater value may be used for slower two-wire speed.  
3. This pull-up resistor is not required if the controller drives a valid logic level on S at all times.  
CLK  
4. The parallel interface output pads can be left unconnected if the serial output interface is used.  
5. ON Semiconductor recommends that 0.1 mF and 10 mF decoupling capacitors for each power supply are mounted as close as possible  
to the pad. Actual values and results may vary depending on the layout and design considerations. Refer to the MT9M021/MT9M031 demo  
headboard schematics for circuit recommendations.  
6. ON Semiconductor recommends that analog power planes be placed in a manner such that coupling with the digital power planes is  
minimized.  
7. Although 4 serial lanes are shown, the MT9M021/MT9M031 supports only 2- or 3-lane HiSPi.  
Figure 2. Serial 4-lane HiSPi Interface  
www.onsemi.com  
4
 
MT9M021, MT9M031  
Digital  
I/O  
Digital  
Core  
PLL  
Power  
Analog  
Analog  
1
1
1
1
1
Power  
Power  
Power  
Power  
V
DD  
_IO  
V
DD  
V
DD  
_PLL  
V
AA  
V
AA  
_PIX  
Master Clock  
(6−50 MHz)  
D
[11:0]  
OUT  
EXTCLK  
PIXCLK  
To Controller  
S
DATA  
LINE_VALID  
S
CLK  
FRAME_VALID  
From  
Controller  
TRIGGER  
OE_BAR  
STANDBY  
FLASH  
RESET_BAR  
TEST  
D
A
GND  
GND  
Digital  
Ground  
Analog  
Ground  
V
DD  
_IO  
V
DD  
V
DD  
_PLL  
V
AA  
V
AA  
_PIX  
Notes:  
1. All power supplies must be adequately decoupled.  
2. ON Semiconductor recommends a resistor value of 1.5 kW, but a greater value may be used for slower two-wire speed.  
3. This pull-up resistor is not required if the controller drives a valid logic level on S at all times.  
CLK  
4. The serial interface output pads can be left unconnected if the parallel output interface is used.  
5. ON Semiconductor recommends that 0.1 mF and 10 mF decoupling capacitors for each power supply are mounted as close as possible  
to the pad. Actual values and results may vary depending on the layout and design considerations. Refer to the MT9M021/MT9M031 demo  
headboard schematics for circuit recommendations.  
6. ON Semiconductor recommends that analog power planes be placed in a manner such that coupling with the digital power planes is  
minimized.  
Figure 3. Parallel Pixel Data Interface  
www.onsemi.com  
5
MT9M021, MT9M031  
1
2
3
4
5
6
7
8
A
B
SLVS0N  
SLVS0P  
SLVS1N  
SLVS1P  
V
V
STANDBY  
DD  
DD  
V
_PLL  
SLVSCN  
SLVSCP  
SLVS3N  
SLVS2N  
SLVS3P  
SLVS2P  
V
DD  
V
V
AA  
DD  
AA  
C
D
E
EXTCLK  
V
DD  
_SLVS  
D
D
D
V
V
A
GND  
A
GND  
GND  
GND  
DD  
S
S
CLK  
S
DATA  
D
V
_PIX  
V
AA  
_PIX  
ADDR  
GND  
DD  
AA  
LINE_  
VALID  
FRAME_  
VALID  
PIXCLK  
FLASH  
V
V
V
V
_IO  
_IO  
_IO  
_IO  
RESERVED RESERVED  
GND  
GND  
GND  
DD  
DD  
DD  
F
G
H
D
D
D
8
4
0
D
D
D
9
5
1
D
10  
OUT  
D 11  
OUT  
D
D
D
TEST  
RESERVED  
OE_BAR  
OUT  
OUT  
D
6
D
7
3
TRIGGER  
OUT  
OUT  
OUT  
OUT  
OUT  
RESET_  
BAR  
D
2
D
V
_IO  
OUT  
OUT  
OUT  
GND  
DD  
DD  
Top View  
(Ball Down)  
Figure 4. 9 y 9 mm 63-ball iBGA Package  
Table 3. PIN DESCRIPTIONS − 63-BALL IBGA PACKAGE  
Name  
iBGA Pin  
A2  
Type  
Output  
Output  
Output  
Output  
Input  
Description  
HiSPi serial data, lane 0, differential N  
HiSPi serial data, lane 0, differential P  
HiSPi serial data, lane 1, differential N  
HiSPi serial data, lane 1, differential P  
Standby-mode enable pin (active HIGH)  
PLL power  
SLVS0_N  
SLVS0_P  
SLVS1_N  
SLVS1_P  
STANDBY  
A3  
A4  
A5  
A8  
V
_PLL  
B1  
Power  
Output  
DD  
SLVSC_N  
B2  
HiSPi serial DDR clock differential N  
www.onsemi.com  
6
 
