NB100LVEP221_06 [ONSEMI]

2.5V/3.3V 1:20 Differential HSTL/ECL/PECL Clock Driver; 2.5V / 3.3V 1:20差分HSTL / ECL / PECL时钟驱动器
NB100LVEP221_06
型号: NB100LVEP221_06
厂家: ONSEMI    ONSEMI
描述:

2.5V/3.3V 1:20 Differential HSTL/ECL/PECL Clock Driver
2.5V / 3.3V 1:20差分HSTL / ECL / PECL时钟驱动器

时钟驱动器
文件: 总11页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB100LVEP221  
2.5V/3.3Vꢀ1:20 Differential  
HSTL/ECL/PECL Clock Driver  
Description  
The NB100LVEP221 is a low skew 1to20 differential clock  
driver, designed with clock distribution in mind, accepting two clock  
sources into an input multiplexer. The two clock inputs are differential  
ECL/PECL; CLK1/CLK1 can also receive HSTL signal levels. The  
LVPECL input signals can be either differential configuration or  
http://onsemi.com  
MARKING  
DIAGRAM*  
singleended (if the V output is used).  
BB  
The LVEP221 specifically guarantees low outputtooutput skew.  
Optimal design, layout, and processing minimize skew within a device  
and from device to device.  
To ensure tightest skew, both sides of differential outputs should be  
terminated identically into 50 W even if only one output is being used.  
If an output pair is unused, both outputs may be left open  
(unterminated) without affecting skew.  
NB100  
LVEP221  
AWLYYWWG  
LQFP52  
FA SUFFIX  
CASE 848H  
52  
1
The NB100LVEP221, as with most other ECL devices, can be  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
operated from a positive V supply in LVPECL mode. This allows the  
CC  
WL  
YY  
WW  
G
LVEP221 to be used for high performance clock distribution in +3.3 V or  
+2.5 V systems. In a PECL environment, series or Thevenin line  
terminations are typically used as they require no additional power  
supplies. For more information on PECL terminations, designers should  
refer to Application Note AND8020/D.  
*For additional marking information, refer to  
Application Note AND8002/D.  
The V pin, an internally generated voltage supply, is available to this  
BB  
device only. For singleended LVPECL input conditions, the unused  
differential input is connected to V as a switching reference voltage.  
BB  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
V
V
may also rebias AC coupled inputs. When used, decouple V and  
via a 0.01 mF capacitor and limit current sourcing or sinking to  
BB  
BB  
CC  
0.5 mA. When not used, V should be left open.  
BB  
Singleended CLK input operation is limited to a V 3.0 V in  
CC  
LVPECL mode, or V 3.0 V in NECL mode.  
EE  
Features  
15 ps Typical OutputtoOutput Skew  
40 ps Typical DevicetoDevice Skew  
Jitter Less than 2 ps RMS  
Maximum Frequency > 1.0 GHz Typical  
Thermally Enhanced 52Lead LQFP  
V Output  
BB  
540 ps Typical Propagation Delay  
LVPECL and HSTL Mode Operating Range:  
V
CC  
= 2.375 V to 3.8 V with V = 0 V  
EE  
NECL Mode Operating Range:  
= 0 V with V = 2.375 V to 3.8 V  
V
CC  
EE  
Q Output will Default Low with Inputs Open or at V  
Pin Compatible with Motorola MC100EP221  
PbFree Packages are Available*  
EE  
*For additional information on our PbFree strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
November, 2006 Rev. 7  
NB100LVEP221/D  
NB100LVEP221  
39 38 37 36 35 34 33 32 31 30 29 28 27  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
V
Q12  
Q12  
Q13  
Q13  
Q14  
Q14  
Q15  
CC0  
Q5  
Q5  
Q4  
Q4  
Q3  
Q3  
Q2  
Q2  
Q1  
Q1  
Q0  
Q0  
NB100LVEP221  
Q15  
Q16  
Q16  
Q17  
Q17  
V
CC0  
1
2
3
4
5
6
7
8
9
10 11 12 13  
All V , V  
, and V pins must be externally connected to appropriate Power Supply to guarantee proper operation. The thermally  
CCO EE  
CC  
conductive exposed pad on package bottom (see package case drawing) must be attached to a heatsinking conduit, capable of transfer-  
ring 1.2 Watts. This exposed pad is electrically connected to V internally.  
EE  
Figure 1. 52Lead LQFP Pinout (Top View)  
Table 1. PIN DESCRIPTION  
PIN  
FUNCTION  
CLK0*, CLK0**  
CLK1*, CLK1**  
ECL/PECL Differential Inputs  
ECL/PECL or HSTL Differential Inputs  
ECL/PECL Differential Outputs  
ECL/PECL Active Clock Select Input  
Reference Voltage Output  
Positive Supply  
CLK0  
CLK0  
CLK1  
CLK1  
0
1
Q0:19, Q0:19  
CLK_SEL*  
20  
20  
Q0 Q19  
Q0 Q19  
V
BB  
V
V
*
/V  
CC CCO  
EE***  
Negative Supply  
V
V
BB  
Pins will default LOW when left open.  
CLK_SEL  
** Pins will default HIGH when left open.  
***The thermally conductive exposed pad on the bottom of the  
package is electrically connected to V internally.  
EE  
CC  
Table 2. FUNCTION TABLE  
V
EE  
CLK_SEL  
Active Input  
L
H
CLK0, CLK0  
CLK1, CLK1  
Figure 2. Logic Diagram  
http://onsemi.com  
2
NB100LVEP221  
Table 3. ATTRIBUTES  
Characteristics  
Value  
75 kW  
Internal Input Pulldown Resistor  
Internal Input Pullup Resistor  
ESD Protection  
37.5 kW  
Human Body Model  
Machine Model  
> 2 kV  
> 200 V  
> 2 kV  
Charged Device Model  
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)  
Pb Pkg  
Level 2  
PbFree Pkg  
Level 3  
LQFP52  
Flammability Rating  
Transistor Count  
Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
533 Devices  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. For additional information, refer to Application Note AND8003/D.  
Table 4. MAXIMUM RATINGS  
Symbol  
Parameter  
PECL Mode Power Supply  
NECL Mode Power Supply  
Condition 1  
= 0 V  
Condition 2  
Rating  
Unit  
V
V
V
V
6
CC  
EE  
I
EE  
CC  
V
V
= 0 V  
6  
V
PECL Mode Input Voltage  
NECL Mode Input Voltage  
V
V
= 0 V  
= 0 V  
V V  
6
6  
V
V
EE  
CC  
I
CC  
V V  
I
EE  
I
Output Current  
Continuous  
Surge  
50  
100  
mA  
mA  
out  
I
V
Sink/Source  
BB  
± 0.5  
mA  
°C  
BB  
T
Operating Temperature Range  
Storage Temperature Range  
40 to +85  
65 to +150  
A
T
°C  
stg  
q
Thermal Resistance (JunctiontoAmbient)  
(See Application Information)  
0 lfpm  
500 lfpm  
52 LQFP  
52 LQFP  
35.6  
30  
°C/W  
°C/W  
JA  
q
Thermal Resistance (JunctiontoCase)  
(See Application Information)  
0 lfpm  
500 lfpm  
52 LQFP  
52 LQFP  
3.2  
6.4  
°C/W  
°C/W  
JC  
T
sol  
Wave Solder  
Pb  
PbFree  
265  
265  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
3
 
