MT9V024IA7XTM [ONSEMI]

IMAGE SENSOR-CMOS, 752(H)X480(V) PIXEL, 60fps, SQUARE, SURFACE MOUNT, 9 X 9 MM, ROHS COMPLIANT, IBGA-52;
MT9V024IA7XTM
型号: MT9V024IA7XTM
厂家: ONSEMI    ONSEMI
描述:

IMAGE SENSOR-CMOS, 752(H)X480(V) PIXEL, 60fps, SQUARE, SURFACE MOUNT, 9 X 9 MM, ROHS COMPLIANT, IBGA-52

时钟 传感器 换能器
文件: 总61页 (文件大小:1659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Features  
1/3-Inch Wide-VGA CMOS Digital Image Sensor  
MT9V024 Datasheet, Rev. F  
For the latest datasheet revision, please visit www.aptina.com  
Table 1:  
Key Performance Parameters  
Features  
• Array format: Wide-VGA, active 752H x 480V  
(360,960 pixels)  
Parameter  
Value  
Optical format  
1/3-inch  
• Global shutter photodiode pixels; simultaneous  
integration and readout  
• RGB Bayer, Monochrome, or RCCC: NIR enhanced  
performance for use with non-visible NIR  
illumination  
• Readout modes: progressive or interlaced  
• Shutter efficiency: >99%  
• Simple two-wire serial interface  
• Real-time exposure context switching - dual register  
set  
4.51mm(H) x 2.88mm(V)  
5.35mm diagonal  
Active imager size  
Active pixels  
Pixel size  
752H x 480V  
6.0m x 6.0m  
Monochrome, color RGB Bayer or  
RCCC pattern  
Color filter array  
Shutter type  
Global shutter  
Maximum data rate  
master clock  
27 Mp/s  
27 MHz  
Full resolution  
Frame rate  
752 x 480  
• Register lock capability  
60 fps (at full resolution)  
10-bit column-parallel  
4.8 V/lux-sec (550nm)  
• Window size: User programmable to any smaller  
format (QVGA, CIF, QCIF). Data rate can be  
maintained independent of window size  
• Binning: 2 x 2 and 4 x 4 of the full resolution  
• ADC: On-chip, 10-bit column-parallel (option to  
operate in 12-bit to 10-bit companding mode)  
• Automatic controls: Auto exposure control (AEC)  
and auto gain control (AGC); variable regional and  
variable weight AEC/AGC  
ADC resolution  
Responsivity  
>55dB linear;  
>100dB in HDR mode  
Dynamic range  
Supply voltage  
3.3V +0.3Vall supplies)  
<160mW at maximum data rate  
(LVDS disabled); 120W standby  
power at 3.3V  
Power consumption  
• Support for four unique serial control register IDs to  
control multiple imagers on the same bus  
• Data output formats:  
Operating temperature -40°C to +105°C ambient  
52-ball iBGA, automotive-qualified;  
wafer or die  
Packaging  
Single sensor mode:  
Ordering Information  
10-bit parallel/stand-alone  
8-bit or 10-bit serial LVDS  
Stereo sensor mode:  
Table 2:  
Available Part Numbers  
Interspersed 8-bit serial LVDS  
• High dynamic range (HDR) mode  
Part Number  
Description  
MT9V024IA7XTC  
MT9V024IA7XTM  
MT9V024IA7XTR  
iBGA RoHS-compliant RGB Bayer sensor  
iBGA RoHS-compliant monochrome  
iBGA RoHS-compliant RCCC sensor  
Applications  
Automotive  
MT9V024IA7XTCD RGB Bayer Demo Kit (Pb-free)  
MT9V024IA7XTCH RGB Bayer Headboard (Pb-free)  
MT9V024IA7XTMD Monochrome Demo Kit (Pb-free)  
MT9V024IA7XTMH Monochrome Headboard (Pb-free)  
MT9V024IA7XTRD RCCC Demo Kit (Pb-free)  
Unattended surveillance  
Stereo vision  
Smart vision  
Automation  
Video as input  
Machine vision  
MT9V024IA7XTRH RCCC Headboard (Pb-free)  
MT9V024_DSRev. F Pub. 3/15 EN  
1
©Semiconductor Components Industries, LLC,2008  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Table of Contents  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Pixel Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Color (RGB Bayer) Device Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Output Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Serial Bus Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Two-Wire Serial Interface Sample Read and Write Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Appendix A: Power-On Reset and Standby Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Appendix B: Electrical Identification of CFA Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
MT9V024_DSRev. F Pub. 3/15 EN  
2
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
List of Figures  
List of Figures  
Figure 1:  
Figure 2:  
Figure 3:  
Figure 4:  
Figure 5:  
Figure 6:  
Figure 7:  
Figure 8:  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
52-Ball IBGA Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Typical Configuration (Connection)—Parallel Output Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Pixel Color Pattern Detail RGB Bayer (Top Right Corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Pixel Color Pattern Detail RCCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Spatial Illustration of Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Timing Example of Pixel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Row Timing and FRAME_VALID/LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Timing Diagram Showing a Write to R0x09 with the Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Timing Diagram Showing a Read from R0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . .17  
Timing Diagram Showing a Bytewise Write to R0x09 with the Value 0x0284 . . . . . . . . . . . . . . . . . . . .18  
Timing Diagram Showing a Bytewise Read from R0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . .18  
Simultaneous Master Mode Synchronization Waveforms #1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Simultaneous Master Mode Synchronization Waveforms #2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Sequential Master Mode Synchronization Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Snapshot Mode Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Snapshot Mode Frame Synchronization Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Exposure and Readout Timing (Simultaneous Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Exposure and Readout Timing (Sequential Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Signal Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Latency of Exposure Register in Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Sequence of Control Voltages at the HDR Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Sequence of Voltages in a Piecewise Linear Pixel Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
12- to 10-Bit Companding Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Latency of Gain Register(s) in Master Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Tiled Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Black Level Calibration Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Controllable and Observable AEC/AGC Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Readout of Six Pixels in Normal and Column Flip Output Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Readout of Six Rows in Normal and Row Flip Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Readout of 8 Pixels in Normal and Row Bin Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Readout of 8 Pixels in Normal and Column Bin Output Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Spatial Illustration of Interlaced Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Different LINE_VALID Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Serial Output Format for a 6x2 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
LVDS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Propagation Delays for PIXCLK and Data Out Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Propagation Delays for FRAME_VALID and LINE_VALID Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Two-Wire Serial Bus Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Serial Host Interface Start Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Serial Host Interface Stop Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Serial Host Interface Data Timing for WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Serial Host Interface Data Timing for READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Acknowledge Signal Timing After an 8-Bit WRITE to the Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Acknowledge Signal Timing After an 8-Bit READ from the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Typical Quantum Efficiency—RGB Bayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Typical Quantum Efficiency—Monochrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Typical Quantum Efficiency—RCCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
52-Ball IBGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Power-up, Reset, Clock, and Standby Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Figure 9:  
Figure 10:  
Figure 11:  
Figure 12:  
Figure 13:  
Figure 14:  
Figure 15:  
Figure 16:  
Figure 17:  
Figure 18:  
Figure 19:  
Figure 20:  
Figure 21:  
Figure 22:  
Figure 23:  
Figure 24:  
Figure 25:  
Figure 26:  
Figure 27:  
Figure 28:  
Figure 29:  
Figure 30:  
Figure 31:  
Figure 32:  
Figure 33:  
Figure 34:  
Figure 35:  
Figure 36:  
Figure 37:  
Figure 38:  
Figure 39:  
Figure 40:  
Figure 41:  
Figure 42:  
Figure 43:  
Figure 44:  
Figure 45:  
Figure 46:  
Figure 47:  
Figure 48:  
Figure 49:  
Figure 50:  
Figure 51:  
MT9V024_DSRev. F Pub. 3/15 EN  
3
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
List of Tables  
List of Tables  
Table 1:  
Table 2:  
Table 3:  
Table 4:  
Table 5:  
Table 6:  
Table 7:  
Table 8:  
Table 9:  
Table 10:  
Table 11:  
Table 12:  
Table 13:  
Table 14:  
Table 15:  
Table 16:  
Table 17:  
Table 18:  
Table 19:  
Key Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Frame Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Frame Time—Long Integration Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Slave Address Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Real-Time Context-Switchable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Recommended Register Settings and Performance Impact (Reserved Registers) . . . . . . . . . . . . . . . .21  
LVDS Packet Format in Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
LVDS Packet Format in Stereoscopy Mode (Stereoscopy Mode Bit Asserted) . . . . . . . . . . . . . . . . . . .46  
Reserved Words in the Pixel Data Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
SER_DATAOUT_* state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
SHFT_CLK_* state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
LVDS AC Timing Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
DC Electrical Characteristics Over Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Two-Wire Serial Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
MT9V024_DSRev. F Pub. 3/15 EN  
4
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
General Description  
General Description  
The MT9V024 is a 1/3-inch wide-VGA format CMOS active-pixel digital image sensor  
with global shutter and high dynamic range (HDR) operation. The sensor has specifi-  
cally been designed to support the demanding interior and exterior automotive imaging  
needs, which makes this part ideal for a wide variety of imaging applications in real-  
world environments.  
This wide-VGA CMOS image sensor features Aptinas breakthrough low-noise CMOS  
imaging technology that achieves CCD image quality (based on signal-to-noise ratio and  
low-light sensitivity) while maintaining the inherent size, cost, and integration advan-  
tages of CMOS.  
The active imaging pixel array is 752H x 480V. It incorporates sophisticated camera func-  
tions on-chip—such as binning 2 x 2 and 4 x 4, to improve sensitivity when operating in  
smaller resolutions—as well as windowing, column and row mirroring. It is program-  
mable through a simple two-wire serial interface.  
The MT9V024 can be operated in its default mode or be programmed for frame size,  
exposure, gain setting, and other parameters. The default mode outputs a  
wide-VGA-size image at 60 frames per second (fps).  
An on-chip analog-to-digital converter (ADC) provides 10 bits per pixel. A 12-bit resolu-  
tion companded for 10 bits for small signals can be alternatively enabled, allowing more  
accurate digitization for darker areas in the image.  
In addition to a traditional, parallel logic output the MT9V024 also features a serial low-  
voltage differential signaling (LVDS) output. The sensor can be operated in a stereo-  
camera, and the sensor, designated as a stereo-master, is able to merge the data from  
itself and the stereo-slave sensor into one serial LVDS stream.  
The sensor is designed to operate in a wide temperature range (–40°C to +105°C).  
Figure 1:  
Block Diagram  
Serial  
Register  
I/O  
Control Register  
Active-Pixel  
Sensor (APS)  
Array  
752H x 480V  
Timing and Control  
Analog Processing  
Parallel  
Video  
ADCs  
Digital Processing  
Data Out  
Serial Video  
LVDS Out  
Slave Video LVDS In  
(for stereo applications only)  
MT9V024_DSRev. F Pub. 3/15 EN  
5
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
General Description  
Figure 2:  
52-Ball IBGA Package  
8
1
2
4
5
6
3
7
SER_  
DATAOUT  
_P  
SER_  
DATAOUT  
_N  
VDD  
LVDS  
VDD  
LVDS  
SYS-  
CLK  
DOUT3  
VAAPIX  
VAA  
DOUT0  
DOUT2  
DOUT4  
AGND  
NC  
A
B
SHFT_  
CLKOUT  
_N  
SHFT_  
CLKOUT  
_P  
LVDS  
GND  
VDD  
PIXCLK  
DOUT1  
LVDS  
GND  
BYPASS  
_CLKIN  
_P  
BYPASS  
DGND  
C
D
E
_CLKIN  
_N  
SER_  
DATAIN  
_P  
SER_  
DATAIN  
_N  
NC  
DOUT5  
DOUT6  
DOUT8  
DOUT9  
NC  
VDD  
NC  
VAA  
STAND-  
BY  
DOUT7  
AGND  
F
DGND  
S_CTRL_  
ADR0  
LED_  
OUT  
STFRM_  
OUT  
FRAME  
_VALID  
STLN_  
OUT  
SDATA  
SCLK  
RESET_  
BAR  
G
H
S_CTRL  
_ADR1  
LINE_  
VALID  
EXPO-  
SURE  
ERROR  
OE  
RSVD  
Top View  
(Ball Down)  
MT9V024_DSRev. F Pub. 3/15 EN  
6
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Ball Descriptions  
Ball Descriptions  
Table 1:  
Ball Descriptions  
52-Ball IBA  
Numbers  
H7  
Symbol  
RSVD  
Type  
Input  
Input  
Description  
Note  
Connect to DGND.  
1
D2  
SER_DATAIN_N  
Serial data in for stereoscopy (differential negative). Tie to 1K  
pull-up (to 3.3V) in non-stereoscopy mode.  
D1  
C2  
C1  
SER_DATAIN_P  
BYPASS_CLKIN_N  
BYPASS_CLKIN_P  
Input  
Input  
Input  
Serial data in for stereoscopy (differential positive). Tie to DGND in  
non-stereoscopy mode.  
Input bypass shift-CLK (differential negative). Tie to 1Kpull-up  
(to 3.3V) in non-stereoscopy mode.  
Input bypass shift-CLK (differential positive). Tie to DGND in non-  
stereoscopy mode.  
H3  
H4  
EXPOSURE  
SCLK  
Input  
Input  
Rising edge starts exposure in snapshot and slave modes.  
Two-wire serial interface clock. Connect to VDD with 1.5K resistor  
even when no other two-wire serial interface peripheral is  
attached.  
H6  
G7  
OE  
Input  
Input  
DOUT enable pad, active HIGH.  
2
S_CTRL_ADR0  
Two-wire serial interface slave address select (see Table 6 on  
page 12).  
H8  
S_CTRL_ADR1  
Input  
Two-wire serial interface slave address select (see Table 6 on  
page 12).  
G8  
F8  
RESET_BAR  
STANDBY  
