MTP52N06VLG [ONSEMI]

52A, 60V, 0.025ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, LEAD FREE, CASE 221A-09, 3 PIN;
MTP52N06VLG
型号: MTP52N06VLG
厂家: ONSEMI    ONSEMI
描述:

52A, 60V, 0.025ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, LEAD FREE, CASE 221A-09, 3 PIN

局域网 开关 脉冲 晶体管
文件: 总8页 (文件大小:94K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MTP52N06VL  
Preferred Device  
Power MOSFET  
52 Amps, 60 Volts, Logic Level  
N–Channel TO–220  
This Power MOSFET is designed to withstand high energy in the  
avalanche and commutation modes. Designed for low voltage, high  
speed switching applications in power supplies, converters and power  
motor controls, these devices are particularly well suited for bridge  
circuits where diode speed and commutating safe operating areas are  
critical and offer additional safety margin against unexpected voltage  
transients.  
http://onsemi.com  
52 AMPERES  
60 VOLTS  
R
= 25 m  
DS(on)  
Avalanche Energy Specified  
I  
and V Specified at Elevated Temperature  
DSS  
DS(on)  
N–Channel  
D
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
C
Rating  
Drain–to–Source Voltage  
Drain–to–Gate Voltage (R  
Symbol  
Value  
60  
Unit  
Vdc  
Vdc  
V
DSS  
G
= 1.0 M)  
V
DGR  
60  
GS  
Gate–to–Source Voltage  
– Continuous  
S
V
± 15  
± 25  
Vdc  
Vpk  
GS  
– Non–repetitive (t 10 ms)  
V
GSM  
p
Drain Current – Continuous  
Drain Current – Continuous @ 100°C  
Drain Current – Single Pulse (t 10 µs)  
I
52  
41  
182  
Adc  
MARKING DIAGRAM  
& PIN ASSIGNMENT  
D
I
D
I
Apk  
p
DM  
4
4
Drain  
Total Power Dissipation  
Derate above 25°C  
P
188  
1.25  
Watts  
W/°C  
D
Operating and Storage Temperature  
Range  
T , T  
stg  
–55 to  
175  
°C  
J
TO–220AB  
CASE 221A  
STYLE 5  
Single Pulse Drain–to–Source Avalanche  
E
AS  
406  
mJ  
Energy – Starting T = 25°C  
J
MTP52N06VL  
LLYWW  
(V  
= 25 Vdc, V  
= 5 Vdc, Peak  
DD  
GS  
= 52 Apk, L = 0.3 mH, R = 25 )  
I
L
G
1
2
Thermal Resistance – Junction to Case  
Thermal Resistance – Junction to Ambient  
R
θJC  
R
θJA  
0.8  
62.5  
°C/W  
°C  
3
1
3
Gate  
Source  
Maximum Lead Temperature for Soldering  
Purposes, 1/8from Case for 10  
seconds  
T
L
260  
2
Drain  
MTP52N06VL = Device Code  
LL  
Y
= Location Code  
= Year  
WW  
= Work Week  
ORDERING INFORMATION  
Device  
MTP52N06VL  
Package  
Shipping  
50 Units/Rail  
TO–220AB  
Preferred devices are recommended choices for future use  
and best overall value.  
Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
November, 2000 – Rev. 4  
MTP52N06VL/D  
MTP52N06VL  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain–to–Source Breakdown Voltage  
(V = 0 Vdc, I = .25 mAdc)  
Temperature Coefficient (Positive)  
(Cpk 2.0) (Note 3.)  
V
(BR)DSS  
60  
65  
Vdc  
mV/°C  
GS  
D
Zero Gate Voltage Drain Current  
I
µAdc  
DSS  
GSS  
(V  
DS  
(V  
DS  
= 60 Vdc, V  
= 60 Vdc, V  
= 0 Vdc)  
= 0 Vdc, T = 150°C)  
10  
100  
GS  
GS  
J
Gate–Body Leakage Current (V  
= ± 15 Vdc, V  
DS  
= 0 Vdc)  
I
100  
nAdc  
GS  
ON CHARACTERISTICS (Note 1.)  
Gate Threshold Voltage  
(Cpk 2.0) (Note 3.)  
(Cpk 2.0) (Note 3.)  
V
GS(th)  
(V  
= V , I = 250 µAdc)  
1.0  
1.5  
4.5  
2.0  
Vdc  
mV/°C  
DS  
GS  
D
Threshold Temperature Coefficient (Negative)  
Static Drain–to–Source On–Resistance  
R
V
Ohm  
Vdc  
DS(on)  
(V  
GS  
= 5 Vdc, I = 26 Adc)  
0.022  
0.025  
D
Drain–to–Source On–Voltage  
DS(on)  
(V  
GS  
(V  
GS  
= 5 Vdc, I = 52 Adc)  
1.6  
1.4  
D
