NB100LVEP17DT [ONSEMI]

2.5V / 3.3V Quad Differential Driver/Receiver; 2.5V / 3.3V四路差分驱动器/接收器
NB100LVEP17DT
型号: NB100LVEP17DT
厂家: ONSEMI    ONSEMI
描述:

2.5V / 3.3V Quad Differential Driver/Receiver
2.5V / 3.3V四路差分驱动器/接收器

驱动器
文件: 总10页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB100LVEP17  
2.5V / 3.3V Quad Differential  
Driver/Receiver  
Description  
The NB100LVEP17 is a 4-bit differential line receiver. The design  
incorporates two stages of gain, internal to the device, making it an  
excellent choice for use in high bandwidth amplifier applications.  
http://onsemi.com  
MARKING  
The V pin, an internally generated voltage supply, is available to  
BB  
this device only. For single-ended input conditions, the unused  
DIAGRAMS*  
differential input is connected to V as a switching reference voltage.  
BB  
V
BB  
may also rebias AC coupled inputs. When used, decouple V  
BB  
and V via a 0.01 F capacitor and limit current sourcing or sinking  
CC  
to 0.5 mA. When not used, V should be left open.  
Inputs of unused gates can be left open and will not affect the  
operation of the rest of the device.  
N100  
VP17  
ALYWG  
G
BB  
Features  
TSSOP20  
DT SUFFIX  
CASE 948E  
Maximum Input Clock Frequency > 2.5 GHz Typical  
Maximum Input Data Rate > 2.5 Gb/s Typical  
250 ps Typical Propagation Delay  
Low Profile QFN Package  
24  
1
N100  
PECL Mode Operating Range: V = 2.375 V to 3.8 V  
CC  
VP17  
ALYWG  
G
24  
1
with V = 0 V  
EE  
NECL Mode Operating Range: V = 0 V  
CC  
24 PIN QFN  
MN SUFFIX  
CASE 485L  
with V = 2.375 V to 3.8 V  
EE  
Q Output Will Default LOW with Inputs Open or at V  
EE  
V Output  
PbFree Packages are Available  
BB  
A
L
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
(Note: Microdot may be in either location)  
*For additional marking information, refer to  
Application Note AND8002/D.  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 8 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
November, 2006 Rev. 7  
NB100LVEP17/D  
NB100LVEP17  
D0  
R1  
D0  
R1  
Q0  
R2  
Q0  
D1  
R1  
Q1  
Q1  
R2  
R2  
D1  
R1  
D2  
R1  
Q2  
Q2  
D2  
R1  
V
V
CC  
EE  
D3  
R1  
Q3  
Q3  
R2  
V
D3  
R1  
BB  
Figure 1. Logic Diagram  
Table 1. PIN DESCRIPTION  
Pin  
Default  
State  
TSSOP  
QFN  
Name  
I/O  
Description  
1,20  
13,18,21,  
22,23  
V
Positive Supply Voltage. All V Pins Must be Externally Connected  
CC  
CC  
to Power Supply to Guarantee Proper Operation.  
11  
10  
V
V
Negative Supply Voltage. All V Pins Must be Externally Con-  
EE  
BB  
EE  
nected to Power Supply to Guarantee Proper Operation.  
10  
9
ECL Reference Voltage Output.  
2,4,6,8  
3,5,7,9  
1,3,5,7  
2,4,6,8  
D[0:3]  
D[0:3]  
ECL Input  
ECL Input  
Low  
High  
Noninverted Differential Inputs [0:3]. Internal 75 kto V  
.
EE  
Inverted Differential Inputs [0:3]. Internal 75 kto V and 37 kto  
EE  
V
.
CC  
19,17,15,13  
18,16,14,12  
N/A  
12,15,17,2  
0
Q[0:3]  
Q[0:3]  
NC  
ECL Output  
Noninverted Differential Outputs [0:3]. Typically Terminated with  
50 to V = V 2 V.  
TT  
CC  
11,14,16,1  
9
ECL Output  
Inverted Differential Outputs [0:3]. Typically Terminated with 50 to  
= V 2 V.  
V
TT  
CC  
24  
No Connect. The NC Pin is Electrically Connected to the Die and  
“MUST BE” Left Open.  
N/A  
EP  
Exposed Pad. (Note 1)  
1. All V and V pins must be externally connected to Power Supply to guarantee proper operation. The thermally conductive expose pad  
CC  
EE  
on the package bottom (see case drawing) must be attached to a heatsinking conduit.  
http://onsemi.com  
2
 