NB100LVEP221  
Table 5. LVPECL DC CHARACTERISTICS V = 2.5 V; V = 0 V (Note 2)  
CC  
EE  
40°C  
25°C  
Typ  
130  
85°C  
Typ  
145  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
I
100  
125  
150  
104  
156  
116  
174  
EE  
V
V
V
V
V
Output HIGH Voltage (Note 3)  
Output LOW Voltage (Note 3)  
1355 1480 1605 1355 1480 1605 1355 1480 1605  
OH  
OL  
555  
1335  
555  
680  
900  
555  
680  
900  
555  
680  
900  
1620  
900  
Input HIGH Voltage (SingleEnded) (Note 4)  
Input LOW Voltage (SingleEnded) (Note 4)  
1620 1335  
1620 1275  
IH  
900  
555  
900  
555  
IL  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 5)  
CLK0/CLK0  
IHCMR  
1.2  
0.3  
2.5  
1.6  
1.2  
0.3  
2.5  
1.6  
1.2  
0.3  
2.5  
1.6  
V
V
CLK1/CLK1  
I
I
Input HIGH Current  
150  
150  
150  
mA  
mA  
IH  
IL  
Input LOW Current  
CLK  
CLK  
0.5  
150  
0.5  
150  
0.5  
150  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification  
limit values are applied individually under normal operating conditions and not valid simultaneously.  
2. Input and output parameters vary 1:1 with V . V can vary + 0.125 V to 1.3 V.  
CC  
EE  
3. All outputs loaded with 50 W to V 2.0 V.  
CC  
4. Do not use V at V < 3.0 V.  
BB  
CC  
5. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differen-  
IHCMR  
EE IHCMR  
CC  
IHCMR  
tial input signal.  
Table 6. LVPECL DC CHARACTERISTICS V = 3.3 V; V = 0 V (Note 6)  
CC  
EE  
40°C  
25°C  
Typ  
130  
85°C  
Typ  
145  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
mV  
mV  
mV  
mV  
I
100  
125  
150  
104  
156  
116  
174  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 7)  
Output LOW Voltage (Note 7)  
2155 2280 2405 2155 2280 2405 2155 2280 2405  
1355 1480 1700 1355 1480 1700 1355 1480 1700  
OH  
OL  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Output Reference Voltage (Note 8)  
2135  
1355  
2420 2135  
1700 1355  
2420 2135  
1700 1355  
2420  
1700  
IH  
IL  
1775 1875 1975 1775 1875 1975 1775 1875 1975  
BB  
Input HIGH Voltage Common Mode Range  
(Differential Configuration) (Note 9)  
CLK0/CLK0  
IHCMR  
1.2  
0.3  
3.3  
1.6  
1.2  
0.3  
3.3  
1.6  
1.2  
0.3  
3.3  
1.6  
V
V
CLK1/CLK1  
I
I
Input HIGH Current  
150  
150  
150  
mA  
mA  
IH  
IL  
Input LOW Current  
CLK  
CLK  
0.5  
150  
0.5  
150  
0.5  
150  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
6. Input and output parameters vary 1:1 with V . V can vary + 0.925 V to 0.5 V.  
CC  
EE  
7. All outputs loaded with 50 W to V 2.0 V.  
CC  
8. Singleended input operation is limited V 3.0 V in LVPECL mode.  
CC  
9. V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
http://onsemi.com  
4
 
NB100LVEP221  
Table 7. LVNECL DC CHARACTERISTICS V = 0 V, V = 2.375 V to 3.8 V (Note 10)  
CC  
EE  
40°C  
25°C  
Typ  
130  
85°C  
Typ  
145  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristic  
Power Supply Current  
Unit  
mA  
mV  
I
100  
125  
150  
104  
156  
116  
174  
EE  
V
V
V
V
V
V
Output HIGH Voltage (Note 11)  
Output LOW Voltage (Note 11)  
1145 1020 895 1145 1020 895 1145 1020 895  
OH  
OL  
1945 1820 1600 1945 1820 1600 1945 1820 1600 mV  
Input HIGH Voltage (SingleEnded)  
Input LOW Voltage (SingleEnded)  
Output Reference Voltage (Note 12)  
1165  
1945  
880 1165  
1600 1945  
880 1165  
1600 1945  
880  
mV  
IH  
1600 mV  
IL  
1525 1425 1325 1525 1425 1325 1525 1425 1325 mV  
BB  
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 13)  
IHCMR  
V
V
+ 1.2  
+ 0.3  
0.0  
V
V
+ 1.2  
+ 0.3  
0.0  
V
V
+ 1.2  
+ 0.3  
0.0  
0.9  
V
V
EE  
EE  
EE  
EE  
EE  
EE  
CLK0/CLK0  
CLK1/CLK1  
0.9  
0.9  
I
I
Input HIGH Current  
150  
150  
150  
mA  
mA  
IH  
IL  
Input LOW Current  
CLK  
0.5  
0.5  
150  
0.5  
150  
CLK 150  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
10.Input and output parameters vary 1:1 with V  
.
CC  
11. All outputs loaded with 50 W to V 2.0 V.  
CC  
12.Singleended input operation is limited V 3.0V in NECL mode.  
EE  
13.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
IHCMR  
EE IHCMR  
CC  
IHCMR  
input signal.  
Table 8. HSTL DC CHARACTERISTICS V = 3.3 V; V = 0 V  
CC  
EE  
0°C  
25°C  
85°C  
Min  
CLK1/CLK1 V +100  
Typ  
Max  
1600  
Min  
Typ  
Max  
Min  
Typ  
Max  
Symbol  
Characteristic  
Unit  
V
V
V
Input HIGH Voltage  
IH  
IL  
X
V +100  
x
1600  
V +100  
x
1600  
mV  
x
Input LOW Voltage  
CLK1/CLK1  
300  
V 100  
x
300  
V 100  
x
300  
V 100  
x
mV  
mV  
Differential Configuration Cross  
Point Voltage  
680  
900  
680  
900  
680  
900  
I
I
Input HIGH Current  
150  
150  
150  
150  
150  
150  
mA  
mA  
IH  
IL  
Input LOW Current  
CLK1  
CLK1  
150  
250  
150  
250  
150  
250  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
http://onsemi.com  
5
 