MT9M021, MT9M031  
Table 3. PIN DESCRIPTIONS − 63-BALL IBGA PACKAGE (continued)  
Name  
iBGA Pin  
Type  
Output  
Output  
Output  
Power  
Input  
Description  
HiSPi serial DDR clock differential P  
SLVSC_P  
SLVS2_N  
SLVS2_P  
B3  
B4  
HiSPi serial data, lane 2, differential N  
HiSPi serial data, lane 2, differential P  
Analog power  
B5  
V
AA  
B7, B8  
EXTCLK  
_SLVS  
C1  
External input clock  
V
C2  
Power  
Output  
Output  
Power  
Power  
Power  
Input  
HiSPi power  
DD  
SLVS3_N  
SLVS3_P  
C3  
HiSPi serial data, lane 3, differential N  
HiSPi serial data, lane 3, differential P  
Digital GND  
C4  
D
C5, D4, D5, E5, F5, G5, H5  
GND  
V
DD  
A6, A7, B6, C6, D6  
Digital power  
A
GND  
C7, C8  
Analog GND  
S
ADDR  
D1  
Two-Wire Serial address select  
Two-Wire Serial clock input  
Two-Wire Serial data I/O  
Pixel power  
S
CLK  
D2  
Input  
S
DATA  
D3  
I/O  
V
AA  
_PIX  
D7, D8  
Power  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Input  
LINE_VALID  
FRAME_VALID  
PIXCLK  
E1  
Asserted when D  
Asserted when D  
Pixel clock out. D  
line data is valid  
OUT  
OUT  
OUT  
E2  
frame data is valid  
E3  
is valid on rising edge of this clock  
FLASH  
E4  
Control signal to drive external light sources  
I/O supply power  
V
DD  
_IO  
E6, F6, G6, H6, H7  
D
8
OUT  
9
OUT  
F1  
F2  
F3  
F4  
F7  
G1  
G2  
G3  
G4  
G7  
G8  
H1  
H2  
H3  
H4  
H8  
Parallel pixel data output  
D
Parallel pixel data output  
D
D
10  
11  
Parallel pixel data output  
OUT  
Parallel pixel data output (MSB)  
Manufacturing test enable pin (connect to D  
Parallel pixel data output  
OUT  
TEST  
)
GND  
D
4
Output  
Output  
Output  
Output  
Input  
OUT  
OUT  
OUT  
OUT  
D
D
D
5
6
7
Parallel pixel data output  
Parallel pixel data output  
Parallel pixel data output  
TRIGGER  
OE_BAR  
Exposure synchronization input  
Output enable (active LOW)  
Parallel pixel data output (LSB)  
Parallel pixel data output  
Input  
D
D
D
D
0
1
2
3
Output  
Output  
Output  
Output  
Input  
OUT  
OUT  
OUT  
OUT  
Parallel pixel data output  
Parallel pixel data output  
RESET_BAR  
Asynchronous reset (active LOW). All settings are restored to factory  
default  
Reserved  
E7, E8, F8  
N/A  
Reserved (do not connect)  
www.onsemi.com  
7
MT9M021, MT9M031  
7
8
D
D
D
D
D
7
NC  
NC  
42  
41  
40  
39  
OUT  
OUT  
OUT  
OUT  
OUT  
8
9
9
V
AA  
10  
10  
11  
A
GND  
11  
12  
13  
14  
15  
V
_PIX  
_PIX  
38  
37  
36  
35  
34  
AA  
V
DD  
_IO  
V
AA  
PIXCLK  
V
AA  
V
S
A
GND  
DD  
V
AA  
CLK  
16  
17  
18  
S
Reserved  
Reserved  
Reserved  
33  
32  
31  
DATA  
RESET_BAR  
_IO  
V
DD  
Figure 5. 10 y 10 mm 48-pin iLCC Package, Parallel Output  
Table 4. PIN DESCRIPTIONS − 48-PIN ILCC PACKAGE, PARALLEL  
Pin Number  
Name  
Type  
Output  
Output  
Output  
Power  
Input  
Description  
1
2
3
4
5
6
7
8
9
D
D
D
4
5
6
Parallel pixel data output  
Parallel pixel data output  
Parallel pixel data output  
PLL power  
OUT  
OUT  
OUT  
V
_PLL  
DD  
EXTCLK  
External input clock  
Digital ground  
D
Power  
Output  
Output  
Output  
GND  
D
D
D
7
Parallel pixel data output  
Parallel pixel data output  
Parallel pixel data output  
OUT  
OUT  
OUT  
8
9
www.onsemi.com  
8
 