SYSCLK  
Input  
Input  
Input  
I/O  
Asynchronous reset. All registers assume defaults.  
Shut down sensor operation for power saving.  
Master clock (26.6 MHz; 13 MHz – 27 MHz).  
A5  
G4  
SDATA  
Two-wire serial interface data. Connect to VDD with 1.5K resistor  
even when no other two-wire serial interface peripheral is  
attached.  
G3  
G5  
STLN_OUT  
I/O  
I/O  
Output in master modestart line sync to drive slave chip in-  
phase; input in slave mode.  
STFRM_OUT  
Output in master modestart frame sync to drive a slave chip in-  
phase; input in slave mode.  
H2  
G2  
E1  
LINE_VALID  
FRAME_VALID  
DOUT5  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Asserted when DOUT data is valid.  
Asserted when DOUT data is valid.  
Parallel pixel data output 5.  
F1  
DOUT6  
Parallel pixel data output 6.  
F2  
DOUT7  
Parallel pixel data output 7.  
G1  
H1  
H5  
G6  
B7  
A8  
A7  
B6  
A6  
B5  
DOUT8  
Parallel pixel data output 8  
DOUT9  
Parallel pixel data output 9.  
ERROR  
Error detected. Directly connected to STEREO ERROR FLAG.  
LED strobe output.  
LED_OUT  
DOUT4  
Parallel pixel data output 4.  
DOUT3  
Parallel pixel data output 3.  
DOUT2  
Parallel pixel data output 2.  
DOUT1  
Parallel pixel data output 1.  
DOUT0  
Parallel pixel data output 0.  
PIXCLK  
Pixel clock out. DOUT is valid on rising edge of this clock.  
MT9V024_DSRev. F Pub. 3/15 EN  
7
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Ball Descriptions  
Table 1:  
52-Ball IBA  
Ball Descriptions (continued)  
Numbers  
Symbol  
SHFT_CLKOUT_N  
SHFT_CLKOUT_P  
SER_DATAOUT_N  
SER_DATAOUT_P  
VDD  
Type  
Description  
Note  
B3  
Output  
Output  
Output  
Output  
Supply  
Supply  
Supply  
Supply  
Ground  
Ground  
Ground  
NC  
Output shift CLK (differential negative).  
Output shift CLK (differential positive).  
Serial data out (differential negative).  
Serial data out (differential positive).  
Digital power 3.3V.  
B2  
A3  
A2  
B4, E2  
C8, F7  
B8  
VAA  
Analog power 3.3V.  
VAAPIX  
Pixel power 3.3V.  
A1, A4  
B1, C3  
C6, F3  
C7, F6  
E7, E8, D7, D8  
VDDLVDS  
Dedicated power for LVDS pads.  
Dedicated GND for LVDS pads.  
Digital GND.  
LVDSGND  
DGND  
AGND  
Analog GND.  
NC  
No connect.  
3
Notes: 1. Pin H7 (RSVD) must be tied to GND.  
2. Output enable (OE) tri-states signals DOUT0–DOUT9, LINE_VALID, FRAME_VALID, and PIXCLK.  
3. No connect. These pins must be left floating for proper operation.  
Figure 3:  
Typical Configuration (Connection)Parallel Output Mode  
VAA  
VAA  
VAAPIX  
VAAPIX  
VDD  
VDD  
VDDLVDS  
DOUT(9:0)  
Master Clock  
SYSCLK  
OE  
RESET_BAR  
LINE_VALID  
FRAME_VALID  
PIXCLK  
To Controller  
To LED output  
EXPOSURE  
STANDBY from  
Controller or  
Digital GND  
STANDBY  
LED_OUT  
ERROR  
S_CTRL_ADR0  
S_CTRL_ADR1  
SCLK  
Two-Wire  
Serial Interface  
SDATA  
RSVD  
DGND LVDSGND  
AGND  
0.1μF  
Note:  
LVDS signals are to be left floating.  
MT9V024_DSRev. F Pub. 3/15 EN  
8
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Pixel Data Format  
Pixel Data Format  
Pixel Array Structure  
The MT9V024 pixel array is configured as 809 columns by 499 rows, shown in Figure 4.  
The dark pixels are optically black and are used internally to monitor black level. Of the  
left 52 columns, 36 are dark pixels used for row noise correction. Of the top 14 rows of  
pixels, two of the dark rows are used for black level correction. Also, three black rows  
from the top black rows can be read out by setting the show dark rows bit in the Read  
Mode register; setting show dark columns will display the 36 dark columns. There are  
753 columns by 481 rows of optically active pixels. While the sensor's format is 752 x 480,  
one additional active column and active row are included for use when horizontal or  
vertical mirrored readout is enabled, to allow readout to start on the same pixel. This one  
pixel adjustment is always performed, for monochrome or color versions. The active  
area is surrounded with optically transparent dummy pixels to improve image unifor-  
mity within the active area. Neither dummy pixels nor barrier pixels can be read out.  
Figure 4:  
Pixel Array Description  
(0, 0)  
active pixel  
2 barrier + 8 (2 + 4 addressed + 2) dark + 2 barrier + 2 light dummy  
4.92 x 3.05mm2  
Pixel Array  
809 x 499 (753 x 481 active)  
6.0μm pixel  
light dummy pixel  
dark pixel  
3 barrier + 38 (1 + 36 addressed + 1) dark  
+ 9 barrier + 2 light dummy  
2 barrier + 2 light dummy  
barrier pixel  
2 barrier + 2 light dummy  
MT9V024_DSRev. F Pub. 3/15 EN  
9
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Pixel Data Format  
Figure 5:  
Pixel Color Pattern Detail RGB Bayer (Top Right Corner)  
Column Readout Direction  
Active Pixel (0,0)  
Array Pixel (4,14)  
G
R
B
G
B
G
R
B
G
B
G
R
B
G
B
G
R
B
G
B
G
R
G
R
G
R
G
R
G
B
G
B
G
B
G
B
G
R
G
R
G
R
G
R
G
G
G
G
Figure 6:  
Pixel Color Pattern Detail RCCC  
column readout direction  
.
.
.
Active Pixel (0, 0)  
Array Pixel (4, 14)  
C
C
C
C
C
C
C
R
C
R
C
R
C
C
C
C
C
C
C
R
C
R
C
R
C
C
C
C
C
C
C
R
C
R
C
R
C
C
C
C
C
C
...  
.
.
.
MT9V024_DSRev. F Pub. 3/15 EN  
10  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Color (RGB Bayer) Device Limitations  
Color (RGB Bayer) Device Limitations  
The color version of the MT9V024 does not support or offers reduced performance for  
the following functionalities.  
Pixel Binning  
Pixel binning is done on immediate neighbor pixels only, no facility is provided to skip  
pixels according to a Bayer pattern. Therefore, the result of binning combines pixels of  
different colors. See “Pixel Binning” on page 36 for additional information.  
Interlaced Readout  
Interlaced readout yields one field consisting only of red and green pixels and another  
consisting only of blue and green pixels. This is due to the Bayer pattern of the CFA.  
Automatic Black Level Calibration  
When the color bit is set (R0x0F[1]=1), the sensor uses black level correction values from  
one green plane, which are applied to all colors. To use the calibration value based on all  
dark pixels' offset values, the color bit should be cleared.  
Defective Pixel Correction  
For defective pixel correction to calculate replacement pixel values correctly, for color  
sensors the color bit must be set (R0x0F[1] = 1). However, the color bit also applies  
unequal offset to the color planes, and the results might not be acceptable for some  
applications.  
Other Limiting Factors  
Black level correction and row-wise noise correction are applied uniformly to each color.  
The row-wise noise correction algorithm does not work well in color sensors. Automatic  
exposure and gain control calculations are made based on all three colors, not just the  
green channel. High dynamic range does operate in color; however, Aptina strongly  
recommends limiting use to linear operation where good color fidelity is required.  
MT9V024_DSRev. F Pub. 3/15 EN  
11  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Output Data Format  
Output Data Format  
The MT9V024 image data can be read out in a progressive scan or interlaced scan mode.  
Valid image data is surrounded by horizontal and vertical blanking, as shown in Figure 7.  
The amount of horizontal and vertical blanking is programmable through R0x05 and  
R0x06, respectively (R0xCD and R0xCE for context B). LV is HIGH during the shaded  
region of the figure. See “Output Data Timing” on page 9 for the description of FV  
timing.  
Figure 7:  
Spatial Illustration of Image Readout  
P0,0  
P
0,1 P0,2.....................................P0,n-1 P0,n  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
P1,0 P1,1 P1,2.....................................P1,n-1 P1,n  
HORIZONTAL  
BLANKING  
VALID IMAGE  
Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n  
Pm,0 Pm,1.....................................Pm,n-1 Pm,n  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
VERTICAL/HORIZONTAL  
VERTICAL BLANKING  
BLANKING  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
MT9V024_DSRev. F Pub. 3/15 EN  
12  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Output Data Format  
Output Data Timing  
The data output of the MT9V024 is synchronized with the PIXCLK output. When  
LINE_VALID (LV) is HIGH, one 10-bit pixel datum is output every PIXCLK period.  
Figure 8:  
Timing Example of Pixel Data  
...  
LINE_VALID  
PIXCLK  
...  
...  
Blanking  
Valid Image Data  
Blanking  
P
P
P2  
(9:0)  
P
P
P
P
n
0
1
3
4
n-1  
(9:0)  
DOUT(9:0)  
...  
(9:0)  
(9:0)  
(9:0)  
(9:0)  
(9:0)  
The PIXCLK is a nominally inverted version of the master clock (SYSCLK). This allows  
PIXCLK to be used as a clock to latch the data. However, when column bin 2 is enabled,  
the PIXCLK is HIGH for one complete master clock master period and then LOW for one  
complete master clock period; when column bin 4 is enabled, the PIXCLK is HIGH for  
two complete master clock periods and then LOW for two complete master clock  
periods. It is continuously enabled, even during the blanking period. Setting R0x72  
bit[4] = 1 causes the MT9V024 to invert the polarity of the PIXCLK.  
The parameters P1, A, Q, and P2 in Figure 9 are defined in Table 4.  
Figure 9:  
Row Timing and FRAME_VALID/LINE_VALID Signals  
...  
FRAME_VALID  
LINE_VALID  
...  
...  
P1  
A
Q
A
Q
A
P2  
Number of master clocks  
Table 2:  
Frame Time  
Name  
Parameter  
Equation  
Default Timing at 26.66 MHz  
752 pixel clocks  
= 752 master  
= 28.20s  
Context A: R0x04  
Context B: R0xCC  
A
Active data time  
71 pixel clocks  
= 71master  
= 2.66s  
Context A: R0x05 - 23  
Context B: R0xCD - 23  
P1  
P2  
Q
Frame start blanking  
Frame end blanking  
Horizontal blanking  
23 pixel clocks  
= 23 master  
= 0.86s  
23 (fixed)  
94 pixel clocks  
= 94 master  
= 3.52s  
Context A: R0x05  
Context B: R0xCD  
MT9V024_DSRev. F Pub. 3/15 EN  
13  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Output Data Format  
Table 2:  
Frame Time (continued)  
Name  
Parameter  
Equation  
Default Timing at 26.66 MHz  
846 pixel clocks  
= 846 master  
= 31.72s  
Context A: R0x04 + R0x05  
Context B: R0xCC + R0xCD  
A+Q  
V
Row time  
38,074 pixel clocks  
= 38,074 master  
= 1.43ms  
Context A: (R0x06) x (A + Q) + 4  
Context B: (R0xCE) x (A + Q) + 4  
Vertical blanking  
406,080 pixel clocks  
= 406,080 master  
= 15.23ms  
Context A: (R0x03) × (A + Q)  
Context B: (R0xCB) x (A + Q)  
Nrows x (A + Q)  
F
Frame valid time  
Total frame time  
444,154 pixel clocks  
= 444,154 master  
= 16.66ms  
V + (Nrows x (A + Q))  
Sensor timing is shown above in terms of pixel clock and master clock cycles (refer to  
Figure 8 on page 9). The recommended master clock frequency is 26.66 MHz. The  
vertical blanking and the total frame time equations assume that the integration time  
(coarse shutter width plus fine shutter width) is less than the number of active rows plus  
the blanking rows minus the overhead rows:  
Window Height + Vertical Blanking – 2  
(EQ 1)  
If this is not the case, the number of integration rows must be used instead to determine  
the frame time, as shown in Table 5. In this example, it is assumed that the coarse shutter  
width control is programmed with 523 rows and the fine shutter width total is zero.  
For Simultaneous mode, if the exposure time registers (coarse shutter width total plus  
Fine Shutter Width Total) exceed the total readout time, then the vertical blanking time  
is internally extended automatically to adjust for the additional integration time  
required. This extended value is not written back to the vertical blanking registers. The  
vertical blank register can be used to adjust frame-to-frame readout time. This register  
does not affect the exposure time but it may extend the readout time.  
Table 3:  
Frame Time—Long Integration Time  
Equation  
(Number of Master Clock Cycles)  
Default Timing  
at 26.66 MHz  
Parameter Name  
38,074 pixel clocks  
= 38,074 master  
= 1.43ms  
Vertical blanking (long  
integration time)  
Context A: (R0x0B + 2 - R0x03) × (A + Q) + R0xD5 + 4  
Context B: (R0xD2 + 2 - R0xCB) x (A + Q) + R0xD8 + 4  
V’  
F’  
444,154 pixel clocks  
= 444,154 master  
= 16.66ms  
Total frame time (long  
integration time)  
Context A: (R0x0B + 2) × (A + Q) + R0xD5 + 4  
Context B: (R0xD2 + 2) x (A + Q) + R0xD8 + 4  
Note:  
The MT9V024 uses column parallel analog-digital converters; thus short row timing is not possi-  
ble. The minimum total row time is 704 columns (horizontal width + horizontal blanking). The  
minimum horizontal blanking is 61 for normal mode, 71 for column bin 2 mode, and 91 for col-  
umn bin 4 mode. When the window width is set below 643, horizontal blanking must be  
increased. In binning mode, the minimum row time is R0x04+R0x05 = 704.  
MT9V024_DSRev. F Pub. 3/15 EN  
14  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Serial Bus Description  
Serial Bus Description  
Registers are written to and read from the MT9V024 through the two-wire serial inter-  
face bus. The MT9V024 is a serial interface slave with four possible IDs (0x90, 0x98, 0xB0  
and 0xB8) determined by the S_CTRL_ADR0 and S_CTRL_ADR1 input pins. Data is  
transferred into the MT9V024 and out through the serial data (SDATA) line. The SDATA  
line is pulled up to VDD off-chip by a 1.5Kresistor. Either the slave or master device can  
pull the SDATA line down—the serial interface protocol determines which device is  
allowed to pull the SDATA line down at any given time. The registers are 16-bit wide, and  
can be accessed through 16- or 8-bit two-wire serial interface sequences.  
Protocol  
The two-wire serial interface defines several different transmission codes, as shown in  
the following sequence:  
1. a start bit  
2. the slave device 8-bit address  
3. a(n) (no) acknowledge bit  
4. an 8-bit message  
5. a stop bit  
Start Bit  
The start bit is defined as a HIGH-to-LOW transition of the data line while the clock line  
is HIGH.  
Slave Address  
The 8-bit address of a two-wire serial interface device consists of 7 bits of address and  
1 bit of direction. A “0” in the LSB of the address indicates write mode, and a “1” indi-  
cates read mode. As indicated above, the MT9V024 allows four possible slave addresses  
determined by the two input pins, S_CTRL_ADR0 and S_CTRL_ADR1.  
Acknowledge Bit  
The master generates the acknowledge clock pulse. The transmitter (which is the master  
when writing, or the slave when reading) releases the data line, and the receiver indi-  
cates an acknowledge bit by pulling the data line LOW during the acknowledge clock  
pulse.  
No-Acknowledge Bit  
Stop Bit  
The no-acknowledge bit is generated when the data line is not pulled down by the  
receiver during the acknowledge clock pulse. A no-acknowledge bit is used to terminate  
a read sequence.  