NB100LVEP17  
Exposed Pad  
(EP)  
NC  
V
V
V
CC  
Q0 Q0  
CC  
CC  
24  
23  
22  
21  
20  
19  
V
V
Q0 Q0 Q1 Q1 Q2 Q2 Q3 Q3 V  
EE  
1
18  
CC  
D0  
D0  
D1  
D1  
D2  
CC  
20 19 18 17 16 15 14 13 12  
11  
2
3
4
5
17 Q1  
Q1  
Q2  
16  
15  
14  
13  
NB100LVEP17  
NB100LVEP17  
Q2  
V
1
2
3
4
5
6
7
8
9
10  
6
D2  
CC  
V
D0 D0 D1 D1 D2 D2 D3 D3 V  
BB  
CC  
7
8
9
10  
11  
12  
D3 D3  
V
V
Q3  
Q3  
BB  
EE  
Figure 3. QFN24 Lead Pinout (Top View)  
Figure 2. TSSOP20 Lead Pinout (Top View)  
Table 2. ATTRIBUTES  
Characteristics  
Value  
Internal Input Pulldown Resistor  
Internal Input Pullup Resistor  
(R1)  
(R2)  
75 kꢁ  
37 kꢁ  
ESD Protection  
Human Body Model  
Machine Model  
Charged Device Model  
> 2 kV  
> 150 V  
> 2 kV  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
Pb Pkg  
PbFree Pkg  
TSSOP20  
QFN24  
Level 1  
Level 1  
Level 1  
Level 1  
Flammability Rating  
Transistor Count  
Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
274 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, see Application Note AND8003/D.  
http://onsemi.com  
3
 
NB100LVEP17  
Table 3. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
V
V
Positive Mode Power Supply  
V
V
6
CC  
EE  
I
EE  
CC  
Negative Mode Power Supply  
= 0 V  
6  
V
Positive Mode Input Voltage  
Negative Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V v V  
6
6  
V
V
EE  
CC  
I
CC  
EE  
V w V  
I
I
I
Output Current  
Continuous  
Surge  
50  
100  
mA  
mA  
out  
V
Sink/Source  
BB  
mA  
°C  
$0.5  
40 to +85  
BB  
TA  
Operating Temperature Range  
Storage Temperature Range  
T
65 to +150  
°C  
stg  
Thermal Resistance (JunctiontoAmbient)  
JEDEC 513 (1S Single Layer Test Board)  
0 lfpm  
500 lfpm  
20 TSSOP  
20 TSSOP  
140  
50  
°C/W  
°C/W  
JA  
Thermal Resistance (JunctiontoAmbient)  
0 lfpm  
500 lfpm  
24 QFN  
24 QFN  
37  
32  
°C/W  
°C/W  
JA  
JEDEC 516 (2S2P Multilayer Test Board) with Filled Thermal  
Vias  
Thermal Resistance (JunctiontoCase)  
Standard Board  
20 TSSOP  
24 QFN  
23 to 41  
11  
°C/W  
°C/W  
JC  
T
sol  
Wave Solder  
Pb  
PbFree  
265  
265  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
Table 4. DC CHARACTERISTICS, PECL V = 2.5 V; V = 0 V (Note 2)  
CC  
EE  
40°C  
Typ  
40  
25°C  
Typ  
40  
85°C  
Typ  
40  
Min  
30  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Negative Power Supply Current  
Output HIGH Voltage (Note 3)  
Output LOW Voltage (Note 3)  
Unit  
I
50  
30  
50  
30  
55  
mA  
EE  
V
V
V
V
V
1355 1480 1605 1355 1480 1605 1355 1480 1605 mV  
OH  
OL  
555  
1335  
555  
1.2  
775  
900  
555  
775  
900  
555  
775  
900  
mV  
Input HIGH Voltage (SingleEnded) (Note 4)  
Input LOW Voltage (SingleEnded) (Note 4)  
1620 1335  
1620 1275  
1620 mV  
IH  
875  
2.5  
555  
1.2  
875  
2.5  
555  
1.2  
875  
2.5  
mV  
V
IL  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 5)  
IHCMR  
I
I
Input HIGH Current (@ V  
)
IH  
150  
150  
150  
A  
A  
IH  
IL  
Input LOW Current (@ V )  
D
D
0.5  
150  
0.5  
150  
0.5  
150  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
2. Input and output parameters vary 1:1 with V . V can vary 0.125 V to +1.3 V.  
CC  
EE  
3. All loading with 50 to V = V 2.0 V.  
EE  
CC  
4. Do not use V at V < 3.0 V.  
BB  
CC  
5. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
4
 
NB100LVEP17  
Table 5. DC CHARACTERISTICS, PECL V = 3.3 V; V = 0 V (Note 6)  
CC  
EE  
40°C  
Typ  
40  
25°C  
Typ  
40  
85°C  
Typ  
40  
Min  
30  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Negative Power Supply Current  
Output HIGH Voltage (Note 7)  
Output LOW Voltage (Note 7)  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Unit  
I
50  
30  
50  
30  
55  
mA  
EE  
V
V
V
V
V
V
2155 2280 2405 2155 2280 2405 2155 2280 2405 mV  
1355 1575 1700 1355 1575 1700 1355 1575 1700 mV  
OH  
OL  
2135  
1355  
2420 2135  
1675 1355  
2420 2135  
1675 1355  
2420 mV  
1675 mV  
IH  
IL  
ECL Output Reference Voltage (Note 8)  
1775 1875 1975 1775 1875 1975 1775 1875 1975 mV  
BB  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 9)  
1.2  
3.3  
1.2  
3.3  
1.2  
3.3  
V
IHCMR  
I
I
Input HIGH Current (@ V  
)
IH  
150  
150  
150  
A  
A  
IH  
IL  
Input LOW Current (@ V )  
D
D
0.5  
150  
0.5  
150  
0.5  
150  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
6. Input and output parameters vary 1:1 with V . V can vary + 0.5 V to 0.3 V.  
CC  
EE  
7. All loading with 50 to V 2.0 V.  
CC  
8. Single ended input operation is limited V 3.0 V in PECL mode.  
CC  
9. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 6. DC CHARACTERISTICS, NECL V = 0 V, V = 2.375 V to 3.8 V (Note 10)  
CC  
EE  
40°C  
25°C  
Typ  
40  
85°C  
Typ  
40  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
I
Negative Power Supply Current  
Output HIGH Voltage (Note 11)  
Output LOW Voltage (Note 11)  
30  
40  
50  
30  
50  
30  
55  
EE  
V
1145 1020 895 1145 1020 895 1145 1020 895  
1945 1725 1600 1945 1725 1600 1945 1725 1600  
OH  
OL  
IH  
V
V
V
V
Input HIGH Voltage (SingleEnded) 1165  
880 1165  
1600 1945  
880 1165  
1600 1945  
880  
Input LOW Voltage (SingleEnded)  
1945  
1600  
IL  
ECL Output Reference Voltage  
(Note 12)  
1525 1425 1325 1525 1425 1325 1525 1425 1325  
BB  
V
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 13)  
V
+ 1.2  
0.0  
V
+ 1.2  
0.0  
V + 1.2  
EE  
0.0  
V
IHCMR  
EE  
EE  
I
I
Input HIGH Current (@ V  
)
IH  
150  
150  
150  
A  
A  
IH  
IL  
Input LOW Current (@ V )  
D
D
0.5  
150  
0.5  
150  
0.5  
150  
IL  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
10.Input and output parameters vary 1:1 with V  
.
CC  
11. All loading with 50 to V 2.0 V.  
CC  
12.Single ended input operation is limited V 3.0V in NECL mode.  
EE  
13.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
5
 