MT9M021, MT9M031  
Table 4. PIN DESCRIPTIONS − 48-PIN ILCC PACKAGE, PARALLEL (continued)  
Pin Number  
10  
11  
Name  
Type  
Output  
Output  
Power  
Output  
Power  
Input  
Description  
D
10  
Parallel pixel data output  
Parallel pixel data output (MSB)  
I/O supply power  
OUT  
OUT  
D
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
V
DD  
_IO  
PIXCLK  
Pixel clock out. D  
is valid on rising edge of this clock  
OUT  
V
DD  
Digital power  
S
CLK  
Two-Wire Serial clock input  
Two-Wire Serial data I/O  
S
DATA  
I/O  
RESET_BAR  
_IO  
Input  
Asynchronous reset (active LOW). All settings are restored to factory default  
I/O supply power  
V
DD  
Power  
Power  
V
DD  
Digital power  
NC  
NC  
No connection  
No connection  
STANDBY  
OE_BAR  
Input  
Input  
Standby-mode enable pin (active HIGH)  
Output enable (active LOW)  
Two-Wire Serial address select  
S
ADDR  
Input  
TEST  
FLASH  
Input  
Manufacturing test enable pin (connect to D  
)
GND  
Output  
Input  
Flash output control  
TRIGGER  
FRAME_VALID  
LINE_VALID  
Exposure synchronization input  
Output  
Output  
Power  
N/A  
Asserted when D  
Asserted when D  
Digital ground  
frame data is valid  
line data is valid  
OUT  
OUT  
D
GND  
Reserved  
Reserved  
Reserved  
Reserved (do not connect)  
Reserved (do not connect)  
Reserved (do not connect)  
Analog power  
N/A  
N/A  
V
AA  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
A
GND  
Analog ground  
V
AA  
Analog power  
V
_PIX  
_PIX  
Pixel power  
AA  
V
AA  
Pixel power  
A
GND  
Analog ground  
V
AA  
Analog power  
NC  
NC  
NC  
No connection  
No connection  
No connection  
D
Power  
Output  
Output  
Output  
Output  
Digital ground  
GND  
D
D
D
D
0
Parallel pixel data output (LSB)  
Parallel pixel data output  
Parallel pixel data output  
Parallel pixel data output  
OUT  
OUT  
OUT  
OUT  
1
2
3
www.onsemi.com  
9
MT9M021, MT9M031  
ELECTRICAL SPECIFICATIONS  
Two-Wire Serial Register Interface  
The electrical characteristics of the two-wire serial  
Unless otherwise stated, the following specifications  
apply to the following conditions:  
register interface (S  
Table 5.  
, S  
) are shown in Figure 6 and  
CLK DATA  
V
DD  
V
DD  
V
DD  
= 1.8 V –0.10/+0.15;  
_IO = V _PLL = V = V _PIX = 2.8 V 0.3 V;  
DD  
AA  
AA  
_SLVS = 0.4 V –0.1/+0.2;  
T = −30°C to +70°C;  
A
Output Load = 10 pF;  
PIXCLK Frequency = 74.25 MHz;  
HiSPi off.  
S
DATA  
t
t
LOW  
BUF  
t
t
f
SU;DAT  
t
t
r
t
f
t
r
HD;STA  
S
CLK  
t
t
t
SU;STA  
SU;STO  
HD;STA  
t
t
HIGH  
HD;DAT  
S
Sr  
P
S
NOTE: Read sequence: For an 8-bit READ, read waveforms start after WRITE command and register address are issued.  
Figure 6. Two-Wire Serial Bus Timing Parameters  
Table 5. TWO-WIRE SERIAL BUS CHARACTERISTICS  
(f  
= 27 MHz; V = 1.8 V; V _IO = 2.8 V; V = 2.8 V; V _PIX = 2.8 V; V _PLL = 2.8 V; T = 25°C)  
EXTCLK  
DD  
DD  
AA  
AA  
DD  
A
Standard Mode  
Fast-Mode  
Min  
Max  
Min  
0
Max  
400  
Parameter  
Clock Frequency  
Symbol  
Unit  
S
CLK  
f
0
100  
kHz  
SCL  
Hold Time (Repeated) START  
Condition  
t
4.0  
0.6  
ms  
HD;STA  
LOW Period of the S  
Clock  
Clock  
t
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
ms  
ms  
ms  
CLK  
LOW  
HIGH Period of the S  
t
HIGH  
CLK  
Set-up Time for a Repeated  
START Condition  
t
SU;STA  
Data Hold Time  
t
0 (Note 4)  
3.45 (Note 5)  
0 (Note 6)  
0.9 (Note 5)  
ms  
ns  
ns  
HD;DAT  
Data Set-up Time  
t
250  
100 (Note 6)  
SU;DAT  
Rise Time of both S  
and  
t
r
1000  
20 + 0.1Cb  
(Note 7)  
300  
DATA  
S
CLK  
Signals  
Fall Time of both S  
Signals  
and S  
t
f
300  
20 + 0.1Cb  
(Note 7)  
300  
ns  
DATA  
CLK  
Set-up Time for STOP Condition  
t
4.0  
4.7  
0.6  
1.3  
ms  
ms  
SU;STO  
Bus Free Time between a STOP  
and START Condition  
t
BUF  
Capacitive Load for each Bus Line  
Cb  
400  
3.3  
400  
3.3  
pF  
pF  
Serial Interface Input Pin  
Capacitance  
CIN_SI  
www.onsemi.com  
10  
 