= 5 Vdc, I = 26 Adc, T = 150°C)  
D
J
Forward Transconductance (V  
= 6.3 Vdc, I = 20 Adc)  
g
FS  
17  
30  
Mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
1900  
550  
2660  
770  
iss  
(V  
DS  
= 25 Vdc, V  
GS  
f = 1.0 MHz)  
= 0 Vdc,  
Output Capacitance  
C
oss  
Transfer Capacitance  
C
170  
340  
rss  
SWITCHING CHARACTERISTICS (Note 2.)  
Turn–On Delay Time  
t
15  
500  
100  
200  
62  
30  
1000  
200  
400  
90  
ns  
d(on)  
(V  
= 30 Vdc, I = 52 Adc,  
D
Rise Time  
DD  
DS  
t
r
V
= 5 Vdc,  
GS  
G
Turn–Off Delay Time  
Fall Time  
t
d(off)  
R
= 9.1 )  
t
f
Gate Charge  
(See Figure 8)  
Q
T
Q
1
Q
2
Q
3
nC  
4.0  
31  
(V  
= 48 Vdc, I = 52 Adc,  
D
V
GS  
= 5 Vdc)  
16  
SOURCE–DRAIN DIODE CHARACTERISTICS  
Forward On–Voltage  
(I = 52 Adc, V  
= 0 Vdc)  
= 0 Vdc,  
V
SD  
Vdc  
ns  
S
GS  
GS  
(I = 52 Adc, V  
1.03  
0.9  
1.5  
S
T = 150 °C)  
J
Reverse Recovery Time  
t
rr  
104  
63  
t
a
(I = 52 Adc, V  
= 0 Vdc,  
S
GS  
dI /dt = 100 A/µs)  
t
b
41  
S
Reverse Recovery Stored  
Charge  
Q
0.28  
µC  
RR  
INTERNAL PACKAGE INDUCTANCE  
Internal Drain Inductance  
(Measured from contact screw on tab to center of die)  
(Measured from the drain lead 0.25from package to center of die)  
L
nH  
nH  
D
3.5  
4.5  
Internal Source Inductance  
(Measured from the source lead 0.25from package to source bond pad)  
L
S
7.5  
1. Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.  
2. Switching characteristics are independent of operating junction temperature.  
3. Reflects typical values.  
Max limit – Typ  
C
=
pk  
3 x SIGMA  
http://onsemi.com  
2
MTP52N06VL  
TYPICAL ELECTRICAL CHARACTERISTICS  
110  
100  
110  
V
= 10 V  
GS  
T = 25°C  
V
DS  
10 V  
6 V  
J
100  
90  
80  
70  
60  
50  
T = -55°C  
J
8 V  
7 V  
5 V  
90  
80  
70  
60  
50  
40  
30  
20  
100°C  
25°C  
4 V  
40  
30  
20  
3 V  
10  
0
10  
0
0
1
2
3
4
5
6
7
8
9
10  
0.5 1.0 1.5  
2
2.5  
, GATE-TO-SOURCE VOLTAGE (VOLTS)  
GS  
3
3.5  
4
4.5  
5
5.5  
6
V
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)  
V
DS  
Figure 1. On–Region Characteristics  
Figure 2. Transfer Characteristics  
.070  
.060  
.050  
.040  
.030  
.020  
.010  
0
.040  
.035  
.030  
T = 25°C  
V
= 5 V  
J
GS  
V
GS  
= 5 V  
10 V  
.025  
.020  
.015  
.010  
T = 100°C  
J
25°C  
-55°C  
.005  
0
0
10  
20 30 40 50 60 70 80 90 100 110  
0
10 20 30 40 50 60 70 80 90 100 110  
I , DRAIN CURRENT (AMPS)  
D
I , DRAIN CURRENT (AMPS)  
D
Figure 3. On–Resistance versus Drain Current  
and Temperature  
Figure 4. On–Resistance versus Drain Current  
and Gate Voltage  
1000  
100  
10  
1.8  
V
I
= 5 V  
GS  
= 26 A  
V
GS  
= 0 V  
1.6  
1.4  
1.2  
1
D
T = 125°C  
J
100°C  
0.8  
0.6  
0.4  
0.2  
0
1
-50 -25  
0
25  
50  
75  
100  
125  
150 175  
0
10  
20  
30  
40  
50  
60  
T , JUNCTION TEMPERATURE (°C)  
J
V , DRAIN-TO-SOURCE VOLTAGE (VOLTS)  
DS  
Figure 5. On–Resistance Variation with  
Temperature  
Figure 6. Drain–To–Source Leakage  
Current versus Voltage  
http://onsemi.com  
3
MTP52N06VL  
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge  
controlled. The lengths of various switching intervals (t)  
are determined by how fast the FET input capacitance can  
be charged by current from the generator.  
The published capacitance data is difficult to use for  
calculating rise and fall because drain–gate capacitance  
varies greatly with applied voltage. Accordingly, gate  
charge data is used. In most cases, a satisfactory estimate of  