The stop bit is defined as a LOW-to-HIGH transition of the data line while the clock line  
is HIGH.  
MT9V024_DSRev. F Pub. 3/15 EN  
15  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Serial Bus Description  
Sequence  
A typical READ or WRITE sequence begins by the master sending a start bit. After the  
start bit, the master sends the slave devices 8-bit address. The last bit of the address  
determines if the request is a read or a write, where a “0” indicates a WRITE and a “1”  
indicates a READ. The slave device acknowledges its address by sending an acknowledge  
bit back to the master.  
If the request was a WRITE, the master then transfers the 8-bit register address to which  
a WRITE should take place. The slave sends an acknowledge bit to indicate that the  
register address has been received. The master then transfers the data 8 bits at a time,  
with the slave sending an acknowledge bit after each 8 bits. The MT9V024 uses 16-bit  
data for its internal registers, thus requiring two 8-bit transfers to write to one register.  
After 16 bits are transferred, the register address is automatically incremented, so that  
the next 16 bits are written to the next register address. The master stops writing by  
sending a start or stop bit.  
A typical READ sequence is executed as follows. First the master sends the write mode  
slave address and 8-bit register address, just as in the write request. The master then  
sends a start bit and the read mode slave address. The master then clocks out the register  
data 8 bits at a time. The master sends an acknowledge bit after each 8-bit transfer. The  
register address is automatically incremented after every 16 bits is transferred. The data  
transfer is stopped when the master sends a no-acknowledge bit. The MT9V024 allows  
for 8-bit data transfers through the two-wire serial interface by writing (or reading) the  
most significant 8 bits to the register and then writing (or reading) the least significant 8  
bits to byte-wise address register (0x0F0).  
Bus Idle State  
The bus is idle when both the data and clock lines are HIGH. Control of the bus is initi-  
ated with a start bit, and the bus is released with a stop bit. Only the master can generate  
the start and stop bits.  
Table 4:  
Slave Address Modes  
{S_CTRL_ADR1, S_CTRL_ADR0}  
Slave Address  
Write/Read Mode  
0x90  
0x91  
0x98  
0x99  
0xB0  
0xB1  
0xB8  
0xB9  
Write  
Read  
Write  
Read  
Write  
Read  
Write  
Read  
00  
01  
10  
11  
Data Bit Transfer  
One data bit is transferred during each clock pulse. The two-wire serial interface clock  
pulse is provided by the master. The data must be stable during the HIGH period of the  
serial clock—it can only change when the two-wire serial interface clock is LOW. Data is  
transferred 8 bits at a time, followed by an acknowledge bit.  
MT9V024_DSRev. F Pub. 3/15 EN  
16  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Two-Wire Serial Interface Sample Read and Write Sequences  
Two-Wire Serial Interface Sample Read and Write Sequences  
16-Bit Write Sequence  
A typical write sequence for writing 16 bits to a register is shown in Figure 10. A start bit  
given by the master, followed by the write address, starts the sequence. The image sensor  
then gives an acknowledge bit and expects the register address to come first, followed by  
the 16-bit data. After each 8-bit the image sensor gives an acknowledge bit. All 16 bits  
must be written before the register is updated. After 16 bits are transferred, the register  
address is automatically incremented, so that the next 16 bits are written to the next  
register. The master stops writing by sending a start or stop bit.  
Figure 10: Timing Diagram Showing a Write to R0x09 with the Value 0x0284  
SCLK  
SDATA  
R0x09  
0000 0010  
0xB8 ADDR  
1000 0100  
STOP  
START  
ACK  
ACK  
ACK  
ACK  
16-Bit Read Sequence  
A typical read sequence is shown in Figure 11. First the master has to write the register  
address, as in a write sequence. Then a start bit and the read address specifies that a read  
is about to happen from the register. The master then clocks out the register data 8 bits  
at a time. The master sends an acknowledge bit after each 8-bit transfer. The register  
address is auto-incremented after every 16 bits is transferred. The data transfer is  
stopped when the master sends a no-acknowledge bit.  
Figure 11: Timing Diagram Showing a Read from R0x09; Returned Value 0x0284  
SCLK  
SDATA  
0xB8 ADDR  
R0x09  
0xB9 ADDR  
0000 0010  
1000 0100  
STOP  
START  
ACK  
ACK  
ACK  
ACK  
NACK  
MT9V024_DSRev. F Pub. 3/15 EN  
17  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Two-Wire Serial Interface Sample Read and Write Sequences  
8-Bit Write Sequence  
To be able to write 1 byte at a time to the register a special register address is added. The  
8-bit write is done by first writing the upper 8 bits to the desired register and then writing  
the lower 8 bits to the Bytewise Address register (R0xF0). The register is not updated until  
all 16 bits have been written. It is not possible to just update half of a register. In  
Figure 12, a typical sequence for 8-bit writing is shown. The second byte is written to the  
Bytewise register (R0xF0).  
Figure 12: Timing Diagram Showing a Bytewise Write to R0x09 with the Value 0x0284  
SCLK  
SDATA  
0000 0010  
1000 0100  
0xB8 ADDR  
R0x09  
0xB8 ADDR  
R0xF0  
STOP  
START  
START  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
8-Bit Read Sequence  
To read one byte at a time the same special register address is used for the lower byte.  
The upper 8 bits are read from the desired register. By following this with a read from the  
byte-wise address register (R0xF0) the lower 8 bits are accessed (Figure 13). The master  
sets the no-acknowledge bits shown.  
Figure 13: Timing Diagram Showing a Bytewise Read from R0x09; Returned Value 0x0284  
SCLK  
SDATA  
0xB8 ADDR  
0xB9 ADDR  
0000 0010  
R0x09  
START  
START  
ACK  
ACK  
ACK  
SCLK  
SDATA  
0xB8 ADDR  
0xB9 ADDR  
1000 0100  
R0xF0  
STOP  
START  
START  
ACK  
ACK  
ACK  
NACK  
MT9V024_DSRev. F Pub. 3/15 EN  
18  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Two-Wire Serial Interface Sample Read and Write Sequences  
Register Lock  
Included in the MT9V024 is a register lock (R0xFE) feature that can be used as a solution  
to reduce the probability of an inadvertent noise-triggered two-wire serial interface  
write to the sensor. All registers, or only the read mode registers–R0x0D and R0x0E, can  
be locked. It is important to prevent an inadvertent two-wire serial interface write to the  
read mode registers in automotive applications since this register controls the image  
orientation and any unintended flip to an image can cause serious results.  
At power-up, the register lock defaults to a value of 0xBEEF, which implies that all  
registers are unlocked and any two-wire serial interface writes to the register gets  
committed.  
Lock All Registers  
If a unique pattern (0xDEAD) to R0xFE is programmed, any subsequent two-wire serial  
interface writes to registers (except R0xFE) are NOT committed. Alternatively, if the user  
writes a 0xBEEF to the register lock register, all registers are unlocked and any  
subsequent two-wire serial interface writes to the register are committed.  
Lock Only Read Mode Registers (R0x0D and R0x0E)  
If a unique pattern (0xDEAF) to R0xFE is programmed, any subsequent two-wire serial  
interface writes to R0x0D or R0x0E are NOT committed. Alternatively, if the user writes a  
0xBEEF to register lock register, registers R0x0D and R0x0E are unlocked and any  
subsequent two-wire serial interface writes to these registers are committed.  
MT9V024_DSRev. F Pub. 3/15 EN  
19  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Two-Wire Serial Interface Sample Read and Write Sequences  
Real-Time Context Switching  
In the MT9V024, the user may switch between two full register sets (listed in Table 7) by  
writing to a context switch change bit in register 0x07. This context switch will change all  
registers (no shadowing) at the frame start time and have the new values apply to the  
immediate next exposure and readout time (frame n+1), except for shutter width and  
V1-V4 control, which will take effect for next exposure but will show up in the n+2 image.  
.
Table 5:  
Real-Time Context-Switchable Registers  
Register Name  
Register Number (Hex) For Context A  
Register Number (Hex) for Context B  
Column Start  
0x01  
0x02  
0xC9  
0xCA  
Row Start  
Window Height  
0x03  
0xCB  
Window Width  
0x04  
0xCC  
Horizontal Blanking  
Vertical Blanking  
0x05  
0xCD  
0x06  
0xCE  
Coarse Shutter Width 1  
Coarse Shutter Width 2  
Coarse Shutter Width Control  
Coarse Shutter Width Total  
Fine Shutter Width 1  
Fine Shutter Width 2  
Fine Shutter Width Total  
Read Mode  
0x08  
0xCF  
0x09  
0xD0  
0x0A  
0xD1  
0x0B  
0xD2  
0xD3  
0xD6  
0xD4  
0xD7  
0xD5  
0xD8  
0x0D [5:0]  
0x0F [0]  
0x1C [1:0]  
0x31 – 0x34  
0x35  
0x0E [5:0]  
0x0F [8]  
0x1C [9:8]  
0x39 – 0x3C  
0x36  
High Dynamic Range enable  
ADC Resolution Control  
V1 Control – V4 Control  
Analog Gain Control  
Row Noise Correction Control 1  
Tiled Digital Gain  
0x70 [1:0]  
0x80 [3:0] – 0x98 [3:0]  
0xAF [1:0]  
0x70 [9:8]  
0x80 [11:8] – 0x98 [11:8]  
0xAF [9:8]  
AEC/AGC Enable  
MT9V024_DSRev. F Pub. 3/15 EN  
20  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Two-Wire Serial Interface Sample Read and Write Sequences  
Recommended Register Settings  
Table 8 describes new suggested register settings, and descriptions of performance  
improvements and conditions:  
Table 6:  
Recommended Register Settings and Performance Impact (Reserved Registers)  
Register  
Current Default  
New Setting  
Performance Impact  
R0x20  
0x01C1  
0x03C7  
Recommended by design to improve performance in HDR mode  
and when frame rate is low. We also recommended using  
R0x13=0x2D2E with this setting for better column FPN.  
NOTE: When coarse integration time set to 0 and fine integration  
time less than 456, R0x20 should be set to 0x01C7  
R0x24  
0x0010  
0x001B  
Corrects pixel negative dark offset when global reset in R0x20[9] is  
enabled.  
R0x2B  
R0x2F  
0x0004  
0x0004  
0x0003  
0x0003  
Improves column FPN.  
Improves FPN at near-saturation.  
MT9V024_DSRev. F Pub. 3/15 EN  
21  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Feature Description  
Operational Modes  
The MT9V024 works in master, snapshot, or slave mode. In master mode the sensor  
generates the readout timing. In snapshot mode it accepts an external trigger to start  
integration, then generates the readout timing. In slave mode the sensor accepts both  
external integration and readout controls. The integration time is programmed through  
the two-wire serial interface during master or snapshot modes, or controlled through an  
externally generated control signal during slave mode.  
Master Mode  
There are two possible operation methods for master mode: simultaneous and sequen-  
tial. One of these operation modes must be selected through the two-wire serial inter-  
face. Additional details on this mode can be found in TN-09-224 Master Exposure Mode  
Operation.  
Simultaneous Master Mode  
In simultaneous master mode, the exposure period occurs during readout. The frame  
synchronization waveforms are shown in Figure 14 and Figure 15. The exposure and  
readout happen in parallel rather than sequential, making this the fastest mode of oper-  
ation.  
Figure 14: Simultaneous Master Mode Synchronization Waveforms #1  
EXPOSURE TIME  
LED_OUT  
t
t
LED2FV-SIM  
LED2FV-SIM  
FRAME_VALID  
LINE_VALID  
t
VBLANK  
FRAME TIME  
MT9V024_DSRev. F Pub. 3/15 EN  
22  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Figure 15: Simultaneous Master Mode Synchronization Waveforms #2  
EXPOSURE TIME  
LED_OUT  
t
t
LEDOFF  
LED2FV-SIM  
FRAME_VALID  
t
VBLANK  
LINE_VALID  
FRAME TIME  
When exposure time is greater than the sum of vertical blank and window height, the  
number of vertical blank rows is increased automatically to accommodate the exposure  
time.  
Sequential Master Mode  
In sequential master mode the exposure period is followed by readout. The frame  
synchronization waveforms for sequential master mode are shown in Figure 16. The  
frame rate changes as the integration time changes.  
Figure 16: Sequential Master Mode Synchronization Waveforms  
EXPOSURE  
TIME  
LED_OUT  
t
t
LED2FV-SEQ  
FV2LED-SEQ  
FRAME_VALID  
t
VBLANK  
LINE_VALID  
FRAME TIME  
Snapshot Mode  
In snapshot mode the sensor accepts an input trigger signal which initiates exposure,  
and is immediately followed by readout. Figure 17 shows the interface signals used in  
snapshot mode. In snapshot mode, the start of the integration period is determined by  
the externally applied EXPOSURE pulse that is input to the MT9V024. The integration  
time is preprogrammed at R0x0B or R0xD2 through the two-wire serial interface. After  
the frame's integration period is complete the readout process commences and the  
syncs and data are output. Sensor in snapshot mode can capture a single image or a  
sequence of images. The frame rate may only be controlled by changing the period of  
MT9V024_DSRev. F Pub. 3/15 EN  
23  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
the user supplied EXPOSURE pulse train. The frame synchronization waveforms for  
snapshot mode are shown in Figure 18 on page 20. Additional details on this mode can  
be found in TN-09-225 Snapshot Exposure Mode Operation.  
Figure 17: Snapshot Mode Interface Signals  
EXPOSURE  
SYSCLK  
PIXCLK  
LINE_VALID  
FRAME_VALID  
DOUT(9:0)  
CONTROLLER  
MT9V024  
Figure 18: Snapshot Mode Frame Synchronization Waveforms  
T
E2E  
EXPOSURE  
T
EW  
EXPOSURE  
TIME  
T
E2LED  
LED_OUT  
FRAME_VALID  
LINE_VALID  
T
T
LED2FV  
FV2E  
T
VBLANK  
FRAME TIME  
Slave Mode  
In slave mode, the exposure and readout are controlled using the EXPOSURE,  
STFRM_OUT, and STLN_OUT pins. When the slave mode is enabled, STFRM_OUT and  
STLN_OUT become input pins.  
The start and end of integration are controlled by EXPOSURE and STFRM_OUT pulses,  
respectively. While a STFRM_OUT pulse is used to stop integration, it is also used to  
enable the readout process.  
After integration is stopped, the user provides STLN_OUT pulses to trigger row readout.  
A full row of data is read out with each STLN_OUT pulse. The user must provide enough  
time between successive STLN_OUT pulses to allow the complete readout of one row.  
It is also important to provide additional STLN_OUT pulses to allow the sensors to read  
the vertical blanking rows. It is recommended that the user program the vertical blank  