MT9M021, MT9M031  
Table 5. TWO-WIRE SERIAL BUS CHARACTERISTICS (continued)  
(f  
= 27 MHz; V = 1.8 V; V _IO = 2.8 V; V = 2.8 V; V _PIX = 2.8 V; V _PLL = 2.8 V; T = 25°C)  
EXTCLK  
DD  
DD  
AA  
AA  
DD  
A
Standard Mode  
Fast-Mode  
Min  
Max  
Min  
Max  
30  
Parameter  
Symbol  
CLOAD_SD  
RSD  
Unit  
pF  
S
S
Max Load Capacitance  
30  
DATA  
Pull-up Resistor  
1.5  
4.7  
1.5  
4.7  
kW  
DATA  
2
1. This table is based on I C standard (v2.1 January 2000). Philips Semiconductor.  
2
2. Two-wire control is I C-compatible.  
3. All values referred to V  
= 0.9 V _IO and V  
= 0.1 V _IO levels. Sensor EXCLK = 27 MHz.  
ILmax DD  
IHmin  
DD  
4. A device must internally provide a hold time of at least 300 ns for the S  
signal to bridge the undefined region of the falling edge of S  
.
DATA  
CLK  
5. The maximum t  
has only to be met if the device does not stretch the LOW period (t  
) of the S  
signal.  
HD;DAT  
LOW  
CLK  
2
2
6. A Fast-mode I C-bus device can be used in a Standard-mode I C-bus system, but the requirement t  
250 ns must then be met. This  
SU;DAT  
will automatically be the case if the device does not stretch the LOW period of the S  
signal. If such a device does stretch the LOW period  
CLK  
of the S  
signal, it must output the next data bit to the S  
line t max + t  
= 1000 + 250 = 1250 ns (according to the Standard-mode  
CLK  
DATA  
r
SU;DAT  
2
I C-bus specification) before the S  
line is released.  
CLK  
7. Cb = total capacitance of one bus line in pF.  
I/O Timing  
By default, the MT9M021/MT9M031 launches pixel  
data, FV and LV with the falling edge of PIXCLK. The  
using the rising edge of PIXCLK. The launch edge of  
PIXCLK can be configured in register R0x3028. See  
Figure 7 and Table 6 for I/O timing (AC) characteristics.  
expectation is that the user captures D [11:0], FV and LV  
OUT  
t
t
t
t
FP  
R
F
RP  
90%  
10%  
90%  
10%  
90%  
10%  
90%  
10%  
t
EXTCLK  
EXTCLK  
PIXCLK  
t
PD  
Pxl_0  
Pxl_1  
Pxl_2  
Pxl_n  
Data[11:0]  
t
t
PFL  
t
t
PLH  
PFH  
LINE_VALID/  
PLL  
FRAME_VALID  
FRAME_VALID Leads LINE_VALID  
by 6 PIXCLKs  
FRAME_VALID Trails LINE_VALID  
by 6 PIXCLKs  
Figure 7. I/O Timing Diagram  
www.onsemi.com  
11  
 
MT9M021, MT9M031  
Table 6. I/O TIMING CHARACTERISTICS, PARALLEL OUTPUT (1.8 V VDD_IO) (Note 1)  
Symbol  
Definition  
Input Clock Frequency  
Input Clock Period  
Condition  
Min  
6
Typ  
Max  
50  
Unit  
MHz  
ns  
f
t
EXTCLK  
EXTCLK  
20  
166  
4
t
R
Input Clock Rise Time  
Input Clock Fall Time  
PIXCLK Rise Time  
PLL Enabled  
PLL Enabled  
3
ns  
t
F
3
4
ns  
t
Slew Setting = 4 (Default)  
Slew Setting = 4 (Default)  
2.3  
3
4.6  
4.4  
60  
ns  
RP  
t
FP  
PIXCLK Fall Time  
ns  
PIXCLK Duty Cycle  
PIXCLK Frequency (Note 2)  
PIXCLK to Data Valid  
PIXCLK to FV HIGH  
PIXCLK to LV HIGH  
PIXCLK to FV LOW  
PIXCLK to LV LOW  
40  
6
50  
%
f
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
74.25  
4.5  
4.5  
4.5  
4.5  
4.5  
MHz  
ns  
PIXCLK  
t
−3  
−3  
−3  
−3  
−3  
2.3  
1.5  
2.3  
1.5  
2
PD  
t
ns  
PFH  
t
ns  
PLH  
t
ns  
PFL  
t
ns  
PLL  
1. Minimum and maximum values are taken at the temperature and voltage limits; for instance, 70°C ambient at 90% of V _IO, and −30°C  
DD  
at 110% of V _IO. All values are taken at the 50% transition point. The loading used is 20 pF.  
DD  
2. Jitter from PIXCLK is already taken into account in the data for all of the output parameters.  
Table 7. I/O TIMING CHARACTERISTICS, PARALLEL OUTPUT (2.8 V VDD_IO) (Note 1)  
Symbol  
Definition  
Condition  
Min  
Typ  
Max  
Unit  
f
t
Input Clock Frequency  
Input Clock Period  
6
20  
50  
166  
4
MHz  
ns  
EXTCLK  
EXTCLK  
t
R
Input Clock Rise Time  
Input Clock Fall Time  
PIXCLK Rise Time  
PLL Enabled  
PLL Enabled  
3
ns  
t
F
3
4
ns  
t
Slew Setting = 4 (Default)  
Slew Setting = 4 (Default)  
2.3  
3
4.6  
4.4  
60  
74.25  
4
ns  
RP  
t
FP  
PIXCLK Fall Time  
ns  
PIXCLK Duty Cycle  
PIXCLK Frequency (Note 2)  
PIXCLK to Data Valid  
PIXCLK to FV HIGH  
PIXCLK to LV HIGH  
PIXCLK to FV LOW  
PIXCLK to LV LOW  
40  
6
50  
%
f
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
Nominal Voltages, PLL Enabled  
MHz  
ns  
PIXCLK  
t
−3  
−3  
−3  
−3  
−3  
2.3  
1.5  
2.3  
1.5  
2
PD  
t
4
ns  
PFH  
t
4
ns  
PLH  
t
4
ns  
PFL  
t
4
ns  
PLL  
1. Minimum and maximum values are taken at the temperature and voltage limits; for instance, 70°C ambient at 90% of V _IO, and −30°C  
DD  
at 110% of V _IO. All values are taken at the 50% transition point. The loading used is 20 pF.  
DD  
2. Jitter from PIXCLK is already taken into account in the data for all of the output parameters.  
Table 8. I/O RISE SLEW RATE (2.8 V VDD_IO) (Note 1)  
Parallel Slew (R0x306E[15:13])  
Condition  
Min  
Typ  
Max  
Unit  
7
6
5
4
3
2
1
0
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
1.08  
0.77  
0.58  
0.44  
0.32  
0.23  
0.16  
0.10  
1.77  
1.26  
0.95  
0.70  
0.51  
0.37  
0.25  
0.15  
2.72  
1.94  
1.46  
1.08  
0.78  
0.56  
0.38  
0.22  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
1. Minimum and maximum values are taken at the temperature and voltage limits; for instance, 70°C ambient at 90% of V _IO, and −30°C  
DD  
at 110% of V _IO. All values are taken at the 50% transition point. The loading used is 20 pF.  
DD  
www.onsemi.com  
12  
 