NB100LVEP17  
Table 7. AC CHARACTERISTICS V = 0 V; V = 2.375 V to 3.8 V or V = 2.375 V to 3.8 V; V = 0 V (Note 14)  
CC  
EE  
CC  
EE  
40°C  
25°C  
85°C  
Min Typ Max Min Typ Max Min Typ Max  
Symbol  
Characteristic  
Unit  
V
Output Voltage Amplitude  
(See Figures 4, 5)  
f
< 1 GHz 600 700  
= 2 GHz 400 500  
600 700  
325 500  
250 400  
550 700  
300 500  
200 400  
mV  
OUTPP  
in  
in  
f
f
= 2.5 GHz 300 400  
in  
t
t
,
Propagation Delay to Output Differential  
ps  
ps  
PLH  
PHL  
D to Q, Q 200 250  
325  
200 250  
325  
225 300  
350  
t
Pulse Skew (Note 15)  
Within Device Skew (Note 17)  
DevicetoDevice Skew (Note 17)  
5
5
25  
25  
25  
100  
5
5
25  
25  
25  
100  
5
5
25  
25  
25  
100  
Skew  
t
RMS Random Clock Jitter (Note 18)  
Peakto Peak Data Dependent Jitter  
(Note 19)  
f
= 2.5 GHz  
= 1.5 Gb/s  
= 2.5 Gb/s  
0.5  
5
5
1
15  
15  
0.5  
5
5
1
15  
15  
0.5  
5
5
1
15  
15  
ps  
JITTER  
in  
f
f
in  
in  
V
Input Voltage Swing (Differential Configuration)  
(Note 20)  
150 800 1200 150 800 1200 150 800 1200 mV  
INPP  
t
t
Output Rise/Fall Times @ 50 MHz  
(20% 80%)  
Q, Q  
ps  
r
f
125 175  
225  
140 190  
240  
150 200  
250  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
14.Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to V 2.0 V. Input edge rates 150 ps (20% 80%).  
CC  
15.Pulse Skew = |t  
t  
|
PLH  
PHL  
16.Worst case difference between Q0 and Q1 outputs.  
17.Skew is measured between outputs under identical transitions.  
18.Additive RMS jitter with 50% Duty Cycle Clock Signal at 2.5 GHz.  
31  
19.PeaktoPeak jitter with input NRZ data at PRBS 2 1 at 2.5 Gb/s with all inputs active.  
20.Input voltage swing is a singleended measurement operating in differential mode, with minimum propagation change of 50 ps.  
http://onsemi.com  
6
 