register (R0x06) with a value of 4, and achieve additional vertical blanking between  
frames by delaying the application of the STFRM_OUT pulse.  
MT9V024_DSRev. F Pub. 3/15 EN  
24  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
The elapsed time between the rising edge of STLN_OUT and the first valid pixel data is  
calculated for context A by [horizontal blanking register (R0x05) + 4] clock cycles. For  
context B, the time is (R0xCD + 4) clock cycles.  
Additional details on this mode can be found in TN-09-283 Slave Exposure Mode Opera-  
tion.  
Figure 19: Exposure and Readout Timing (Simultaneous Mode)  
t
EXPOSURE  
EW  
t
t
SF2SF  
E2SF  
t
SFW  
STFRM_OUT  
STLN_OUT  
t
t
FV2SF  
SF2FV  
FRAME_VALID  
LINE_VALID  
LED_OUT  
EXPOSURE  
TIME  
t
t
SF2LED  
E2LED  
Notes: 1. Not drawn to scale.  
2. Frame readout shortened for clarity.  
3. Simultaneous progressive scan readout mode shown.  
MT9V024_DSRev. F Pub. 3/15 EN  
25  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Figure 20: Exposure and Readout Timing (Sequential Mode)  
EXPOSURE  
STFRM_OUT  
STLN_OUT  
t
EW  
t
t
E2SF  
SF2SF  
t
SFW  
t
t
FV2E  
SF2FV  
FRAME_VALID  
LINE_VALID  
EXPOSURE  
TIME  
t
t
E2LED  
SF2LED  
LED_OUT  
Notes: 1. Not drawn to scale.  
2. Frame readout shortened for clarity.  
3. STLN_OUT pulses are optional during exposure time.  
4. Sequential progressive scan readout mode shown.  
Signal Path  
The MT9V024 signal path consists of a programmable gain, a programmable analog  
offset, and a 10-bit ADC. See “Black Level Calibration” on page 32 for the programmable  
offset operation description.  
Figure 21: Signal Path  
Gain Selection  
(R0x35 or R0x36 or  
result of AGC)  
VREF  
(R0x2C)  
Pixel Output  
(reset minus signal)  
ADC Data  
(9:0)  
10 (12) bit ADC  
Offset Correction  
Voltage (R0x48 or  
result of BLC)  
C1  
Σ
C2  
MT9V024_DSRev. F Pub. 3/15 EN  
26  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
On-Chip Biases  
ADC Voltage Reference  
The ADC voltage reference is programmed through R0x2C, bits 2:0. The ADC reference  
ranges from 1.0V to 2.1V. The default value is 1.4V. The increment size of the voltage  
reference is 0.1V from 1.0V to 1.6V (R0x2C[2:0] values 0 to 6). At R0x2C[2:0] = 7, the refer-  
ence voltage jumps to 2.1V.  
It is very important to preserve the correct values of the other bits in R0x2C. The default  
register setting is 0x0004. This corresponds to 1.4V—at this setting 1mV input to the ADC  
equals approximately 1 LSB.  
V_Step Voltage Reference  
This voltage is used for pixel high dynamic range operations, programmable from R0x31  
through R0x34 for context A, or R0x39 through R0x3B for context B.  
Chip Version  
Chip version register R0x00 is read-only.  
Window Control  
Registers column start A/B, row start A/B, window height A/B (row size), and window  
width (column size) A/B control the size and starting coordinates of the window.  
The values programmed in the window height and width registers are the exact window  
height and width out of the sensor. The window start value should never be set below  
four.  
To read out the dark rows set bit 6 of R0x0D. In addition, bit 7 of R0x0D can be used to  
display the dark columns in the image. Note that there are Show Dark settings only for  
context A.  
Blanking Control  
Horizontal blank and vertical blank registers R0x05 and R0x06 (B: 0xCD and R0xCE),  
respectively, control the blanking time in a row (horizontal blanking) and between  
frames (vertical blanking).  
Horizontal blanking is specified in terms of pixel clocks.  
Vertical blanking is specified in terms of numbers of rows.  
The actual imager timing can be calculated using Table 4 on page 9 and Table 5 on  
page 10, which describe “Row Timing and FV/LV signals.” The minimum number of  
vertical blank rows is 4.  
MT9V024_DSRev. F Pub. 3/15 EN  
27  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Pixel Integration Control  
Total Integration  
Total integration time is the result of coarse shutter width and fine shutter width regis-  
ters, and depends also on whether manual or automatic exposure is selected.  
The actual total integration time, t  
is defined as:  
INT  
t
= t  
+ t  
INTFint  
(EQ 2)  
INT  
INTCoarse  
= (number of rows of integration x row time) +  
(number of pixels of integration x pixel time)  
where:  
– Number of Rows of Integration  
(Auto Exposure Control: Enabled)  
When automatic exposure control (AEC) is enabled, the number of rows of integra-  
tion may vary from frame to frame, with the limits controlled by R0xAC (minimum  
coarse shutter width) and R0xAD (maximum coarse shutter width).  
– Number of Rows of Integration  
(Auto Exposure Control: Disabled)  
If AEC is disabled, the number of rows of integration equals the value in R0x0B.  
or  
If context B is enabled, the number of rows of integration equals the value in  
R0xD2.  
– Number of Pixels of Integration  
The number of fine shutter width pixels is independent of AEC mode (enabled or  
disabled):  
Context A: the number of pixels of integration equals the value in R0xD5.  
Context B: the number of pixels of integration equals the value in R0xD8.  
Row Timing  
Context A: Row time = (R0x04 + R0x05) master clock periods  
Context B: Row time = (R0xCC + R0xCD) master clock periods  
(EQ 3)  
(EQ 4)  
Typically, the value of the Coarse Shutter Width Total registers is limited to the number  
of rows per frame (which includes vertical blanking rows), such that the frame rate is not  
affected by the integration time. If the Coarse Shutter Width Total is increased beyond  
the total number of rows per frame, the user must add additional blanking rows using  
the Vertical Blanking registers as needed. See descriptions of the Vertical Blanking regis-  
ters, R0x06 and R0xCE in Table 1and Table 2 of the MT9V024 register reference.  
t
A second constraint is that INT must be adjusted to avoid banding in the image from  
light flicker. Under 60Hz flicker, this means the frame time must be a multiple of 1/120 of  
a second. Under 50Hz flicker, the frame time must be a multiple of 1/100 of a second.  
MT9V024_DSRev. F Pub. 3/15 EN  
28  
©Semiconductor Components Industries, LLC,2008.  
Changes to Integration Time  
With automatic exposure control disabled (R0xAF[0] for context A, or R0xAF[8] for context B) and if the total inte-  
gration time (R0x0B or R0xD2) is changed through the two-wire serial interface while FV is asserted for frame n, the  
first frame output using the new integration time is frame (n + 2). Similarly, when automatic exposure control is  
enabled, any change to the integration time for frame n first appears in frame (n + 2) output. Additional details on  
this latency can be found in TN-09-226 Latency of Exposure or Gain Switch.  
The sequence is as follows:  
1. During frame n, the new integration time is held in the R0x0B or R0D2 live register.  
2. Prior to the start of frame (n + 1) readout, the new integration time is transferred to the exposure control module.  
Integration for each row of frame (n + 1) has been completed using the old integration time. The earliest time  
that a row can start integrating using the new integration time is immediately after that row has been read for  
frame (n + 1). The actual time that rows start integrating using the new integration time is dependent on the new  
value of the integration time.  
3. When frame (n + 2) is read out, it is integrated using the new integration time. If the integration time is changed  
(R0x0B or R0xD2 written) on successive frames, each value written is applied to a single frame; the latency  
between writing a value and it affecting the frame readout remains at two frames.  
Figure 22: Latency of Exposure Register in Master Mode  
write new exposure value (Exp “B”)  
frame n+1  
frame n  
frame n+2  
Two-wire  
serial Interface  
(Input)  
idle  
idle  
LED_OUT  
(Output)  
Exp A”  
Exp A”  
Exp “B”  
Exp “B”  
Exp “B”  
FRAME_VALID  
(Output)  
Readout Exp A”  
Readout Exp A”  
Readout Exp “B”  
Readout Exp “B”  
Readout Exp “B”  
AEC-sample writes  
new exposure  
frame-start  
activates new  
new image available  
at output  
AEC-sample point  
frame-start  
value (Exp “B”)  
exposure value (Exp “B”)  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Exposure Indicator  
The exposure indicator is controlled by:  
R0x1B LED_OUT Control  
The MT9V024 provides an output pin, LED_OUT, to indicate when the exposure takes  
place. When R0x1B bit 0 is clear, LED_OUT is HIGH during exposure. By using R0x1B, bit  
1, the polarity of the LED_OUT pin can be inverted.  
High Dynamic Range  
High dynamic range is controlled by:  
Context A  
R0x0F[0]  
R0x08  
Context B  
R0x0F[8]  
R0xCF  
High Dynamic Enable  
Shutter Width 1  
Shutter Width 2  
R0x09  
R0xD0  
Shutter Width Control  
V_Step Voltages  
R0x0A  
R0xD1  
R0x31-R0x34  
R0x39-R0x3C  
In the MT9V024, high dynamic range (by setting R0x0F, bit 0 or 8 to 1) is achieved by  
controlling the saturation level of the pixel (HDR or high dynamic range gate) during the  
exposure period. The sequence of the control voltages at the HDR gate is shown in  
Figure 23. After the pixels are reset, the step voltage, V_Step, which is applied to HDR  
gate, is set up at V1 for integration time t then to V2 for time t , then V3 for time t , and  
1,  
2
3
finally it is parked at V4, which also serves as an antiblooming voltage for the photode-  
tector. This sequence of voltages leads to a piecewise linear pixel response, illustrated  
(approximately) in Figure 23 and in Figure 24 on page 27.  
Figure 23: Sequence of Control Voltages at the HDR Gate  
Exposure  
VAA (3.3V)  
V1~1.4V  
V2~1.2V  
V3~1.0V  
t1  
V4~0.8V  
HDR  
Voltage  
t2  
t3  
MT9V024_DSRev. F Pub. 3/15 EN  
30  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Figure 24: Sequence of Voltages in a Piecewise Linear Pixel Response  
dV3  
dV2  
dV1  
Light Intensity  
1/t1  
1/t2  
1/t3  
The parameters of the step voltage V_Step, which take values V1, V2, and V3, directly  
affect the position of the knee points in Figure 24.  
Light intensities work approximately as a reciprocal of the partial exposure time. Typi-  
t
t
cally, 1 is the longest exposure, 2 shorter, and so on. Thus the range of light intensities is  
shortest for the first slope, providing the highest sensitivity.  
The register settings for V_Step and partial exposures are:  
V1 = R0x31, bits 5:0 (Context B: R0x39, bits 5:0)  
V2 = R0x32, bits 5:0 (Context B: R0x3A, bits 5:0)  
V3 = R0x33, bits 5:0 (Context B: R0x3B, bits 5:0)  
V4 = R0x34, bits 5:0 (Context B: R0x3C, bits 5:0)  
t
= t + t + t  
INT  
1 2 3  
There are two ways to specify the knee points timing, the first by manual setting and the  
second by automatic knee point adjustment. Knee point auto adjust is controlled for  
context A by R0x0A[8] (where default is ON), and for context B by R0xD1[8] (where  
default is OFF).  
When the knee point auto adjust enabler is enabled (set HIGH), the MT9V024 calculates  
the knee points automatically using the following equations:  
t = t  
– t – t  
3
(EQ 5)  
(EQ 6)  
(EQ 7)  
1
INT  
INT  
INT  
2
R0x0A[3:0] or R0xD1[3:0]  
t = t  
x (½)  
x (½)  
2
R0x0A[7:4] or R0xD1[7:4]  
t = t  
3
As a default for auto exposure, t is 1/16 of t , t is 1/64 of t .  
INT  
2
INT  
3
When the auto adjust enabler is disabled (set LOW), t , t , and t may be programmed  
1
2
3
through the two-wire serial interface:  
t = Coarse SW1 (row-times) + Fine SW1 (pixel-times)  
(EQ 8)  
(EQ 9)  
1
t = Coarse SW2 – Coarse SW1 + Fine SW2 - Fine SW1  
2
t = Total Integration – t – t  
2
(EQ 10)  
3
1
= Coarse Total Shutter Width + Fine Shutter Width Total – t – t  
1
2
MT9V024_DSRev. F Pub. 3/15 EN  
31  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
For context A these become:  
t = R0x08 + R0xD3  
(EQ 11)  
1
t = R0x09 - R0x08 + R0xD4 – R0xD3  
(EQ 12)  
(EQ 13)  
2
t = R0x0B + R0xD4 – t – t  
2
3
1
For context B these are:  
t = R0xCF + R0xD6  
(EQ 14)  
(EQ 15)  
(EQ 16)  
1
t = R0xD0 - R0xCF + R0xD7 - R0xD6  
2
t = R0xD2 + R0xD8 -t -t  
2
3
1
In all cases above, the coarse component of total integration time may be based on the  
result of AEC or values in R0x0B and R0xD2, depending on the settings.  
Similar to Fine Shutter Width Total registers, the user must not set the Fine Shutter  
Width 1 or Fine Shutter Width 2 register to exceed the row time (Horizontal Blanking +  
Window Width). The absolute maximum value for the Fine Shutter Width registers is  
1774 master clocks.  
ADC Companding Mode  
By default, ADC resolution of the sensor is 10-bit. Additionally, a companding scheme of  
12-bit into 10-bit is enabled by the ADC Companding Mode register. This mode allows  
higher ADC resolution, which means less quantization noise at low light, and lower reso-  
lution at high light, where good ADC quantization is not so critical because of the high  
level of the photons shot noise.  
Figure 25: 12- to 10-Bit Companding Chart  
10-bit  
Codes  
1,024  
768  
8 to 1 Companding (2,048- 4095 768- 1023)  
4 to 1 Companding (512 - 2047 384 - 767)  
512  
2 to 1 Companding (256- 511 256- 383)  
No companding (0 -255 0 -255)  
256  
12-bit  
Codes  
256 512 1,024  
2,048  
4,096  
MT9V024_DSRev. F Pub. 3/15 EN  
32  
©Semiconductor Components Industries, LLC,2008.  
Gain Settings  
Changes to Gain Settings  
When the analog gain (R0x35 for context A or R0x36 for context B) or the digital gain settings (R0x80R0x98) are  
changed, the gain is updated on the next frame start. The gain setting must be written before the frame boundary to  
take effect the next frame. The frame boundary is slightly after the falling edge of Frame_Valid. In Figure 26 this is  
shown by the dashed vertical line labeled Frame Start.  
Both analog and digital gain change regardless of whether the integration time is also changed simultaneously.  
Digital gain will change as soon as the register is written. Additional details on this latency can be found in TN-09-  
226 Latency of Exposure or Gain Switch.  
Figure 26: Latency of Gain Register(s) in Master Mode  
write new gain value (Gain “B”)  
frame n+1  
frame n  
frame n+2  
Two-wire  
serial Interface  
(Input)  
idle  
idle  
LED_OUT  
(Output)  
FRAME_VALID  
(Output)  
Readout Gain A”  
Readout Gain A”  
Readout Gain “B”  
Readout Gain “B”  
Readout Gain “B”  
Readout Gain “B”  
AGC-sample point  
frame-start writes  
new gain value  
(Gain ”B”)  
frame-start  
new image available  
at output  
AGC-sample  
activates new gain  
value (Gain ”B”)  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Analog Gain  
Analog gain is controlled by:  
R0x35 Global Gain context A  
R0x36 Global Gain context B  
The formula for gain setting is:  
Gain = Bits[6:0] x 0.0625  
(EQ 17)  
The analog gain range supported in the MT9V024 is 1X4X with a step size of  
6.25 percent. To control gain manually with this register, the sensor must NOT be in AGC  
mode. When adjusting the luminosity of an image, it is recommended to alter exposure  
first and yield to gain increases only when the exposure value has reached a maximum  
limit.  
Analog gain = bits (6:0) x 0.0625 for values 16–31  
Analog gain = bits (6:0)/2 x 0.125 for values 32–64  
For values 16–31: each LSB increases analog gain 0.0625v/v. A value of 16 = 1X gain.  
Range: 1X to 1.9375X.  
For values 32–64: each 2 LSB increases analog gain 0.125v/v (that is, double the gain  
increase for 2 LSB). Range: 2X to 4X. Odd values do not result in gain increases; the gain  
increases by 0.125 for values 32, 34, 36, and so on.  
Digital Gain  
Digital gain is controlled by:  
R0x99-R0xA4 Tile Coordinates  
R0x80-R0x98 Tiled Digital Gain and Weight  
In the MT9V024, the gain logic divides the image into 25 tiles, as shown in Figure 27 on  
page 31. The size and gain of each tile can be adjusted using the above digital gain  
control registers. Separate tile gains can be assigned for context A and context B.  
Registers 0x99–0x9E and 0x9F–0xA4 represent the coordinates X0/5–X5/5 and Y0/5–Y5/5  
in Figure 27 on page 31, respectively.  
Digital gains of registers 0x80–0x98 apply to their corresponding tiles. The MT9V024  
supports a digital gain of 0.25–3.75X.  
When binning is enabled, the tile offsets maintain their absolute values; that is, tile coor-  
dinates do not scale with row or column bin setting. Digital gain is applied as soon as  
register is written.  
Note:  
There is one exception, for the condition when Column Bin 4 is enabled (R0x0D[3:2]  
or R0x0E[3:2] = 2). For this case, the value for Digital Tile Coordinate  
X–direction must be doubled.  
The formula for digital gain setting is:  
Digital Gain = Bits[3:0] x 0.25  
(EQ 18)  
MT9V024_DSRev. F Pub. 3/15 EN  
34  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Figure 27: Tiled Sample  
X0/5 X1/5  
Y0/5  
X2/5 X3/5  
X4/5  
X5/5  
x0_y0 x1_y0  
x4_y0  
Y1/5  
Y2/5  
Y3/5  
x0_y1 x1_y1  
x4_y1  
x0_y2 x1_y2  
x0_y3 x1_y3  
x4_y2  
x4_y3  
Y4/5  
x0_y4 x1_y4  
x4_y4  
Y5/5  
MT9V024_DSRev. F Pub. 3/15 EN  
35  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Black Level Calibration  
Black level calibration is controlled by:  
Frame Dark Average: R0x42  
Dark Average Thresholds: R0x46  
Black Level Calibration Control: R0x47  
Black Level Calibration Value: R0x48  
Black Level Calibration Value Step Size: R0x4C  
The MT9V024 has automatic black level calibration on-chip, and if enabled, its result  
may be used in the offset correction shown in Figure 28.  
Figure 28: Black Level Calibration Flow Chart  
Gain Selection  
(R0x35 or R0x36 or  
result of AGC)  
VREF  
(R0x2C)  
Pixel Output  
(reset minus signal)  
ADC Data  
(9:0)  
10 (12) bit ADC  
Offset Correction  
C1  
Voltage (R0x48 or  
result of BLC)  
Σ
C2  
The automatic black level calibration measures the average value of pixels from 2 dark  
rows (1 dark row if row bin 4 is enabled) of the chip. (The pixels are averaged as if they  
were light-sensitive and passed through the appropriate gain.)  
This row average is then digitally low-pass filtered over many frames (R0x47, bits 7:5) to  
remove temporal noise and random instabilities associated with this measurement.  
Then, the new filtered average is compared to a minimum acceptable level, low  
threshold, and a maximum acceptable level, high threshold.  
If the average is lower than the minimum acceptable level, the offset correction voltage  
is increased by a programmable offset LSB in R0x4C. (Default step size is 2 LSB Offset = 1  
ADC LSB at analog gain = 1X.)  
If it is above the maximum level, the offset correction voltage is decreased by 2 LSB  
(default).  
To avoid oscillation of the black level from below to above, the region the thresholds  
should be programmed so the difference is at least two times the offset DAC step size.  
In normal operation, the black level calibration value/offset correction value is calcu-  
lated at the beginning of each frame and can be read through the two-wire serial inter-  
face from R0x48. This register is an 8-bit signed twos complement value.  
However, if R0x47, bit 0 is set to “1,” the calibration value in R0x48 is used rather than the  
automatic black level calculation result. This feature can be used in conjunction with the  
“show dark rows” feature (R0x0D[6]) if using an external black level calibration circuit.  
MT9V024_DSRev. F Pub. 3/15 EN  
36  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
The offset correction voltage is generated according to the following formulas:  
Offset Correction Voltage = (8-bit signed two’s complement calibration value, – 127 to 127) × 0.25mV  
(EQ 19)  
ADC input voltage = (Pixel Output Voltage) * Analog Gain + Offset Correction Voltage × (Analog Gain + 1) (EQ 20)  
Defective Pixel Correction  
Defective pixel correction is intended to compensate for defective pixels by replacing  
their value with a value based on the surrounding pixels, making the defect less notice-  
able to the human eye. The locations of defective pixels are stored in a ROM on chip  
during the manufacturing process; the maximum number of defects stored is 32. There  
is no provision for later augmenting the table of programmed defects. In the defect  
correction block, bad pixels will be substituted by either the average of its neighboring  
pixels, or its nearest-neighbor pixel, depending on pixel location.  
Defective Pixel Correction is enabled by R0x07[9]. By default, correction is enabled, and  
pixels mapped in internal ROM are replaced with corrected values. This might be unac-  
ceptable to some applications, in which case pixel correction should be disabled  
(R0x07[9] = 0).  
For complete details on using Defective Pixel Correction, refer to TN-09-250, “Defective  
Pixel Correction - Description and Usage.  
Row-wise Noise Correction  
Row-wise noise correction is controlled by the following registers:  
R0x70 Row Noise Control  
R0x72 Row Noise Constant  
Row-wise noise cancellation is performed by calculating a row average from a set of opti-  
cally black pixels at the start of each row and then applying each average to all the active  
pixels of the row. Read Dark Columns register bit and Row Noise Correction Enable  
register bit must both be set to enable row-wise noise cancellation to be performed. The  
behavior when Read Dark Columns register bit = 0 and Row Noise Correction Enable  
register bit = 1 is undefined.  
The algorithm works as follows:  
Logical columns 755-790 in the pixel array provide 36 optically black pixel values. Of the  
36 values, two smallest value and two largest values are discarded. The remaining 32  
values are averaged by summing them and discarding the 5 LSB of the result. The 10-bit  
result is subtracted from each pixel value on the row in turn. In addition, a positive  
constant will be added (Reg0x71, bits 7:0). This constant should be set to the dark level  
targeted by the black level algorithm plus the noise expected on the measurements of  
the averaged values from dark columns; it is meant to prevent clipping from negative  
noise fluctuations.  
Pixel value = ADC value – dark column average + R0x71[9:0]  
(EQ 21)  
Note that this algorithm does not work in color sensor.  
MT9V024_DSRev. F Pub. 3/15 EN  
37  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Automatic Gain Control and Automatic Exposure Control  
The integrated AEC/AGC unit is responsible for ensuring that optimal auto settings of  
exposure and (analog) gain are computed and updated every frame.  
AEC and AGC can be individually enabled or disabled by R0xAF. When AEC is disabled  
(R0xAF[0] = 0), the sensor uses the manual exposure value in coarse and fine shutter  
width registers. When AGC is disabled (R0xAF[1] = 0), the sensor uses the manual gain  
value in R0x35 or R0x36. See “Pixel Integration Control” on page 24 for more informa-  
tion.  
Figure 29: Controllable and Observable AEC/AGC Registers  
EXP. SKIP  
(R0xA6)  
Coarse Shutter  
Width Total  
AEC ENABLE  
(R0xAF[0 or 8])  
EXP. LPF  
(R0xA8)  
To exposure  
timing control  
MAX. EXPOSURE (R0xBD)  
0
AEC  
UNIT  
AEC  
OUTPUT  
MIN EXPOSURE (R0xAC)  
1
R0xBB  
HISTOGRAM  
GENERATOR  
UNIT  
DESIRED BIN  
(desired luminance)  
(R0xA5)  
AGC OUTPUT  
To analog  
gain control  
1
AGC  
UNIT  
MIN GAIN  
16  
0
MAX. GAIN  
R0xBA  
(R0xAB)  
GAIN SKIP  
(R0xA9)  
MANUAL GAIN AGC ENABLE  
A or B (R0xAF[1 or 9])  
GAIN LPF  
(R0xAB)  
The exposure is measured in row-time by reading R0xBB. The exposure range is  
1 to 2047. The gain is measured in gain-units by reading R0xBA. The gain range is  
16 to 63 (unity gain = 16 gain-units; multiply by 1/16 to get the true gain).  
When AEC is enabled (R0xAF), the maximum auto exposure value is limited by R0xBD;  
minimum auto exposure is limited by AEC Minimum Exposure, R0xAC.  
Note:  
AEC does not support sub-row timing; calculated exposure values are rounded down  
to the nearest row-time. For smoother response, manual control is recommended for  
short exposure times.  
When AGC is enabled (R0xAF), the maximum auto gain value is limited by R0xAB;  
minimum auto gain is fixed to 16 gain-units.  
The exposure control measures current scene luminosity and desired output luminosity  
by accumulating a histogram of pixel values while reading out a frame. All pixels are  
used, whether in color or mono mode. The desired exposure and gain are then calcu-  
lated from this for subsequent frame.  
When binning is enabled, tuning of the AEC may be required. The histogram pixel count  
register, R0xB0, may be adjusted to reflect reduced pixel count. Desired bin register,  
R0xA5, may be adjusted as required.  
MT9V024_DSRev. F Pub. 3/15 EN  
38  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Pixel Clock Speed  
The pixel clock speed is same as the master clock (SYSCLK) at 26.66 MHz by default.  
However, when column binning 2 or 4 (R0x0D or R0x0E, bit 2 or 3) is enabled, the pixel  
clock speed is reduced by half and one-fourth of the master clock speed respectively. See  
“Read Mode Options” on page 36 and “Column Binning” on page 37 for additional infor-  
mation.  
Hard Reset of Logic  
Soft Reset of Logic  
The RC circuit for the MT9V024 uses a 10kresistor and a 0.1µF capacitor. The rise time  
for the RC circuit is 1µs maximum.  
Soft reset of logic is controlled by:  
R0x0C Reset  
Bit 0 is used to reset the digital logic of the sensor while preserving the existing two-wire  
serial interface configuration. Furthermore, by asserting the soft reset, the sensor aborts  
the current frame it is processing and starts a new frame. Bit 1 is a shadowed reset  
control register bit to explicitly reset the automatic gain and exposure control feature.  
These two bits are self-resetting bits and also return to “0” during two-wire serial inter-  
face reads.  
STANDBY Control  
The sensor goes into standby mode by setting STANDBY to HIGH. Once the sensor  
detects that STANDBY is asserted, it completes the current frame before disabling the  
digital logic, internal clocks, and analog power enable signal. To release the sensor out  
from the standby mode, reset STANDBY back to LOW. The LVDS must be powered to  
ensure that the device is in standby mode. See "Appendix A: Power-On Reset and  
Standby Timing" on page 54 for more information on standby.  
Monitor Mode Control  
Monitor mode is controlled by:  
R0xD9 Monitor Mode Enable  
R0xC0 Monitor Mode Image Capture Control  
The sensor goes into monitor mode when R0xD9[0] is set to HIGH. In this mode, the  
sensor first captures a programmable number of frames (R0xC0), then goes into a sleep  
period for five minutes. The cycle of sleeping for five minutes and waking up to capture a  
number of frames continues until R0xD9[0] is cleared to return to normal operation.  
In some applications when monitor mode is enabled, the purpose of capturing frames is  
to calibrate the gain and exposure of the scene using automatic gain and exposure  
control feature. This feature typically takes less than 10 frames to settle. In case a larger  
number of frames is needed, the value of R0xC0 may be increased to capture more  
frames.  
During the sleep period, none of the analog circuitry and a very small fraction of digital  
logic (including a five-minute timer) is powered. The master clock (SYSCLK) is therefore  
always required.  
MT9V024_DSRev. F Pub. 3/15 EN  
39  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Read Mode Options  
(Also see “Output Data Format” on page 8 and “Output Data Timing” on page 9.)  
Column Flip  
By setting bit 5 of R0x0D or R0x0E the readout order of the columns is reversed, as shown  
in Figure 30 on page 36.  
Row Flip  
By setting bit 4 of R0x0D or R0x0E the readout order of the rows is reversed, as shown in  
Figure 31.  
Figure 30: Readout of Six Pixels in Normal and Column Flip Output Mode  
LINE_VALID  
Normal readout  
P4,1  
(9:0)  
P4,2  
(9:0)  
P4,3  
(9:0)  
P4,4  
(9:0)  
P4,5  
(9:0)  
P4,6  
(9:0)  
DOUT(9:0)  
Reverse readout  
OUT(9:0)  
P4,n  
(9:0)  
P4,n-1 P4,n-2 P4,n-3  
P4,n-4 P4,n-5  
(9:0)  
(9:0)  
(9:0)  
(9:0)  
(9:0)  
D
Figure 31: Readout of Six Rows in Normal and Row Flip Output Mode  
FRAME_VALID  
Normal readout  
Row4  
(9:0)  
Row5  
(9:0)  
Row6  
(9:0)  
Row7  
(9:0)  
Row8  
7(9:0)  
Row9  
(9:0)  
DOUT(9:0)  
Reverse readout  
DOUT(9:0)  
Row9  
(9:0)  
Row8  
(9:0)  
Row7  
(9:0)  
Row6  
(9:0)  
Row5  
7(9:0)  
Row4  
(9:0)  
Pixel Binning  
In addition to windowing mode in which smaller resolutions (CIF, QCIF) are obtained by  
selecting a smaller window from the sensor array, the MT9V024 also provides the ability  
to down-sample the entire image captured by the pixel array using pixel binning.  
There are two resolution options: binning 2 and binning 4, which reduce resolution by  
two or by four, respectively. Row and column binning are separately selected. Image  
mirroring options will work in conjunction with binning.  
For column binning, either two or four columns are combined by averaging to create the  
resulting column. For row binning, the binning result value depends on the difference in  
pixel values: for pixel signal differences of less than 200 LSBs, the result is the average of  
the pixel values. For pixel differences of greater than 200 LSBs, the result is the value of  
the darker pixel value.  
MT9V024_DSRev. F Pub. 3/15 EN  
40  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Binning operation increases SNR but decreases resolution. Enabling row bin2 and row  
bin4 improves frame rate by 2x and 4x respectively. Column binning does not increase  
the frame rate.  
Row Binning  