The capacitance (C ) is read from the capacitance curve at  
a voltage corresponding to the off–state condition when  
iss  
calculating t  
and is read at a voltage corresponding to the  
on–state when calculating t  
d(on)  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate drive  
current. The voltage is determined by Ldi/dt, but since di/dt  
is a function of drain current, the mathematical solution is  
complex. The MOSFET output capacitance also  
complicates the mathematics. And finally, MOSFETs have  
finite internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance  
is difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate  
resistance (Figure 9) shows how typical switching  
performance is affected by the parasitic circuit elements. If  
the parasitics were not present, the slope of the curves would  
maintain a value of unity regardless of the switching speed.  
The circuit used to obtain the data is constructed to minimize  
common inductance in the drain and gate circuit loops and  
is believed readily achievable with board mounted  
components. Most power electronic loads are inductive; the  
data in the figure is taken with a resistive load, which  
approximates an optimally snubbed inductive load. Power  
MOSFETs may be safely operated into an inductive load;  
however, snubbing reduces switching losses.  
average input current (I  
) can be made from a  
G(AV)  
rudimentary analysis of the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a  
resistive load, V remains virtually constant at a level  
GS  
known as the plateau voltage, V  
. Therefore, rise and fall  
SGP  
times may be approximated by the following:  
t = Q x R /(V  
– V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
V
= the gate drive voltage, which varies from zero to V  
GG  
= the gate drive resistance  
GG  
R
G
and Q and V  
are read from the gate charge curve.  
2
GSP  
During the turn–on and turn–off delay times, gate current is  
not constant. The simplest calculation uses appropriate  
values from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R  
= R  
C
C
In [V /(V  
In (V /V  
iss GG GSP  
– V  
)
)]  
GSP  
d(on)  
d(off)  
G
G
iss  
GG GG  
8000  
7000  
6000  
5000  
V
DS  
= 0 V  
V
GS  
= 0 V  
T = 25°C  
J
C
iss  
C
rss  
4000  
3000  
2000  
1000  
0
C
iss  
C
oss  
C
rss  
10  
5
0
5
10  
15  
20  
25  
V
GS  
V
DS  
GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
http://onsemi.com  
4
MTP52N06VL  
10  
9
30  
27  
24  
21  
18  
15  
12  
9
1000  
QT  
V
I
= 30 V  
DD  
t
t
r
= 52 A  
= 5 V  
D
8
7
6
5
V
V
GS  
GS  
T = 25°C  
f
J
100  
t
d(off)  
Q2  
Q1  
4
3
2
10  
1
t
d(on)  
I
= 52 A  
D
6
T = 25°C  
J
3
0
1
0
Q3  
10  
V
DS  
0
20  
30  
40  
50  
60  
70  
1
10  
R , GATE RESISTANCE (OHMS)  
100  
Q , TOTAL CHARGE (nC)  
T
G
Figure 8. Gate–To–Source and Drain–To–Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN–TO–SOURCE DIODE CHARACTERISTICS  
55  
V
= 0 V  
GS  
T = 25°C  
50  
45  
40  
35  
30  
25  
20  
15  
10  
J
5
0
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95  
1
1.05  
V , SOURCE-TO-DRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain–to–source voltage and  
drain current that a transistor can handle safely when it is  
forward biased. Curves are based upon maximum peak  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is  
to rate in terms of energy, avalanche energy capability is not  
a constant. The energy rating decreases non–linearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