NB100LVEP221  
Table 9. AC CHARACTERISTICS V = 0 V; V = 2.375 to 3.8 V or V = 2.375 to 3.8 V; V = 0 V (Note 14)  
CC  
EE  
CC  
EE  
40°C  
25°C  
85°C  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Symbol  
Characteristic  
Unit  
V
Differential Output Voltage  
(Figure 3)  
Opp  
f
< 50 MHz 550  
< 0.8 GHz 550  
< 1.0 GHz 500  
700  
700  
700  
600  
550  
500  
700  
700  
700  
600  
500  
400  
700  
700  
600  
mV  
mV  
mV  
out  
f
out  
out  
f
t
/t  
Propagation Delay (Differential Configuration)  
PLH PHL  
CLK0Qx  
CLK1Qx  
540  
590  
600  
640  
540  
590  
660  
710  
540  
590  
750  
800  
ps  
ps  
t
t
WithinDevice Skew (Note 15)  
15  
40  
50  
15  
40  
50  
15  
40  
50  
ps  
ps  
skew  
DevicetoDevice Skew (Note 16)  
200  
200  
200  
Random Clock Jitter (RMS) (Figure 3)  
Input Swing (Differential Configuration)  
1
2
1
2
1
2
ps  
JITTER  
V
PP  
(Note 17) (Figure 4)  
CLK0 400  
CLK1 HSTL 300  
800 1200 400  
800 1000 300  
800 1200 400  
800 1000 300  
800 1200 mV  
800 1000 mV  
DCO  
t /t  
Output Duty Cycle  
49.5  
100  
50  
50.5 49.5  
300 100  
50  
50.5 49.5  
300 150  
50  
50.5  
350  
%
Output Rise/Fall Time (20%80%)  
200  
200  
250  
ps  
r
f
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
14.Measured with 750 mV source (LVPECL) or 1 V (HSTL) source, 50% duty cycle clock source. All outputs loaded with 50 W to V 2 V.  
CC  
15.Skew is measured between outputs under identical transitions and conditions on any one device.  
16.DevicetoDevice skew for identical transitions, outputs and V levels.  
CC  
17.V is the differential configuration input voltage swing required to maintain AC characteristics.  
PP  
http://onsemi.com  
6
 