By setting bit 0 or 1 of R0x0D or R0x0E, only half or one-fourth of the row set is read out,  
as shown in Figure 32. The number of rows read out is half or one-fourth of the value set  
in R0x03. The row binning result depends on the difference in pixel values: for pixel  
signal differences less than 200 LSBs, the result is the average of the pixel values.  
For pixel differences of 200 LSBs or more, the result is the value of the darker pixel value.  
Column Binning  
For column binning, either two or four columns are combined by averaging to create the  
result. In setting bit 2 or 3 of R0x0D or R0x0E, the pixel data rate is slowed down by a  
factor of either two or four, respectively. This is due to the overhead time in the digital  
pixel data processing chain. As a result, the pixel clock speed is also reduced accordingly.  
Figure 32: Readout of 8 Pixels in Normal and Row Bin Output Mode  
LINE_VALID  
Normal readout  
Row4  
(9:0)  
Row5  
(9:0)  
Row6  
(9:0)  
Row7  
(9:0)  
Row8  
(9:0)  
Row9  
(9:0)  
Row10 Row11  
(9:0) (9:0)  
DOUT(9:0)  
LINE_VALID  
Row Bin 2 readout  
Row4  
(9:0)  
Row6  
(9:0)  
Row8  
(9:0)  
Row10  
(9:0)  
DOUT(9:0)  
LINE_VALID  
Row Bin 4 readout  
Row4  
(9:0)  
Row8  
(9:0)  
DOUT(9:0)  
MT9V024_DSRev. F Pub. 3/15 EN  
41  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Figure 33: Readout of 8 Pixels in Normal and Column Bin Output Mode  
LINE_VALID  
Normal readout  
D1  
(9:0)  
D2  
(9:0)  
D3  
(9:0)  
D4  
(9:0)  
D5  
(9:0)  
D6  
(9:0)  
D7  
(9:0)  
D8  
(9:0)  
DOUT(9:0)  
PIXCLK  
LINE_VALID  
Column Bin 2 readout  
D1  
(9:0)  
D3  
(9:0)  
D5  
(9:0)  
D7  
(9:0)  
DOUT(9:0)  
PIXCLK  
LINE_VALID  
Column Bin 4 readout  
D1  
(9:0)  
D5  
(9:0)  
DOUT(9:0)  
PIXCLK  
Interlaced Readout  
The MT9V024 has two interlaced readout options. By setting R0x07[2:0] = 1, all the even-  
numbered rows are read out first, followed by a number of programmable field blanking  
rows (set by R0xBF[7:0]), then the odd-numbered rows, and finally the vertical blanking  
rows. By setting R0x07[2:0] = 2 only one field row is read out.  
Consequently, the number of rows read out is half what is set in the window height  
register. The row start register determines which field gets read out; if the row start  
register is even, then the even field is read out; if row start address is odd, then the odd  
field is read out.  
MT9V024_DSRev. F Pub. 3/15 EN  
42  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Figure 34: Spatial Illustration of Interlaced Image Readout  
P4,1 P4,2 P4,3.....................................P4,n-1 P4,n  
P6,0 6,1 P6,2.....................................P6,n-1 P6,n  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
P
VALID IMAGE - Even Field  
HORIZONTAL  
BLANKING  
Pm-2,0 Pm-2,2.....................................Pm-2,n-2 Pm-2,n  
Pm,2 Pm,2.....................................Pm,n-1 Pm,n  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
FIELD BLANKING  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
P
5,1 P5,2  
P
P5,3.....................................P5,n-1 P5,n  
P7,0 7,1 P7,2.....................................P7,n-1 P7,n  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
VALID IMAGE - Odd Field  
Pm-3,1 Pm-3,2.....................................Pm-3,n-1 Pm-3,n  
Pm,1 Pm,1.....................................Pm,n-1 Pm,n  
VERTICAL BLANKING  
00 00 00 ............................................................................................. 00 00 00  
00 00 00 ............................................................................................. 00 00 00  
When interlaced mode is enabled, the total number of blanking rows are determined by  
both Field Blanking register (R0xBF) and Vertical Blanking register (R0x06 or R0xCE).  
The followings are their equations.  
Field Blanking = R0xBF[7:0]  
(EQ 22)  
(EQ 23)  
Vertical Blanking = R0x06[8:0] – R0xBF[7:0] (context A) or R0xCE[8:0] – R0xBF[7:0] (context B)  
with  
minimum vertical blanking requirement = 4 (absolute minimum to operate; see Vertical Blanking Registers  
description for VBlank minimums for valid image output)  
(EQ 24)  
Similar to progressive scan, FV is logic LOW during the valid image row only. Binning  
should not be used in conjunction with interlaced mode.  
MT9V024_DSRev. F Pub. 3/15 EN  
43  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
LINE_VALID  
By setting bit 2 and 3 of R0x72, the LV signal can get three different output formats. The  
formats for reading out four rows and two vertical blanking rows are shown in Figure 35.  
In the last format, the LV signal is the XOR between the continuous LV signal and the FV  
signal.  
Figure 35: Different LINE_VALID Formats  
Default  
FRAME_VALID  
LINE_VALID  
Continuously  
FRAME_VALID  
LINE_VALID  
XOR  
FRAME_VALID  
LINE_VALID  
LVDS Serial (Stand-Alone/Stereo) Output  
The LVDS interface allows for the streaming of sensor data serially to a standard off-the-  
shelf deserializer up to eight meters away from the sensor. The pixels (and controls) are  
packeted—12-bit packets for stand-alone mode and 18-bit packets for stereoscopy  
mode. All serial signaling (CLK and data) is LVDS. The LVDS serial output could either be  
data from a single sensor (stand-alone) or stream-merged data from two sensors (self  
and its stereoscopic slave pair). The appendices describe in detail the topologies for  
both stand-alone and stereoscopic modes.  
There are two standard deserializers that can be used. One for a stand-alone sensor  
stream and the other from a stereoscopic stream. The deserializer attached to a stand-  
alone sensor is able to reproduce the standard parallel output (8-bit pixel data, LV, FV,  
and PIXCLK). The deserializer attached to a stereoscopic sensor is able to reproduce 8-  
bit pixel data from each sensor (with embedded LV and FV) and pixel-clk. An additional  
(simple) piece of logic is required to extract LV and FV from the 8-bit pixel data. Irrespec-  
tive of the mode (stereoscopy/stand-alone), LV and FV are always embedded in the pixel  
data.  
In stereoscopic mode, the two sensors run in lock-step, implying all state machines are  
in the same state at any given time. This is ensured by the sensor-pair getting their sys-  
clks and sys-resets in the same instance. Configuration writes through the two-wire  
serial interface are done in such a way that both sensors can get their configuration  
updates at once. The inter-sensor serial link is designed in such a way that once the slave  
PLL locks and the data-dly, shft-clk-dly and stream-latency-sel are configured, the  
master sensor streams valid stereo content irrespective of any variation voltage and/or  
temperature as long as it is within specification. The configuration values of data-dly,  
shft-clk-dly and stream-latency-sel are either predetermined from the board-layout or  
can be empirically determined by reading back the stereo-error flag. This flag is asserted  
when the two sensor streams are not in sync when merged. The combo_reg is used for  
out-of-sync diagnosis.  
MT9V024_DSRev. F Pub. 3/15 EN  
44  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Figure 36: Serial Output Format for a 6x2 Frame  
Internal  
PIXCLK  
Internal  
Parallel  
Data  
P41  
P42  
P43  
P44  
P45  
P46  
P51  
P52  
P53  
P54  
P55  
P56  
Internal  
Line_Valid  
Internal  
Frame_Valid  
External  
Serial  
Data Out  
1023  
0
1023  
1
P41  
P42  
P43  
P44  
P45  
P46  
2
1
P51  
P52  
P53  
P54  
P55  
P56  
2
3
Notes: 1. External pixel values of 0, 1, 2, 3, are reserved (they only convey control information). Any raw pixel  
of value 0, 1, 2 and 3 will be substituted with 4.  
2. The external pixel sequence 1023, 0, 1023 is a reserved sequence (conveys control information for  
legacy support of MT9V021 applications). Any raw pixel sequence of 1023, 0, 1023 will be substi-  
tuted with an output serial stream of 1023, 4, 1023.  
LVDS Output Format  
In stand-alone mode, the packet size is 12 bits (2 frame bits and 10 payload bits); 10-bit  
pixels or 8-bit pixels can be selected. In 8-bit pixel mode (R0xB6[0] = 0), the packet  
consists of a start bit, 8-bit pixel data (with sync codes), the line valid bit, the frame valid  
bit and the stop bit. For 10-bit pixel mode (R0xB6[0] = 1), the packet consists of a start  
bit, 10-bit pixel data, and the stop bit.  
Table 7:  
LVDS Packet Format in Stand-Alone Mode  
(Stereoscopy Mode Bit De-Asserted)  
use_10-bit_pixels Bit De-  
Asserted  
use_10-bit_pixels Bit Asserted  
(10-Bit Mode)  
12-Bit Packet  
(8-Bit Mode)  
Bit[0]  
Bit[1]  
Bit2]  
1'b1 (Start bit)  
PixelData[2]  
PixelData[3]  
PixelData[4]  
PixelData[5]  
PixelData[6]  
PixelData[7]  
PixelData[8]  
PixelData[9]  
Line_Valid  
1'b1 (Start bit)  
PixelData[0]  
PixelData[1]  
PixelData[2]  
PixelData[3]  
PixelData[4]  
PixelData[5]  
PixelData[6]  
PixelData[7]  
PixelData[8]  
PixelData[9]  
1'b0 (Stop bit)  
Bit[3]  
Bit4]  
Bit[5]  
Bit[6]  
Bit[7]  
Bit[8]  
Bit[9]  
Bit[10]  
Bit[11]  
Frame_Valid  
1'b0 (Stop bit)  
In stereoscopic mode, the packet size is 18 bits (2 frame bits and 16 payload bits). The  
packet consists of a start bit, the master pixel byte (with sync codes), the slave byte (with  
sync codes), and the stop bit.)  
MT9V024_DSRev. F Pub. 3/15 EN  
45  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
Table 8:  
LVDS Packet Format in Stereoscopy Mode (Stereoscopy Mode Bit Asserted)  
18-bit Packet  
Function  
Bit[0]  
Bit[1]  
1'b1 (Start bit)  
MasterSensorPixelData[2]  
MasterSensorPixelData[3]  
MasterSensorPixelData[4]  
MasterSensorPixelData[5]  
MasterSensorPixelData[6]  
MasterSensorPixelData[7]  
MasterSensorPixelData[8]  
MasterSensorPixelData[9]  
SlaveSensorPixelData[2]  
SlaveSensorPixelData[3]  
SlaveSensorPixelData[4]  
SlaveSensorPixelData[5]  
SlaveSensorPixelData[6]  
SlaveSensorPixelData[7]  
SlaveSensorPixelData[8]  
SlaveSensorPixelData[9]  
1'b0 (Stop bit)  
Bit[2]  
Bit[3]  
Bit[4]  
Bit[5]  
Bit[6]  
Bit[7]  
Bit[8]  
Bit[9]  
Bit[10]  
Bit[11]  
Bit[12]  
Bit[13]  
Bit[14]  
Bit[15]  
Bit[16]  
Bit[17]  
Control signals LV and FV can be reconstructed from their respective preceding and  
succeeding flags that are always embedded within the pixel data in the form of reserved  
words.  
Table 9:  
Reserved Words in the Pixel Data Stream  
Pixel Data Reserved Word  
Flag  
0
1
2
3
Precedes frame valid assertion  
Precedes line valid assertion  
Succeeds line valid de-assertion  
Succeeds frame valid de-assertion  
When LVDS mode is enabled along with column binning (bin 2 or bin 4, R0x0D[3:2]), the  
packet size remains the same but the serial pixel data stream repeats itself depending on  
whether 2X or 4X binning is set:  
For bin 2, LVDS outputs double the expected data (post-binning pixel 0,0 is output  
twice in sequence, followed by pixel 0,1 twice, . . .).  
For bin 4, LVDS outputs 4 times the expected data (pixel 0,0 is output 4 times in  
sequence followed by pixel 0,1 times 4, . . .).  
The receiving hardware will need to undersample the output stream,getting data either  
every 2 clocks (bin 2) or every 4 (bin 4) clocks.  
If the sensor provides a pixel whose value is 0,1, 2, or 3 (that is, the same as a reserved  
word) then the outgoing serial pixel value is switched to 4.  
MT9V024_DSRev. F Pub. 3/15 EN  
46  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
LVDS Enable and Disable  
The Table 12 and Table 13 further explain the state of the LVDS output pins depending  
on LVDS control settings. When the LVDS block is not used, it may be left powered down  
to reduce power consumption.  
Table 10:  
SER_DATAOUT_* state  
R0xB1[1]  
LVDS power down  
R0xB3[4]  
LVDS data power down  
SER_DATAOUT_*  
0
0
1
1
0
1
0
1
Active  
Active  
Z
Z
Table 11:  
SHFT_CLK_* state  
R0xB1[1]  
LVDS power down  
R0xB2[4]  
LVDS shift-clk power down  
SHFT_CLKOUT_*  
0
0
1
1
0
1
0
1
Active  
Z
Z
Z
Note:  
ERROR pin: When the sensor is not in stereo mode, the ERROR pin is at LOW.  
MT9V024_DSRev. F Pub. 3/15 EN  
47  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Feature Description  
LVDS Data Bus Timing  
Figure 37: LVDS Timing  
The LVDS bus timing waveforms and timing specifications are shown in Table 14 and  
Figure 37.  
Data Rise/Fall Time  
(10% - 90%)  
Data Setup Time  
Data Hold Time  
LVDS Data Output  
(SER_DATAOUT_N/P)  
LVDS Clock Output  
(Shft_CLKOUT_N/P)  
Clock Rise/Fall Time  
Clock Jitter  
(10% - 90%)  
Table 12:  
LVDS AC Timing Specifications  
VPWR = 3.3V 0.3V; TJ = – 40°C to +105°C; output load = 100 ; frequency 27 MHz  
Parameter  
Minimum  
Typical  
0.22  
0.22  
0.28  
0.28  
0.67  
1.34  
Maximum  
Unit  
ns  
LVDS clock rise time  
LVDS clock fall time  
LVDS data rise time  
LVDS data fall time  
LVDS data setup time  
LVDS data hold time  
LVDS clock jitter  
0.30  
0.30  
0.30  
0.30  
ns  
ns  
ns  
0.3  
0.1  
ns  
ns  
92  
ps  
MT9V024_DSRev. F Pub. 3/15 EN  
48  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Electrical Specifications  
Electrical Specifications  
Table 13:  
DC Electrical Characteristics Over Temperature  
VPWR = 3.3V 0.3V; TJ = – 40°C to +105°C; Output Load = 10pF; Frequency 13 MHz to 27 MHz; LVDS off  
Symbol  
VIH  
Definition  
Condition  
Minimum Typical Maximum  
Unit  
V
Input HIGH voltage  
Input LOW voltage  
VPWR - 1.4  
VIL  
1.3  
5
V
No pull-up resistor;  
VIN = VPWR or VGND  
-5  
A  
IIN  
Input leakage current  
VOH  
VOL  
Output HIGH voltage  
Output LOW voltage  
Output HIGH current  
Output LOW current  
Analog supply current  
Pixel supply current  
Digital supply current  
LVDS supply current  
IOH = –4.0mA  
VPWR - 0.3  
0.3  
V
IOL = 4.0mA  
-11  
V
IOH  
VOH = VDD - 0.7  
mA  
mA  
mA  
mA  
mA  
mA  
A  
IOL  
VOL = 0.7  
11  
20  
3
IPWRA  
IPIX  
Default settings  
Default settings  
Default settings, CLOAD = 10pF  
Default settings with LVDS on  
12  
1.1  
42  
13  
0.2  
IPWRD  
ILVDS  
60  
16  
3
IPWRA  
Standby  
Analog standby supply current  
STDBY = VDD  
IPWRD  
Standby  
Clock Off  
0.1  
1
10  
2
A  
Digital standby supply current  
with clock off  
STDBY = VDD, CLKIN = 0 MHz  
IPWRD  
Standby  
Clock On  
mA  
Digital standby supply current  
with clock on  
STDBY= VDD, CLKIN = 27 MHz  
Table 14:  
DC Electrical Characteristics  
VPWR = 3.3V 0.3V; TA = Ambient = 25°C  
Symbol  
Definition  
Condition  
Minimum  
Typical Maximum  
Unit  
LVDS Driver DC Specifications  
|VOD|  
|DVOD|  
VOS  
Output differential voltage  
250  
400  
50  
mV  
mV  
Change in VOD between  
complementary output states  
RLOAD = 100  
Output offset voltage  
Pixel array current  
1.0  
1.2  
1.4  
35  
V
mV  
DVOS  
  1%  
IOS  
Digital supply current  
10  
1  
mA  
Output current when driver is tri-  
state  
A  
IOZ  
LVDS Receiver DC Specifications  