MT9M021, MT9M031  
Table 9. I/O FALL SLEW RATE (2.8 V VDD_IO) (Note 1)  
Parallel Slew (R0x306E[15:13])  
Condition  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Min  
1.00  
0.76  
0.60  
0.46  
0.35  
0.25  
0.17  
0.11  
Typ  
1.62  
1.24  
0.98  
0.75  
0.56  
0.40  
0.27  
0.16  
Max  
2.41  
1.88  
1.50  
1.16  
0.86  
0.61  
0.41  
0.24  
Unit  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
7
6
5
4
3
2
1
0
1. Minimum and maximum values are taken at the temperature and voltage limits; for instance, 70°C ambient at 90% of V _IO, and −30°C  
DD  
at 110% of V _IO. All values are taken at the 50% transition point. The loading used is 20 pF.  
DD  
Table 10. I/O RISE SLEW RATE (1.8 V VDD_IO) (Note 1)  
Parallel Slew (R0x306E[15:13])  
Condition  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Min  
0.41  
0.30  
0.24  
0.19  
0.14  
0.10  
0.07  
0.04  
Typ  
0.65  
0.47  
0.37  
0.28  
0.21  
0.15  
0.10  
0.06  
Max  
1.10  
0.79  
0.61  
0.46  
0.34  
0.24  
0.16  
0.10  
Unit  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
7
6
5
4
3
2
1
0
1. Minimum and maximum values are taken at the temperature and voltage limits; for instance, 70°C ambient at 90% of V _IO, and −30°C  
DD  
at 110% of V _IO. All values are taken at the 50% transition point. The loading used is 20 pF.  
DD  
Table 11. I/O FALL SLEW RATE (1.8 V VDD_IO) (Note 1)  
Parallel Slew (R0x306E[15:13])  
Condition  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Default  
Min  
0.42  
0.32  
0.26  
0.20  
0.16  
0.12  
0.08  
0.05  
Typ  
0.68  
0.51  
0.41  
0.32  
0.24  
0.18  
0.12  
0.07  
Max  
1.11  
0.84  
0.67  
0.52  
0.39  
0.28  
0.19  
0.11  
Unit  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
V/ns  
7
6
5
4
3
2
1
0
1. Minimum and maximum values are taken at the temperature and voltage limits; for instance, 70°C ambient at 90% of V _IO, and −30°C  
DD  
at 110% of V _IO. All values are taken at the 50% transition point. The loading used is 20 pF.  
DD  
www.onsemi.com  
13  
 