NB100LVEP221  
900  
800  
700  
600  
500  
400  
300  
200  
10  
9
8
7
6
5
4
3
2
1
0
0.1  
0.2  
0.4  
0.6  
0.8  
1.0  
f
, INPUT FREQUENCY (GHz)  
IN  
Figure 3. Output Voltage (VOPP)/Jitter versus Input Frequency (VCC VEE = 3.3 V @ 255C)  
V
V
(LVPECL)  
V
V
V
(HSTL)  
CCO  
CC  
(DIFF)  
IH  
X
(DIFF)  
IH  
V
PP  
V
V
IHCMR  
PP  
V (DIFF)  
IL  
V (DIFF)  
IL  
V
V
EE  
EE  
Figure 4. LVPECL Differential Input Levels  
Figure 5. HSTL Differential Input Levels  
Z = 50 W  
o
Q
D
Receiver  
Device  
Driver  
Device  
Q
Z = 50 W  
o
D
50 W  
50 W  
V
TT  
V
= V 2.0 V  
TT  
CC  
Figure 6. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D Termination of ECL Logic Devices.)  
http://onsemi.com  
7
NB100LVEP221  
APPLICATIONS INFORMATION  
Using the thermally enhanced package of the  
NB100LVEP221  
supply enough solder paste to fill those vias and not starve  
the solder joints. The attachment process for the exposed pad  
package is equivalent to standard surface mount packages.  
Figure 8, “Recommended solder mask openings”, shows a  
recommended solder mask opening with respect to a 4 X 4  
thermal via array. Because a large solder mask opening may  
result in a poor rework release, the opening should be  
subdivided as shown in Figure 8. For the nominal package  
standoff of 0.1 mm, a stencil thickness of 5 to 8 mils should  
be considered.  
The NB100LVEP221 uses a thermally enhanced 52lead  
LQFP package. The package is molded so that a portion of  
the leadframe is exposed at the surface of the package  
bottom side. This exposed metal pad will provide the low  
thermal impedance that supports the power consumption of  
the NB100LVEP221 highspeed bipolar integrated circuit  
and will ease the power management task for the system  
design. In multilayer board designs, a thermal land pattern  
on the printed circuit board and thermal vias are  
recommended to maximize both the removal of heat from  
the package and electrical performance of the  
NB100LVEP221. The size of the land pattern can be larger,  
smaller, or even take on a different shape than the exposed  
pad on the package. However, the solderable area should be  
at least the same size and shape as the exposed pad on the  
package. Direct soldering of the exposed pad to the thermal  
land will provide an efficient thermal conduit. The thermal  
vias will connect the exposed pad of the package to internal  
copper planes of the board. The number of vias, spacing, via  
diameters and land pattern design depend on the application  
and the amount of heat to be removed from the package.  
Maximum thermal and electrical performance is achieved  
when an array of vias is incorporated in the land pattern.  
The recommended thermal land design for  
NB100LVEP221 applications on multilayer boards  
comprises a 4 X 4 thermal via array using a 1.2 mm pitch as  
shown in Figure 7 providing an efficient heat removal path.  
All Units mm  
0.2  
1.0  
1.0  
4.6  
0.2  
4.6  
Thermal Via Array (4 X 4)  
1.2 mm Pitch  
Exposed Pad  
Land Pattern  
0.3 mm Diameter  
Figure 8. Recommended Solder Mask Openings  
All Units mm  
Proper thermal management is critical for reliable system  
operation. This is especially true for highfanout and high  
output drive capability products.  
For thermal system analysis and junction temperature  
calculation, the thermal resistance parameters of the  
package are provided:  
4.6  
Table 10. Thermal Resistance *  
lfpm  
0
qJA 5C/W  
35.6  
qJC 5C/W  
3.2  
100  
500  
32.8  
4.9  
4.6  
30.0  
6.4  
* Junction to ambient and Junction to board, fourconductor  
layer test board (2S2P) per JESD 518  
Thermal Via Array (4 X 4)  
1.2 mm Pitch  
0.3 mm Diameter  
Exposed Pad  
Land Pattern  
These recommendations are to be used as a guideline,  
only. It is therefore recommended that users employ  
sufficient thermal modeling analysis to assist in applying the  
general recommendations to their particular application to  
assure adequate thermal performance. The exposed pad of  
the NB100LVEP221 package is electrically shorted to the  
Figure 7. Recommended Thermal Land Pattern  
The via diameter should be approximately 0.3 mm with  
1 oz. copper via barrel plating. Solder wicking inside the via  
may result in voiding during the solder process and must be  
avoided. If the copper plating does not plug the vias, stencil  
print solder paste onto the printed circuit pad. This will  
substrate of the integrated circuit and V . The thermal land  
EE  
should be electrically connected to V  
.
EE  
http://onsemi.com  
8
 