VIDTH+  
Iin  
Input differential  
Input current  
| VGPD| < 925mV  
–100  
100  
mV  
20  
A  
MT9V024_DSRev. F Pub. 3/15 EN  
49  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Electrical Specifications  
Table 15:  
Absolute Maximum Ratings  
Caution Stresses greater than those listed may cause permanent damage to the device.  
Symbol  
VSUPPLY  
ISUPPLY  
IGND  
Parameter  
Minimum  
–0.3  
Maximum  
4.5  
Unit  
V
Power supply voltage (all supplies)  
Total power supply current  
Total ground current  
DC input voltage  
200  
mA  
mA  
V
200  
VIN  
–0.3  
–0.3  
–50  
VDD + 0.3  
VDD + 0.3  
+150  
VOUT  
DC output voltage  
V
1
TSTG  
Storage temperature  
°C  
Notes: 1. This is a stress rating only, and functional operation of the device at these or any other conditions  
above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect  
reliability.  
Table 16:  
AC Electrical Characteristics  
VPWR = 3.3V 0.3V; TJ = –40°C to +105°C; Output Load = 10pF  
Symbol  
Definition  
Condition  
Minimum  
Typical  
26.6  
50.0  
3
Maximum  
Unit  
MHz  
%
SYSCLK  
Input clock frequency  
13.0  
45.0  
27.0  
Clock duty cycle  
55.0  
5
tR  
Input clock rise time  
ns  
tF  
Input clock fall time  
3
5
ns  
tPLHP  
tPD  
tSD  
tHD  
tPFLR  
tPFLF  
SYSCLK to PIXCLK propagation delay  
PIXCLK to valid DOUT(9:0) propagation delay  
Data setup time  
CLOAD = 10pF  
CLOAD = 10pF  
4
6
8
ns  
–3  
14  
14  
5
0.6  
16  
16  
7
3
ns  
ns  
Data hold time  
PIXCLK to LV propagation delay  
PIXCLK to FV propagation delay  
CLOAD = 10pF  
CLOAD = 10pF  
9
ns  
ns  
5
7
9
MT9V024_DSRev. F Pub. 3/15 EN  
50  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Electrical Specifications  
Propagation Delays for PIXCLK and Data Out Signals  
The pixel clock is inverted and delayed relative to the master clock. The relative delay  
from the master clock (SYSCLK) rising edge to both the pixel clock (PIXCLK) falling edge  
and the data output transition is typically 7ns. Note that the falling edge of the pixel  
clock occurs at approximately the same time as the data output transitions. See Table 18  
on page 46 for data setup and hold times.  
Figure 38: Propagation Delays for PIXCLK and Data Out Signals  
t
t
F
R
SYSCLK  
PIXCLK  
t
PLHP  
t
PD  
t
t
SD  
HD  
DOUT(9:0)  
Propagation Delays for FRAME_VALID and LINE_VALID Signals  
The LV and FV signals change on the same rising master clock edge as the data output.  
The LV goes HIGH on the same rising master clock edge as the output of the first valid  
pixel's data and returns LOW on the same master clock rising edge as the end of the  
output of the last valid pixel's data.  
As shown in the “Output Data Timing” on page 9, FV goes HIGH 143 pixel clocks before  
the first LV goes HIGH. It returns LOW 23 pixel clocks after the last LV goes LOW.  
Figure 39: Propagation Delays for FRAME_VALID and LINE_VALID Signals  
tPFLR  
tPFLF  
PIXCLK  
PIXCLK  
FRAME_VALID  
LINE_VALID  
FRAME_VALID  
LINE_VALID  
MT9V024_DSRev. F Pub. 3/15 EN  
51  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Electrical Specifications  
Two-Wire Serial Bus Timing  
Detailed timing waveforms and parameters for the two-wire serial interface bus are  
shown in Figure 40 and Table 19.  
Figure 40: Two-Wire Serial Bus Timing Parameters  
SDATA  
t
t
f
t
t
t
t
t
t
BUF  
SU;DAT  
LOW  
f
r
HD;STA  
r
SCLK  
t
t
SU;STA  
t
HD;STA  
SU;STO  
t
t
HIGH  
HD;DAT  
P
S
S
Sr  
Table 17:  
Parameter  
Two-Wire Serial Bus Characteristics  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V; TA = 25°C  
Standard-Mode  
Fast-Mode  
Symbol  
fSCL  
Min  
0
Max  
100  
-
Min  
0
Max  
400  
-
Unit  
KHz  
s  
SCLK Clock Frequency  
After this period, the first clock pulse is  
generated  
tHD;STA  
4.0  
0.6  
LOW period of the SCLK clock  
HIGH period of the SCLK clock  
tLOW  
tHIGH  
tSU;STA  
4.7  
4.0  
4.7  
-
-
-
1.3  
0.6  
0.6  
-
-
-
s  
s  
s  
Set-up time for a repeated START  
condition  
Data hold time:  
tHD;DAT  
tSU;DAT  
tr  
04  
250  
-
3.455  
06  
1006  
20 + 0.1Cb7  
20 + 0.1Cb7  
0.6  
0.95  
s  
ns  
ns  
ns  
s  
s  
Data set-up time  
-
1000  
300  
-
-
300  
300  
-
Rise time of both SDATA and SCLK signals  
Fall time of both SDATA and SCLK signals  
Set-up time for STOP condition  
tf  
-
tSU;STO  
tBUF  
4.0  
4.7  
Bus free time between a STOP and START  
condition  
-
1.3  
-
Capacitive load for each bus line  
Serial interface input pin capacitance  
SDATA max load capacitance  
SDATA pull-up resistor  
Cb  
CIN_SI  
CLOAD_SD  
RSD  
-
-
400  
3.3  
30  
-
-
400  
3.3  
30  
pF  
pF  
-
-
pF  
1.5  
4.7  
1.5  
4.7  
K  
Notes: 1. This table is based on I2C standard (v2.1 January 2000). Philips Semiconductor.  
2. Two-wire control is I2C-compatible.  
3. All values referred to VIHmin = 0.9 VDD and VILmax = 0.1VDD levels. Sensor EXCLK = 27 MHz.  
4. A device must internally provide a hold time of at least 300 ns for the SDATA signal to bridge the  
undefined region of the falling edge of SCLK.  
5. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of  
the SCLK signal.  
MT9V024_DSRev. F Pub. 3/15 EN  
52  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Electrical Specifications  
6. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement  
tSU;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch  
the LOW period of the SCLK signal. If such a device does stretch the LOW period of the SCLK signal, it  
must output the next data bit to the SDATA line tr max + tSU;DAT = 1000 + 250 = 1250 ns (according to  
the Standard-mode I2C-bus specification) before the SCLK line is released.  
7. Cb = total capacitance of one bus line in pF.  
Minimum Master Clock Cycles  
In addition to the AC timing requirements described in Table 19 on page 48, the  
two-wire serial bus operation also requires certain minimum master clock cycles  
between transitions. These are specified in Figures 41 through 46, in units of master  
clock cycles.  
Figure 41: Serial Host Interface Start Condition Timing  
4
4
SCLK  
SDATA  
Figure 42: Serial Host Interface Stop Condition Timing  
4
4
SCLK  
SDATA  
Note:  
All timing are in units of master clock cycle.  
Figure 43: Serial Host Interface Data Timing for WRITE  
4
4
SCLK  
SDATA  
Note:  
SDATA is driven by an off-chip transmitter.  
MT9V024_DSRev. F Pub. 3/15 EN  
53  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Electrical Specifications  
Figure 44: Serial Host Interface Data Timing for READ  
5
SCLK  
SDATA  
Note:  
SDATA is pulled LOW by the sensor, or allowed to be pulled HIGH by a pull-up resistor off-chip.  
Figure 45: Acknowledge Signal Timing After an 8-Bit WRITE to the Sensor  
6
3
SCLK  
Sensor pulls down  
DATA pin  
S
SDATA  
Figure 46: Acknowledge Signal Timing After an 8-Bit READ from the Sensor  
7
6
SCLK  
SDATA  
Sensor tri-states SDATA pin  
(turns off pull down)  
Note:  
After a READ, the master receiver must pull down SDATA to acknowledge receipt of data bits. When  
the read sequence is complete, the master must generate a “No Acknowledge” by leaving SDATA to  
float HIGH. On the following cycle, a start or stop bit may be used.  
MT9V024_DSRev. F Pub. 3/15 EN  
54  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Electrical Specifications  
Figure 47: Typical Quantum EfficiencyRGB Bayer  
Figure 48: Typical Quantum EfficiencyMonochrome  
MT9V024_DSRev. F Pub. 3/15 EN  
55  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Electrical Specifications  
Figure 49: Typical Quantum Efficiency—RCCC  
MT9V024_DSRev. F Pub. 3/15 EN  
56  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Package Dimensions  
Package Dimensions  
Figure 50: 52-Ball IBGA  
0.9  
(for reference only)  
D
Seating  
plane  
A
0.1  
A
0.4  
(for reference only)  
0.375 0.05  
0.525 0.05  
0.125 (for reference only)  
Ball A1 ID  
52X Ø0.55  
7
Dimensions apply  
Fuses  
to solder balls post  
reflow.The pre-  
reflow ball isØ0.5  
on aØ0.4 NSMD  
ball pad.  
1
TYP  
3.5  
5.5  
1.849  
First  
active  
pixel  
C
L
8
7
6
5
4
3
2
1
A
B
C
D
1.999  
3.5  
4.9  
C
L
2.88 CTR  
Ø0.15 A C B  
7
9
0.075  
E
F
G
H
1 TYP  
Optical  
area  
Optical  
center  
4.512 CTR  
C
9
0.075  
B
Ø0.15  
A B C  
Maximum rotation of optical area relative to package edges: 1º  
Solder ball material: SAC305 (96.5% Sn, 3% Ag, 0.5% Cu)  
Maximum tiltof optical area relative to package edge : 25 mDicrons  
Maximum tiltof optical area relative to topof cover glass: 50 microns  
Substrate material: plastic laminate  
Encapsulant: epoxy  
Lid material: borosilicate glass 0.4 thickness  
Image sensor die  
Note:  
All dimensions in millimeters.  
MT9V024_DSRev. F Pub. 3/15 EN  
57  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Appendix A: Power-On Reset and Standby Timing  
Appendix A: Power-On Reset and Standby Timing  
There are no constraints concerning the order in which the various power supplies are  
applied; however, the MT9V024 requires reset to operate properly at power-up. Refer to  
Figure 51 for the power-up, reset, and standby sequences.  
Figure 51: Power-up, Reset, Clock, and Standby Sequence  
non-Low-Power  
Active  
Low-Power  
Standby  
non-Low-Power  
Wake  
up  
Power  
down  
Power  
up  
Active  
Pre-Standby  
V
DD  
,
VDDLVDS,  
VAA, VAAPIX  
MIN 20 SYSCLK cycles  
RESET_BAR  
STANDBY  
Note 3  
MIN 10 SYSCLK cycles  
SYSCLK  
MIN 10 SYSCLK cycles  
SCLK DATA  
MIN 10 SYSCLK cycles  
,
S
Does not  
respond to  
serial  
Two-Wire Serial I/F  
interface  
when  
STANDBY = 1  
D
OUT[9:0]  
D
OUT[9:0]  
Driven = 0  
Driven = 0  
DATA OUTPUT  
Notes: 1. All output signals are defined during initial power-up with RESET_BAR held LOW without SYSCLK  
being active. To properly reset the rest of the sensor, during initial power-up, assert RESET_BAR (set  
to LOW state) for at least 750ns after all power supplies have stabilized and SYSCLK is active (being  
clocked). Driving RESET_BAR to LOW state does not put the part in a low power state.  
2. Before using two-wire serial interface, wait for 10 SYSCLK rising edges after RESET_BAR is de-  
asserted.  
3. Once the sensor detects that STANDBY has been asserted, it completes the current frame readout  
before entering standby mode. The user must supply enough SYSCLKs to allow a complete frame  
readout. See Table 4, “Frame Time,” on page 9 for more information.  
4. In standby, all video data and synchronization output signals are driven to a low state.  
5. In standby, the two-wire serial interface is not active.  
MT9V024_DSRev. F Pub. 3/15 EN  
58  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Appendix B: Electrical Identification of CFA Type  
Appendix B: Electrical Identification of CFA Type  
In order to identify the CFA type (RGB Bayer, Monochrome, RCCC) that a specific  
MT9V024 has been, the following table may be used.  
CFA  
R0x6B[11:9]  
R0x6B[8:0]  
RGB  
RCCC  
Mono  
6
5
0
4
4
4
MT9V024_DSRev. F Pub. 3/15 EN  
59  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Revision History  
Revision History  
Rev. F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3/27/15  
Converted to ON Semiconductor template  
Removed Confidential marking  
Rev. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12/20/12  
Updated title of Figure 5: “Pixel Color Pattern Detail RGB Bayer (Top Right Corner),”  
on page 6  
Updated title of “Color (RGB Bayer) Device Limitations” on page 7  
Moved “Recommended Register Settings” to follow “Real-Time Context Switching” on  
page 16  
Updated Figure 14: “Simultaneous Master Mode Synchronization Waveforms #1,” on  
page 18  
Updated Figure 15: “Simultaneous Master Mode Synchronization Waveforms #2,” on  
page 19  
Updated Figure 16: “Sequential Master Mode Synchronization Waveforms,” on  
page 19  
Updated Figure 18: “Snapshot Mode Frame Synchronization Waveforms,” on page 20  
Added sentence after fifth paragraph of “Slave Mode” on page 20  
Replaced Figure 19: “Slave Mode Operation” with Figure 19: “Exposure and Readout  
Timing (Simultaneous Mode),” on page 21 and Figure 20: “Exposure and Readout  
Timing (Sequential Mode),” on page 21  
Deleted Figure 23: “Latency When Changing Integration,” on page 31  
Updated Unit symbols in Table 19, “Two-Wire Serial Bus Characteristics,” on page 48  
Added Appendix B: Electrical Identification of CFA Type” on page 55  
Rev. D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6/4/12  
Updated “Features” on page 1  
Updated Table 1, “Key Performance Parameters,” on page 1  
Updated Table 2, Available Part Numbers,” on page 1  
Added Figure 6: “Pixel Color Pattern Detail RCCC,” on page 6  
Updated note for Table 5, “Frame Time—Long Integration Time,” on page 10  
Added “Serial Bus Description” on page 11  
Updated “Real-Time Context Switching” on page 16  
Updated Figure 23: “Latency When Changing Integration,” on page 31  
Updated Figure 25: “12- to 10-Bit Companding Chart,” on page 28  
Updated “Changes to Gain Settings” on page 29  
Updated Figure 26: “Latency of Gain Register(s) in Master Mode,” on page 29  
Updated Equation 19 and Equation 20 on page 33  
Updated Figure 31: “Readout of Six Rows in Normal and Row Flip Output Mode,” on  
page 36  
Updated Figure 33: “Readout of 8 Pixels in Normal and Column Bin Output Mode,” on  
page 38  
Updated “Digital Gain” on page 30  
Updated Figure 40: “Two-Wire Serial Bus Timing Parameters,” on page 48  
Updated Table 19, “Two-Wire Serial Bus Characteristics,” on page 48  
Updated Figure 47: “Typical Quantum Efficiency—RGB Bayer,” on page 51  
Updated Figure 48: “Typical Quantum Efficiency—Monochrome,” on page 51  
MT9V024_DSRev. F Pub. 3/15 EN  
60  
©Semiconductor Components Industries, LLC,2008.  
MT9V024: 1/3-Inch Wide-VGA Digital Image Sensor  
Revision History  
Added Figure 48: “RCCC Quantum Efficiency,” on page 55  
Updated Figure 51: “Power-up, Reset, Clock, and Standby Sequence,” on page 54  
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11/10  
Applied updated Aptina template  
Updated revision history  
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/10  
Updated to Aptina template; register tables moved to new document, MT9V024  
Register Reference  
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9/08  
Initial release  
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the  
rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/  
Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its  
products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including  
without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey  
any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.  
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
This literature is subject to all applicable copyright laws and is not for resale in any manner.  
MT9V024_DSRev. F Pub. 3/15 EN  
61  
©Semiconductor Components Industries, LLC,2008 .  