MT9M021, MT9M031  
DC Electrical Characteristics  
The DC electrical characteristics are shown in Table 12,  
Table 13, Table 14, and Table 15.  
Table 12. DC ELECTRICAL CHARACTERISTICS  
Symbol  
Definition  
Core Digital Voltage  
I/O Digital Voltage  
Analog Voltage  
Condition  
Min  
1.7  
Typ  
1.8  
1.8/2.8  
2.8  
2.8  
2.8  
0.4  
Max  
1.95  
1.9/3.1  
3.1  
Unit  
V
V
DD  
V
DD  
_IO  
1.7/2.5  
2.5  
V
V
AA  
V
V
_PIX  
_PLL  
Pixel Supply Voltage  
PLL Supply Voltage  
HiSPi Supply Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
2.5  
3.1  
V
AA  
V
DD  
2.5  
3.1  
V
V
DD  
_SLVS  
0.3  
0.6  
V
V
IH  
V
DD  
_IO * 0.7  
V
V
IL  
V
_IO * 0.3  
V
DD  
I
IN  
No Pull-up Resistor;  
20  
mA  
V
IN  
= V _IO or D  
DD GND  
V
Output HIGH Voltage  
Output LOW Voltage  
Output HIGH Current  
Output LOW Current  
V
DD  
_IO – 0.3  
0.4  
V
V
OH  
V
V
_IO = 2.8 V  
–22  
OL  
DD  
I
At Specified V  
At Specified V  
mA  
mA  
OH  
OH  
OL  
I
OL  
22  
CAUTION: Stresses greater than those listed in Table 13 may cause permanent damage to the device. This is a stress rating only, and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this  
specification is not implied.  
Table 13. ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Power Supply Voltage (All Supplies)  
Total Power Supply Current  
Total Ground Current  
Minimum  
–0.3  
Maximum  
4.5  
Unit  
V
V
SUPPLY  
SUPPLY  
I
200  
mA  
mA  
V
I
200  
GND  
V
IN  
DC Input Voltage  
–0.3  
–0.3  
–40  
V
V
_IO + 0.3  
_IO + 0.3  
+85  
DD  
V
OUT  
T
STG  
DC Output Voltage  
V
DD  
Storage Temperature (Note 1)  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
Table 14. OPERATING CURRENT CONSUMPTION FOR PARALLEL OUTPUT  
(V = V _PIX = V _IO = V _PLL = 2.8 V; V = 1.8 V; PLL Enabled and PIXCLK = 74.25 MHz; T = 25°C; C = 10 pF)  
AA  
AA  
DD  
DD  
DD  
A
LOAD  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
mA  
mA  
I
Digital Operating Current  
Parallel, Streaming, Full Resolution 45 fps  
Parallel, Streaming, Full Resolution 45 fps  
45  
55  
DD  
I
_IO  
I/O Digital Operating Current  
50  
DD  
(Note 1)  
I
Analog Operating Current  
Pixel Supply Current  
PLL Supply Current  
Parallel, Streaming, Full Resolution 45 fps  
Parallel, Streaming, Full Resolution 45 fps  
Parallel, Streaming, Full Resolution 45 fps  
45  
6
50  
10  
8
mA  
mA  
mA  
AA  
I
_PIX  
AA  
_PLL  
DD  
I
6
1. I _IO operating current is specified with image at 1/2 saturation level.  
DD  
www.onsemi.com  
14  
 
MT9M021, MT9M031  
Table 15. STANDBY CURRENT CONSUMPTION  
(Analog − V + V _PIX + V _PLL; Digital − V + V _IO; T = 25°C)  
AA  
AA  
DD  
DD  
DD  
A
Definition  
Condition  
Analog, 2.8 V  
Digital, 1.8 V  
Analog, 2.8 V  
Digital, 1.8 V  
Analog, 2.8 V  
Digital, 1.8 V  
Analog, 2.8 V  
Digital, 1.8 V  
Min  
Typ  
3
Max  
10  
Unit  
mA  
Hard Standby (Clock Off, Driven Low)  
Hard Standby (Clock On, EXTCLK = 20 MHz)  
Soft Standby (Clock Off, Driven Low)  
8
75  
mA  
12  
0.87  
3
20  
mA  
1.3  
10  
mA  
mA  
8
75  
mA  
Soft Standby (Clock On, EXTCLK = 20 MHz)  
12  
0.87  
20  
mA  
1.3  
mA  
HiSPi Electrical Specifications  
The ON Semiconductor MT9M021/MT9M031 sensor  
supports SLVS mode only, and does not have a DLL for  
timing adjustments. Refer to the High-Speed Serial Pixel  
(HiSPi) Interface Physical Layer Specification v2.00.00 for  
electrical definitions, specifications, and timing  
information. The V _SLVS supply in this data sheet  
DD  
corresponds to V _TX in the HiSPi Physical Layer  
DD  
Specification. Similarly, V is equivalent to V _HiSPi  
DD  
DD  
as referenced in the specification. The HiSPi transmitter  
electrical specifications are listed at 700 MHz.  
Table 16. INPUT VOLTAGE AND CURRENT (HiSPi POWER SUPPLY 0.4 V)  
(Measurement Conditions: Max Freq. 700 MHz)  
Symbol  
_SLVS  
Parameter  
) (Driving 100 W Load)  
HiSPi  
Min  
Typ  
Max  
Unit  
mA  
V
I
Supply Current (PWR  
10  
15  
DD  
V
CMD  
HiSPi Common Mode Voltage (Driving 100 W Load)  
V
_SLVS x  
0.45  
V
V
_SLVS/2  
V
V
_SLVS x  
DD  
0.55  
DD  
DD  
|V  
|
HiSPi Differential Output Voltage (Driving 100 W Load)  
V
_SLVS x  
0.36  
_SLVS/2  
_SLVS x  
DD  
0.64  
V
OD  
DD  
DD  
DV  
Change in V  
between Logic 1 and 0  
25  
25  
mV  
mV  
%
CM  
CM  
|V  
|
Change in |V | between Logic 1 and 0  
OD  
OD  
NM  
V
OD  
Noise Margin  
30  
|DV  
|DV  
|
Difference in V  
between any Two Channels  
50  
mV  
mV  
mV  
CM  
CM  
|
Difference in V between any Two Channels  
100  
50  
OD  
OD  
DV _ac  
Common-mode AC Voltage (pk) without V  
Cap  
CM  
CM  
Termination  
DV _ac  
Common-mode AC Voltage (pk) with V  
Cap Termination  
30  
mV  
V
CM  
CM  
V
OD  
_ac  
Max Overshoot Peak |V  
|
1.3 x |V  
2.6 x |V  
|
|
OD  
diff pk-pk  
OD  
V
Max Overshoot V  
Eye Height  
V
diff_pkpk  
OD  
V
eye  
1.4 x V  
OD  
R
Single-ended Output Impedance  
Output Impedance Mismatch  
35  
50  
70  
W
o
DR  
20  
%
o
www.onsemi.com  
15  
MT9M021, MT9M031  
V
DIFFmax  
V
DIFFmin  
0 V (Diff)  
Output Signal  
is ‘Cp − Cn’ or  
‘Dp − Dn’  
Figure 8. Differential Output Voltage for Clock and Data Pairs  
Table 17. RISE AND FALL TIMES  
(Measurement Conditions: HiSPi Power Supply 0.4 V, Max Freq. 700 MHz)  
Symbol  
1/UI  
Parameter  
Min  
280  
0.3  
0.3  
Typ  
Max  
700  
Unit  
Mb/s  
UI  
Data Rate  
TxPRE  
TxPost  
RISE  
Max Setup Time from Transmitter (Note 1)  
Max Hold Time from Transmitter  
Rise Time (20−80%)  
UI  
0.25 UI  
FALL  
Fall Time (20−80%)  
150 ps  
45  
0.25 UI  
PLL_DUTY  
Clock Duty  
50  
55  
3.57  
%
ns  
UI  
UI  
ps  
ps  
UI  
UI  
ps  
t
pw  
Bitrate Period (Note 1)  
1.43  
0.3  
t
Eye Width (Notes 1, 2)  
eye  
t
Data Total Jitter (pk pk)@1e−9 (Notes 1, 2)  
Clock Period Jitter (RMS) (Note 2)  
Clock Cycle to Cycle Jitter (RMS) (Note 2)  
Clock to Data Skew (Notes 1, 2)  
PHY-to-PHY Skew (Notes 1, 5)  
Mean Differential Skew (Note 6)  
0.2  
50  
100  
0.1  
2.1  
100  
totaljit  
t
t
ckjit  
cyjit  
t
−0.1  
chskew  
t
|PHYskew|  
t
–100  
DIFFSKEW  
1. One UI is defined as the normalized mean time between one edge and the following edge of the clock.  
2. Taken from 0 V crossing point.  
3. Also defined with a maximum loading capacitance of 10 pF on any pin. The loading capacitance may also need to be less for higher bitrates  
so the rise and fall times do not exceed the maximum 0.3 UI.  
4. The absolute mean skew between the Clock lane and any Data Lane in the same PHY between any edges.  
5. The absolute mean skew between any Clock in one PHY and any Data lane in any other PHY between any edges.  
6. Differential skew is defined as the skew between complementary outputs. It is measured as the absolute time between the two  
complementary edges at mean V  
point.  
CM  
www.onsemi.com  
16  
 