NB100LVEP221  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB100LVEP221FA  
NB100LVEP221FAG  
LQFP52  
160 Units / Tray  
160 Units / Tray  
LQFP52  
(PbFree)  
NB100LVEP221FAR2  
NB100LVEP221FARG  
LQFP52  
1500 / Tape & Reel  
1500 / Tape & Reel  
LQFP52  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Resource Reference of Application Notes  
AN1405/D  
AN1406/D  
AN1503/D  
AN1504/D  
AN1568/D  
AN1672/D  
AND8001/D  
AND8002/D  
AND8020/D  
AND8066/D  
AND8090/D  
ECL Clock Distribution Techniques  
Designing with PECL (ECL at +5.0 V)  
ECLinPSt I/O SPiCE Modeling Kit  
Metastability and the ECLinPS Family  
Interfacing Between LVDS and ECL  
The ECL Translator Guide  
Odd Number Counters Design  
Marking and Date Codes  
Termination of ECL Logic Devices  
Interfacing with ECLinPS  
AC Characteristics of ECL Devices  
http://onsemi.com  
9
NB100LVEP221  
PACKAGE DIMENSIONS  
LQFP 52 LEAD EXPOSED PAD PACKAGE  
CASE 848H01  
ISSUE A  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MM.  
3. DATUM PLANE ꢀE" IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING PLANE.  
4. DATUM ꢀX", ꢀY" AND ꢀZ" TO BE DETERMINED AT  
DATUM PLANE DATUM ꢀE".  
4 PL  
M
0.20 (0.008) T X−Y  
Z
M/2  
Z−  
AJ AJ  
52  
40  
5. DIMENSIONS M AND L TO BE DETERMINED AT  
SEATING PLANE DATUM ꢀT".  
1
39  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLAND ꢀE".  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL NOT CAUSE THE LEAD  
WIDTH TO EXCEED THE MAXIMUM D DIMENSION  
BY MORE THAN 0.08 (0.003). DAMBAR CANNOT  
BE LOCATED ON THE LOWER RADIUS OR THE  
FOOT. MINIMUM SPACE BETWEEN PROTRUSION  
AND ADJACENT LEAD OR PROTRUSION 0.07  
(0.003).  
BASE  
PLATING  
METAL  
AA  
X−  
Y−  
L
B
J
AB  
B/2  
D
L/2  
REF  
13  
27  
M
0.08 (0.003)  
Y
T−U  
Z
MILLIMETERS  
DIM MIN MAX  
10.00 BSC  
10.00 BSC  
INCHES  
MIN MAX  
26  
14  
DETAIL AJAJ  
A
B
0.394 BSC  
0.394 BSC  
A/2  
C
1.30  
0.22  
0.45  
1.50  
0.40  
0.75  
0.051  
0.009  
0.018  
0.059  
0.016  
0.030  
0.20 (0.008) E X−Y  
Z
D
A
F
G
0.65 BSC  
1.00 REF  
0.026 BSC  
0.039 BSC  
DETAIL AH  
H
E−  
J
0.09  
0.05  
0.20  
0.20  
0.004  
0.002  
0.008  
0.008  
K
L
12.00 BSC  
12.00 BSC  
0.20 REF  
0.472 BSC  
0.472 BSC  
0.008 REF  
T−  
SEATING  
PLANE  
AG  
AG  
M
N
G 48 PL  
0.10 (0.004) T  
P
0
0
−−−  
12 REF  
12 REF  
0.20  
0.07  
0.08  
4.58  
4.58  
7
−−−  
1.70  
0
0
7
−−−  
_
_
_
_
R
_
_
S
−−− 0.067  
12 REF  
12 REF  
D 52 PL  
V
_
_
V
M
W
AA  
AB  
AC  
AD  
AE  
0.08 (0.003)  
T
X−Y  
Z
_
_
R
0.35  
0.16  
0.20  
4.78  
4.78  
0.008  
0.014  
0.006  
0.008  
0.188  
0.188  
S
0.05 (0.002)  
0.003  
0.003  
0.180  
0.180  
AC  
AD  
14  
26  
C
EXPOSED PAD  
13  
S
27  
W
N
P
0.25  
K
GAGE  
PLANE  
F
H
AE  
DETAIL AH  
1
39  
52  
40  
VIEW AGAG  
http://onsemi.com  
10  
NB100LVEP221  
ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB100LVEP221/D  

相关型号:

NB100LVEP221_15

Differential HSTL/ECL/PECL Clock Driver
ONSEMI

NB100LVEP222

2.5 V/3.3 V 1:15 Differential ECL/PECL ±1/±2 Clock Driver
ONSEMI

NB100LVEP222/D

2.5V/3.3V 1:15 Differential ECL/PECL w/1 and w/2 Clock Driver
ETC

NB100LVEP222FA

2.5 V/3.3 V 1:15 Differential ECL/PECL ±1/±2 Clock Driver
ONSEMI

NB100LVEP222FAG

2.5 V/3.3 V 1:15 Differential ECL/PECL ±1/±2 Clock Driver
ONSEMI

NB100LVEP222FAR2

2.5 V/3.3 V 1:15 Differential ECL/PECL ±1/±2 Clock Driver
ONSEMI

NB100LVEP222FARG

2.5 V/3.3 V 1:15 Differential ECL/PECL ±1/±2 Clock Driver
ONSEMI

NB100LVEP222MNG

暂无描述
ONSEMI

NB100LVEP222MNR2G

Differential ECL/PECL Clock Driver
ONSEMI

NB100LVEP222MNRG

Clock / Data Fanout Buffer, 2:1:15 Differential, &divide;1 / &divide;2, ECL / PECL, 2.5 V / 3.3 V, 8X8MM 0.5MM PITCH, 2000-REEL
ONSEMI

NB100LVEP222_15

Differential ECL/PECL Clock Driver
ONSEMI

NB100LVEP224

2.5V/3.3V 1:24 Differential ECL/PECL Clock Driver with Clock Select and Output Enable
ONSEMI