相关型号:

MT9V024IA7XTM-DP

1/3-Inch Wide VGA CMOS Digital Image Sensor
ONSEMI

MT9V024IA7XTM-DP1

CMOS 图像传感器,数字型,全局快门,VGA,1/3"
ONSEMI

MT9V024IA7XTM-DR

1/3-Inch Wide VGA CMOS Digital Image Sensor
ONSEMI

MT9V024IA7XTM-DR1

CMOS 图像传感器,数字型,全局快门,VGA,1/3"
ONSEMI

MT9V024IA7XTM-TP

1/3-Inch Wide VGA CMOS Digital Image Sensor
ONSEMI

MT9V024IA7XTM-TR

1/3-Inch Wide VGA CMOS Digital Image Sensor
ONSEMI

MT9V024IA7XTR-DP

1/3-Inch Wide VGA CMOS Digital Image Sensor
ONSEMI

MT9V024IA7XTR-DP1

CMOS 图像传感器,数字型,全局快门,VGA,1/3"
ONSEMI

MT9V024IA7XTR-DR

1/3-Inch Wide VGA CMOS Digital Image Sensor
ONSEMI

MT9V024IA7XTR-DR1

CMOS 图像传感器,数字型,全局快门,VGA,1/3"
ONSEMI

MT9V024IA7XTR-TP

1/3-Inch Wide VGA CMOS Digital Image Sensor
ONSEMI

MT9V024IA7XTR-TR

1/3-Inch Wide VGA CMOS Digital Image Sensor
ONSEMI