MT9M021, MT9M031  
RISE  
80%  
20%  
DATA MASK  
TxPre  
TxPost  
FALL  
UI/2  
UI/2  
CLOCK MASK  
Trigger/Reference  
CLKJITTER  
Figure 9. Eye Diagram for Clock and Data Signals  
VCMD  
t
CMPSKEW  
t
CHSKEW1PHY  
Figure 10. Skew within the PHY and Output Channels  
www.onsemi.com  
17  
MT9M021, MT9M031  
POWER-ON RESET AND STANDBY TIMING  
Power-Up Sequence  
The recommended power-up sequence for the  
MT9M021/MT9M031 is shown in Figure 11. The available  
5. Assert RESET_BAR for at least 1 ms.  
6. Wait 150000 EXTCLKs (for internal initialization  
into software standby).  
power supplies (V _IO, V , V _SLVS, V _PLL,  
DD  
DD  
DD  
DD  
V
, V _PIX) must have the separation specified below.  
7. Configure PLL, output, and image settings to  
desired values.  
AA AA  
1. Turn on V _PLL power supply.  
DD  
2. After 0−10 ms, turn on V and V _PIX power  
8. Wait 1 ms for the PLL to lock.  
9. Set streaming mode (R0x301a[2] = 1).  
AA  
AA  
supply.  
3. After 0−10 ms, turn on V _IO power supply.  
DD  
4. After the last power supply is stable, enable  
EXTCLK.  
V
DD  
_PLL (2.8)  
t
0
V
V
AA  
_PIX  
(2.8)  
AA  
t
1
V
DD  
_IO (1.8/2.8)  
t
2
V
DD  
(1.8)  
t
3
V
DD  
_SLVS (0.4)  
EXTCLK  
t
4
RESET_BAR  
t
5
t
6
t
X
Hard  
Reset  
Internal  
Initialization  
Software  
Standby  
PLL Lock  
Streaming  
Figure 11. Power Up  
Table 18. POWER-UP SEQUENCE  
Symbol  
Definition  
_PLL to V /V _PIX  
Min  
0
Typ  
Max  
Unit  
ms  
t
t
t
t
V
10  
0
1
2
3
X
DD  
AA AA  
V
V
V
/V _PIX to V _IO  
0
10  
ms  
AA AA  
DD  
_IO to V  
0
10  
ms  
DD  
DD  
DD  
to V _SLVS  
0
10  
ms  
DD  
t
Xtal Settle Time  
Hard Reset  
30 (Note 1)  
ms  
ms  
t
4
t
5
t
6
1 (Note 2)  
Internal Initialization  
PLL Lock Time  
150000  
1
EXTCLKs  
ms  
1. Xtal settling time is component-dependent, usually taking about 10–100 ms.  
2. Hard reset time is the minimum time required after power rails are settled. In a circuit where hard reset is held down by RC circuit, then the  
RC time must include the all power rail settle time and Xtal settle time.  
3. It is critical that V _PLL is not powered up after the other power supplies. It must be powered before or at least at the same time as the  
DD  
others. If the case happens that V _PLL is powered after other supplies then the sensor may have functionality issues and will experience  
DD  
high current draw on this supply.  
www.onsemi.com  
18  
 
MT9M021, MT9M031  
Power-Down Sequence  
The recommended power-down sequence for the  
MT9M021/MT9M031 is shown in Figure 12. The available  
power supplies (V _IO, V , V _SLVS, V _PLL,  
DD  
DD  
DD  
DD  
V
, V _PIX) must have the separation specified below.  
AA AA  
1. Disable streaming if output is active by setting  
standby R0x301a[2] = 0.  
2. The soft standby state is reached after the current  
row or frame, depending on configuration, has  
ended.  
3. Turn off V _SLVS.  
DD  
4. Turn off V  
.
DD  
5. Turn off V _IO.  
DD  
6. Turn off V /V _PIX.  
AA AA  
7. Turn off V _PLL.  
DD  
V
DD  
_SLVS (0.4)  
t
0
V
DD  
(1.8)  
t
1
V
DD  
_IO (1.8/2.8)  
t
2
V
V
AA  
_PIX  
(2.8)  
AA  
t
3
V
DD  
_PLL (2.8)  
EXTCLK  
t
4
Power Down until Next  
Power Up Cycle  
Figure 12. Power Down  
Table 19. POWER-DOWN SEQUENCE  
Symbol  
Parameter  
Min  
0
Typ  
Max  
Unit  
ms  
t
0
t
1
t
2
t
3
t
4
V
V
V
_SLVS to V  
DD  
DD  
DD  
DD  
to V _IO  
0
ms  
DD  
_IO to V /V _PIX  
0
ms  
AA AA  
V
/V _PIX to V _PLL  
0
ms  
AA AA  
DD  
PwrDn until Next PwrUp Time  
100  
ms  
1. t is required between power down and next power up time; all decoupling caps from regulators must be completely discharged.  
4
www.onsemi.com  
19  
 
MT9M021, MT9M031  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950 1000 1050 1100  
Wavelength (nm)  
Figure 13. Quantum Efficiency − Monochrome Sensor  
70  
60  
50  
40  
30  
20  
10  
0
Red  
Green  
Blue  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1050  
1000  
Wavelength (nm)  
Figure 14. Quantum Efficiency − Color Sensor  
www.onsemi.com  
20  
MT9M021, MT9M031  
PACKAGE DIMENSIONS  
Figure 15. 63-Ball iBGA Package Outline Drawing (Case 503AQ)  
www.onsemi.com  
21  
MT9M021, MT9M031  
PACKAGE DIMENSIONS  
Figure 16. 48-Pin iLCC Package Outline Drawing (Case 847AJ)  
www.onsemi.com  
22  
MT9M021, MT9M031  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage  
may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer  
is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of  
any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and  
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices  
intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and  
hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was  
negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright  
laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
MT9M021/D  

相关型号:

MT9M031I12STC-DRBR

1/3‐inch CMOS Digital Image Sensor
ONSEMI

MT9M031I12STM-DPBR

1/3‐inch CMOS Digital Image Sensor
ONSEMI

MT9M031I12STM-DRBR

CMOS Digital Image Sensor
ONSEMI

MT9M031I12STM-DRBR1

1/3‐inch CMOS Digital Image Sensor
ONSEMI

MT9M031I12STMZ-DRBR

1/3‐inch CMOS Digital Image Sensor
ONSEMI

MT9M032C12STC

IMAGE SENSOR-CMOS, 1472(H) X 1096(V) PIXEL, 60fps, 0.20-3.05V, SQUARE, SURFACE MOUNT
ONSEMI

MT9M032C12STC-DR

IMAGE SENSOR-CMOS, 1472(H) X 1096(V) PIXEL, 60fps, 0.20-3.05V, SQUARE, SURFACE MOUNT
ONSEMI

MT9M032C12STMU

IMAGE SENSOR-CMOS, 1472(H) X 1096(V) PIXEL, 60fps, 0.20-3.05V, SQUARE, SURFACE MOUNT
ONSEMI

MT9M032C12STMU-DP

IMAGE SENSOR-CMOS, 1472(H) X 1096(V) PIXEL, 60fps, 0.20-3.05V, SQUARE, SURFACE MOUNT
ONSEMI

MT9M034

1/3-Inch CMOS Digital Image Sensor
ONSEMI

MT9M034I12STC-DPBR

Digital Image Sensor
ONSEMI

MT9M034I12STC-DPBR1

1/3-Inch CMOS Digital Image Sensor
ONSEMI