NB100LVEP17  
850  
750  
650  
10  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
Q AMP (mV)  
550  
450  
350  
250  
RMS JITTER (ps)  
1.5  
1.0  
0
0.5  
1.0  
2.0  
2.5  
INPUT FREQUENCY (GHz)  
Figure 4. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.  
Input Frequency (fin) at VCC = 2.5 V, Ambient Temperature  
850  
750  
650  
10  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
Q AMP (mV)  
550  
450  
350  
250  
RMS JITTER (ps)  
1.5  
1.0  
0
0.5  
1.0  
2.0  
2.5  
INPUT FREQUENCY (GHz)  
Figure 5. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.  
Input Frequency (fin) at VCC = 3.3 V, Ambient Temperature  
D
V
V
= V (D) V (D)  
IH IL  
INPP  
D
Q
= V (Q) V (Q)  
OUTPP  
OH  
OL  
Q
t
PHL  
t
PLH  
Figure 6. AC Reference Measurement  
http://onsemi.com  
7
NB100LVEP17  
Z = 50 ꢁ  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 ꢁ  
o
50 ꢁ  
50 ꢁ  
V
TT  
V
= V 2.0 V  
TT  
CC  
Figure 7. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D Termination of ECL Logic Devices.)  
ORDERING INFORMATION  
Device  
Package  
TSSOP20*  
TSSOP20*  
TSSOP20*  
TSSOP20*  
QFN24  
Shipping†  
75 Units / Rail  
75 Units / Rail  
2500 Tape & Reel  
2500 Tape & Reel  
92 Units / Rail  
92 Units / Rail  
NB100LVEP17DT  
NB100LVEP17DTG  
NB100LVEP17DTR2  
NB100LVEP17DTR2G  
NB100LVEP17MN  
NB100LVEP17MNG  
QFN24  
(PbFree)  
NB100LVEP17MNR2  
NB100LVEP17MNR2G  
QFN24  
3000 Tape & Reel  
3000 Tape & Reel  
QFN24  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specification Brochure, BRD8011/D.  
*This package is inherently PbFree.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1672/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
8
NB100LVEP17  
PACKAGE DIMENSIONS  
TSSOP20  
CASE 948E02  
ISSUE C  
NOTES:  
20X K REF  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
K
K1  
M
S
S
V
0.10 (0.004)  
T U  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
0.15 (0.006) T U  
J J1  
20  
11  
2X L/2  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
B
SECTION NN  
L
U−  
PIN 1  
IDENT  
0.25 (0.010)  
N
1
10  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
M
S
0.15 (0.006) T U  
A
V−  
N
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
6.60  
4.50  
1.20  
0.15  
0.75  
MIN  
MAX  
0.260  
0.177  
F
A
B
6.40  
4.30  
−−−  
0.252  
0.169  
DETAIL E  
C
−−− 0.047  
0.006  
0.030  
D
0.05  
0.50  
0.002  
0.020  
F
G
H
0.65 BSC  
0.026 BSC  
W−  
0.27  
0.09  
0.09  
0.19  
0.19  
0.37  
0.20  
0.16  
0.30  
0.25  
0.011  
0.004  
0.004  
0.007  
0.007  
0.015  
0.008  
0.006  
0.012  
0.010  
C
J
J1  
K
G
D
H
K1  
L
DETAIL E  
6.40 BSC  
0.252 BSC  
0
0.100 (0.004)  
TSEATING  
M
0
8
8
_
_
_
_
PLANE  
SOLDERING FOOTPRINT*  
7.06  
1
0.65  
PITCH  
01.36X6  
16X  
1.26  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
9
NB100LVEP17  
PACKAGE DIMENSIONS  
QFN 24  
MN SUFFIX  
24 PIN QFN, 4x4  
CASE 485L01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM  
FROM TERMINAL.  
D
A
B
E
PIN 1  
IDENTIFICATION  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
0.80  
2X  
A
A1  
A2  
A3  
b
0.80  
0.00  
0.60  
0.15  
C
0.20 REF  
2X  
0.15  
C
0.23  
0.28  
D
4.00 BSC  
A2  
D2  
E
2.70  
2.90  
0.10  
C
4.00 BSC  
E2  
e
2.70  
2.90  
A
0.50 BSC  
0.08  
C
L
0.35  
0.45  
A3  
SEATING  
PLANE  
REF  
A1  
C
D2  
e
L
7
12  
6
1
13  
E2  
24X  
b
18  
24  
19  
e
0.10 C A B  
0.05 C  
ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB100LVEP17/D  

相关型号:

NB100LVEP17DTG

2.5V / 3.3V Quad Differential Driver/Receiver
ONSEMI

NB100LVEP17DTR2

2.5V / 3.3V Quad Differential Driver/Receiver
ONSEMI

NB100LVEP17DTR2G

2.5V / 3.3V Quad Differential Driver/Receiver
ONSEMI

NB100LVEP17MN

2.5V / 3.3V Quad Differential Driver/Receiver
ONSEMI

NB100LVEP17MNG

2.5V / 3.3V Quad Differential Driver/Receiver
ONSEMI

NB100LVEP17MNR2

2.5V / 3.3V Quad Differential Driver/Receiver
ONSEMI

NB100LVEP17MNR2G

2.5V / 3.3V Quad Differential Driver/Receiver
ONSEMI

NB100LVEP221

2.5V/3.3V 1:20 Differential HSTL/ECL/PECL Clock Driver
ONSEMI

NB100LVEP221/D

2.5V/3.3V 1:20 Differential HSTL/ECL/PECL Clock Driver
ONSEMI

NB100LVEP221D

2.5V/3.3V 1:20 Differential HSTL/ECL/PECL Clock Driver
ONSEMI

NB100LVEP221FA

2.5V/3.3V 1:20 Differential HSTL/ECL/PECL Clock Driver
ONSEMI

NB100LVEP221FAG

2.5V/3.3V 1:20 Differential HSTL/ECL/PECL Clock Driver
ONSEMI