junction temperature and a case temperature (T ) of 25°C.  
C
Peak repetitive pulsed power limits are determined by using  
the thermal response data in conjunction with the procedures  
discussed  
in  
AN569,  
“Transient  
Thermal  
Resistance–General Data and Its Use.”  
Switching between the off–state and the on–state may  
traverse any load line provided neither rated peak current  
Although many E–FETs can withstand the stress of  
drain–to–source avalanche at currents up to rated pulsed  
current (I  
), the energy rating is specified at rated  
DM  
(I  
) nor rated voltage (V  
) is exceeded and the  
continuous current (I ), in accordance with industry  
DM DSS  
D
transition time (t ,t ) do not exceed 10 µs. In addition the total  
power averaged over a complete switching cycle must not  
custom. The energy rating must be derated for temperature  
as shown in the accompanying graph (Figure 12). Maximum  
r f  
exceed (T  
– T )/(R  
).  
energy at currents below rated continuous I can safely be  
assumed to equal the values indicated.  
J(MAX)  
C
θJC  
D
A Power MOSFET designated E–FET can be safely used  
in switching circuits with unclamped inductive loads. For  
http://onsemi.com  
5
MTP52N06VL  
SAFE OPERATING AREA  
1000  
100  
450  
400  
V
= 15 V  
GS  
SINGLE PULSE  
= 25°C  
I
D
= 52 A  
10õs  
T
C
350  
300  
250  
200  
150  
100  
100õs  
1Ăms  
10  
1
10Ăms  
R
LIMIT  
dc  
DS(on)  
THERMAL LIMIT  
PACKAGE LIMIT  
50  
0
0.1  
1
10  
100  
25  
50  
75  
100  
125  
150  
175  
V , DRAIN-TO-SOURCE VOLTAGE (VOLTS)  
DS  
T , STARTING JUNCTION TEMPERATURE (°C)  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1
D = 0.5  
0.2  
0.1  
P
(pk)  
0.1  
0.05  
0.02  
R
(t) = r(t) R  
θJC  
θJC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
t
READ TIME AT t  
1
1
0.01  
t
2
T
- T = P  
C
R
(t)  
J(pk)  
(pk) θJC  
DUTY CYCLE, D = t /t  
1 2  
SINGLE PULSE  
0.01  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
t, TIME (s)  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
a
t
b
TIME  
0.25 I  
t
p
S
I
S
Figure 14. Diode Reverse Recovery Waveform  
http://onsemi.com  
6
MTP52N06VL  
PACKAGE DIMENSIONS  
TO–220 THREE–LEAD  
TO–220AB  
CASE 221A–09  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
K
Q
Z
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
2
3
U
H
G
H
J
K
L
L
R
J
N
Q
R
S
T
V
G
D
U
V
Z
N
0.080  
2.04  
STYLE 5:  
PIN 1. GATE  
2. DRAIN  
3. SOURCE  
4. DRAIN  
http://onsemi.com  
7
MTP52N06VL  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
MTP52N06VL/D  

相关型号:

MTP55N06

TMOS POWER FET 55 AMPERES 60 VOLTS RDS(on) = 18 mohm
MOTOROLA

MTP55N06Z

TMOS POWER FET 55 AMPERES 60 VOLTS RDS(on) = 18 mohm
MOTOROLA

MTP55N10EL

55A, 100V, 0.03ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP5614N6

P-Channel Enhancement Mode MOSFET
CYSTEKEC

MTP5N05

Trans MOSFET N-CH 400V 5A 3-Pin(3+Tab) TO-220
NJSEMI

MTP5N05

Power Field-Effect Transistor, 5A I(D), 50V, 0.6ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP5N06

Trans MOSFET N-CH 400V 5A 3-Pin(3+Tab) TO-220
NJSEMI

MTP5N06

5A, 60V, 0.6ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

MTP5N06E

Trans MOSFET N-CH 400V 5A 3-Pin(3+Tab) TO-220
NJSEMI

MTP5N12

Power Field-Effect Transistor, 5A I(D), 120V, 0.9ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

MTP5N20

POWER FIELD EFFECT TRANSISTOR
MOTOROLA

MTP5N2016

5 A, 200 V, 1 ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA