NB3N1900K [ONSEMI]

Differential 1:19 HCSL Clock ZDB/Fanout Buffer for PCIe;
NB3N1900K
型号: NB3N1900K
厂家: ONSEMI    ONSEMI
描述:

Differential 1:19 HCSL Clock ZDB/Fanout Buffer for PCIe

PC
文件: 总21页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB3N1900K  
3.3V 100/133 MHz  
Differential 1:19 HCSL  
Clock ZDB/Fanout Buffer for  
PCIe[  
www.onsemi.com  
MARKING  
Description  
The NB3N1900K differential clock buffers are designed to work in  
conjunction with a PCIe compliant source clock synthesizer to provide  
point−to−point clocks to multiple agents. The device is capable of  
DIAGRAM*  
1
®
distributing the reference clocks for Intel QuickPath Interconnect  
1 72  
NB3N  
1900K  
(Intel QPI), PCIe Gen1, Gen2, Gen3. The NB3N1900K internal PLL is  
optimized to support 100 MHz and 133 MHz frequency operation.  
The NB3N1900K supports HCSL output levels.  
QFN72  
MN SUFFIX  
CASE 485DK  
AWLYYWWG  
Features  
NB3N1900K = Specific Device Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
Fixed Feedback Path for Lowest Input−to−Output Delay  
Eight Dedicated OE# Pins for Hardware Control of Outputs  
PLL Bypass Configurable for PLL or Fanout Operation  
Selectable PLL Bandwidth  
WL  
YY  
WW  
G
Spread Spectrum Compatible: Tracks Input Clock Spreading for Low  
EMI  
ORDERING INFORMATION  
SMBus Programmable Configurations  
See detailed ordering and shipping information on page 20 of  
this data sheet.  
100 MHz and 133 MHz PLL Mode to Meet the Next Generation  
PCIe Gen2 / Gen 3 and Intel QPI Phase Jitter  
2 Tri−Level Addresses Selection (Nine SMBUS Addresses)  
Cycle−to−Cycle Jitter: < 50 ps  
Output−to−Output Skew: < 65 ps  
Input−to−Output Delay: Fixed at 0 ps  
Input−to−Output Delay Variation: < 50 ps  
Phase Jitter: PCIe Gen3 < 1 ps rms  
Phase Jitter: QPI 9.6GB/s < 0.2 ps rms  
QFN 72−pin Package, 10 mm x 10 mm  
These are Pb−Free Devices  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
July, 2016 − Rev. 4  
NB3N1900K/D  
NB3N1900K  
8
OE[5:12]#  
FB_OUT  
FB_OUT#  
DIF[18:0]  
SSC Compatible  
PLL  
MUX  
DIF[18:0]#  
CLK_IN  
CLK_IN#  
100M_133M#  
HBW_BYP_LBW#  
SA_0  
Control  
Logic  
SA_1  
PWRGD/PWRDN#  
SDA  
SCL  
IREF  
NOTE: Even though the feedback is fixed FB_OUT and FB_OUT# still needs a  
termination network for the part to function.  
Figure 1. Simplified Block Diagram of NB3N1900K  
www.onsemi.com  
2
NB3N1900K  
72  
71 70  
69  
68  
67  
66  
65  
64  
63 62  
61  
60  
59 58  
57  
56  
55  
VDDA  
GNDA  
OE11#  
DIF11#  
DIF11  
1
2
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
IREF  
3
100M_133M#  
4
OE10#  
DIF10#  
HBW_BYP_LBW#  
PWRGD/PWRDN#  
5
6
DIF10  
OE9#  
GND  
VDDR  
7
8
DIF9#  
DIF9  
CLK_IN  
CLK_IN#  
9
NB3N1900K  
10  
VDD  
GND  
SA_0 11  
SDA  
SCL  
12  
13  
14  
15  
16  
17  
OE8#  
DIF8#  
DIF8  
SA_1  
NC  
OE7#  
DIF7#  
NC  
DIF7  
FB_OUT#  
FB_OUT 18  
OE6#  
19  
20 21  
22  
23  
24  
25  
26  
27  
28 29  
30  
31  
32 33  
34  
35  
36  
FB_OUT pins loaded the same as the DIF outputs.  
Figure 2. Pin Configuration  
(Top View)  
www.onsemi.com  
3
NB3N1900K  
Table 1. PLL OPERATING MODE READBACK TABLE  
Table 5. PLL OPERATING MODE  
HBW_BYP_LBW#  
Low (Low BW)  
Mid (Bypass)  
Byte0, bit 7  
Byte 0, bit 6  
HBW_BYP_LBW#  
MODE  
PLL Lo BW  
Bypass  
0
0
1
0
1
1
Low  
Mid  
High  
High (High BW)  
PLL Hi BW  
NOTE: PLL is OFF in Bypass  
Table 2. POWER CONNECTIONS  
Pin Number  
Table 6. MODE TRI−LEVEL INPUT THRESHOLD  
VDD  
GND  
Level  
Low  
Mid  
Voltage  
Description  
1
8
2
7
Analog PLL  
Analog Input  
< 0.8 V  
1.2 < Vin < 1.8 V  
21, 31, 45,  
58, 68  
High  
Vin > 2.2 V  
26, 44, 63  
DIF clocks  
Table 3. FUNCTIONALITY AT POWER UP (PLL MODE)  
CLK_IN  
(MHz)  
DIF  
(MHz)  
100M_133M#  
1
0
100.00  
133.33  
CLK_IN  
CLK_IN  
Table 4. NB3N1900K SMBus ADDRESSING  
Pin  
SMBus Address − 8 bit  
(Rd/Wrt bit = 0)  
SA_1  
SA_0  
0
0
0
M
1
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
0
M
M
M
1
0
M
1
0
1
M
1
1
www.onsemi.com  
4
NB3N1900K  
Table 7. PIN DESCRIPTION  
Pin #  
Pin Name  
VDDA  
Pin Type  
PWR  
Description  
1
2
3.3 V power for the PLL core.  
Ground pin for the PLL core.  
GNDA  
PWR  
This pin establishes the reference for the differential current−mode output pairs. It  
requires a fixed precision resistor to ground. 475 W is the standard value for 100 W  
differential impedance. Other impedances require different values.  
See data sheet.  
3
IREF  
OUT  
Input to select operating frequency  
1 = 100.00 MHz, 0 = 133.33 MHz  
4
5
100M_133M#  
IN  
IN  
Trilevel input to select High BW, Bypass or Low BW mode.  
See PLL Operating Mode Table for Details.  
HBW_BYP_LBW#  
Notifies device to sample latched inputs and start up on first high assertion, or exit  
Power Down Mode on subsequent assertions. Low enters Power Down Mode.  
6
7
8
PWRGD/PWRDN#  
GND  
IN  
PWR  
PWR  
Ground pin.  
3.3 V power for differential input clock (receiver). This VDD should be treated as an  
analog power rail and filtered appropriately.  
VDDR  
9
CLK_IN  
IN  
IN  
0.7 V Differential true input  
10  
CLK_IN#  
0.7 V Differential complementary Input  
SMBus address bit. This is a tri−level input that works in conjunction with the SA_1  
to decode 1 of 9 SMBus Addresses.  
11  
SA_0  
IN  
12  
13  
SDA  
SCL  
I/O  
IN  
Data pin of SMBus circuitry, 5V tolerant  
Clock pin of SMBus circuitry, 5V tolerant  
SMBus address bit. This is a tri−level input that works in conjunction with the SA_0  
to decode 1 of 9 SMBus Addresses.  
14  
SA_1  
IN  
15  
16  
NC  
NC  
N/A  
N/A  
No Connection.  
No Connection.  
Complementary half of differential feedback output, provides feedback signal to the  
PLL for synchronization with input clock to eliminate phase error.  
17  
18  
FB_OUT#  
FB_OUT  
OUT  
OUT  
True half of differential feedback output, provides feedback signal to the PLL for  
synchronization with the input clock to eliminate phase error.  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
DIF0  
DIF0#  
VDD  
OUT  
OUT  
PWR  
OUT  
OUT  
OUT  
OUT  
PWR  
OUT  
OUT  
OUT  
OUT  
PWR  
OUT  
OUT  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
Power supply, nominal 3.3 V  
DIF1  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
Ground pin.  
DIF1#  
DIF2  
DIF2#  
GND  
DIF3  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
Power supply, nominal 3.3 V  
DIF3#  
DIF4  
DIF4#  
VDD  
DIF5  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
DIF5#  
Active low input for enabling DIF pair 5.  
1 = disable outputs, 0 = enable outputs  
34  
OE5#  
IN  
35  
36  
DIF6  
OUT  
OUT  
0.7 V differential true clock output  
DIF6#  
0.7 V differential complementary clock output  
Active low input for enabling DIF pair 6.  
1 =disable outputs, 0 = enable outputs  
37  
OE6#  
IN  
www.onsemi.com  
5
 
NB3N1900K  
Table 7. PIN DESCRIPTION  
Pin #  
38  
Pin Name  
DIF7  
Pin Type  
OUT  
Description  
0.7 V differential true clock output  
39  
DIF7#  
OUT  
0.7 V differential complementary clock output  
Active low input for enabling DIF pair 7.  
1 = disable outputs, 0 = enable outputs  
40  
OE7#  
IN  
41  
42  
DIF8  
OUT  
OUT  
0.7 V differential true clock output  
DIF8#  
0.7 V differential complementary clock output  
Active low input for enabling DIF pair 8.  
1 = disable outputs, 0 = enable outputs  
43  
OE8#  
IN  
44  
45  
46  
47  
GND  
VDD  
PWR  
PWR  
OUT  
OUT  
Ground pin.  
Power supply, nominal 3.3 V  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
DIF9  
DIF9#  
Active low input for enabling DIF pair 9.  
1 = disable outputs, 0 = enable outputs  
48  
OE9#  
IN  
49  
50  
DIF10  
OUT  
OUT  
0.7 V differential true clock output  
DIF10#  
0.7 V differential complementary clock output  
Active low input for enabling DIF pair 10.  
1 = disable outputs, 0 = enable outputs  
51  
OE10#  
IN  
52  
53  
DIF11  
OUT  
OUT  
0.7 V differential true clock output  
DIF11#  
0.7 V differential complementary clock output  
Active low input for enabling DIF pair 11.  
1 = disable outputs, 0 = enable outputs  
54  
OE11#  
IN  
55  
56  
DIF12  
OUT  
OUT  
0.7 V differential true clock output  
DIF12#  
0.7 V differential complementary clock output  
Active low input for enabling DIF pair 12.  
1 = disable outputs, 0 = enable outputs  
57  
OE12#  
IN  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
VDD  
DIF13  
DIF13#  
DIF14  
DIF14#  
GND  
PWR  
OUT  
OUT  
OUT  
OUT  
PWR  
OUT  
OUT  
OUT  
OUT  
PWR  
OUT  
OUT  
OUT  
OUT  
Power supply, nominal 3.3 V  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
Ground pin.  
DIF15  
DIF15#  
DIF16  
DIF16#  
VDD  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
Power supply, nominal 3.3 V  
DIF17  
DIF17#  
DIF18  
DIF18#  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
0.7 V differential true clock output  
0.7 V differential complementary clock output  
www.onsemi.com  
6
NB3N1900K  
Table 8. ABSOLUTE MAXIMUM RATINGS (Note 1)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
4.6  
Unit  
V
V
DDA  
3.3 V Core Supply Voltage (Note 2)  
3.3 V Logic Supply Voltage (Note 2)  
V
DD  
4.6  
V
GND −  
0.5  
V
Input Low Voltage  
Input High Voltage  
V
V
IL  
V
0.5  
+
DD  
V
IH  
Except for SMBus interface  
SMBus clock and data pins  
V
Input High Voltage  
5.5  
150  
125  
130  
V
°C  
IHSMB  
T
Storage Temperature  
Junction Temperature  
Case Temperature  
−65  
s
T
°C  
J
T
°C  
c
ESD  
qJA  
qJC  
ESD protection  
Human Body Model  
Still air  
2000  
V
Thermal Resistance Junction−to−Ambient  
18.1  
5.0  
°C/W  
°C/W  
Thermal Resistance Junction−to−Case  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Guaranteed by design and characterization, not tested in production.  
2. Operation under these conditions is neither implied nor guaranteed.  
www.onsemi.com  
7
 
NB3N1900K  
Table 9. ELECTRICAL CHARACTERISTICS − INPUT/SUPPLY/COMMON PARAMETERS  
(V = V  
= 3.3 V 5%, T = −10°C to +70°C), See Test Loads for Loading Conditions.  
DD  
DDA  
A
Symbol  
Parameter  
Input High Voltage  
Conditions  
Min  
Typ  
Max  
Unit  
Single−ended inputs, except SMBus, low  
threshold and tri−level inputs (Note 3)  
V
+
DD  
0.3  
V
2
V
IH  
Single−ended inputs, except SMBus, low  
threshold and tri−level inputs (Note 3)  
GND −  
0.3  
V
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input Current  
0.8  
V
V
IL  
V
V
0.3  
+
IH_FS  
(Note 4)  
DD  
0.7  
V
GND −  
0.3  
IL_FS  
(Note 4)  
0.35  
5
V
Single−ended inputs, V = GND, V = V  
IN  
IN  
DD  
I
−5  
mA  
IN  
(Note 3)  
F
V
= 3.3 V, Bypass mode (Notes 3, 5 and 6)  
= 3.3 V, 100.00 MHz PLL mode (Note 5)  
DD  
33  
99  
400  
101  
MHz  
MHz  
MHz  
nH  
IBYP  
DD  
F
Input Frequency  
Pin Inductance  
V
100.00  
IPLL  
IPLL  
F
V
DD  
= 3.3 V, 133.33 MHz PLL mode (Notes 5) 132.33 133.33 134.33  
L
(Note 3)  
7
5
PIN  
C
Logic Inputs, except CLK_IN (Note 3)  
1.5  
1.5  
pF  
IN  
CLK_IN differential clock inputs  
(Notes 3 and 7)  
C
Capacitance  
2.7  
6
pF  
pF  
INDIF_IN  
C
Output pin capacitance (Note 3)  
OUT  
From V Power−Up and after input clock  
DD  
stabilization or de−assertion of PD# to 1st  
clock (Notes 3 and 5)  
T
STAB  
Clk Stabilization  
1.8  
ms  
Allowable Frequency (Triangular Modulation)  
(Note 3)  
f
Input SS Modulation Frequency  
OE# Latency  
30  
4
33  
12  
kHz  
cycles  
ms  
DIF start after OE# assertion DIF stop after  
OE# de−assertion (Note 3)  
t
LATOE#  
DIF output enable after PD# de−assertion  
(Note 3)  
t
Tdrive_PD#  
300  
DRVPD  
t
Tfall  
Fall time of control inputs (Notes 3 and 5)  
5
5
ns  
ns  
V
F
t
R
Trise  
Rise time of control inputs (Notes 3 and 5)  
V
SMBus Input Low Voltage  
SMBus Input High Voltage  
SMBus Output Low Voltage  
SMBus Sink Current  
Nominal Bus Voltage  
SCL/SDA Rise Time  
SCL/SDA Fall Time  
(Note 3)  
(Note 3)  
0.8  
ILSMB  
IHSMB  
V
2.1  
V
V
DDSMB  
V
@ I  
(Note 3)  
0.4  
V
OLSMB  
PULLUP  
PULLUP  
I
@ V (Note 3)  
4
mA  
V
OL  
V
3 V to 5 V 10% (Note 3)  
2.7  
5.5  
1000  
300  
DDSMB  
t
(Max V − 0.15) to (Min V + 0.15) (Note 3)  
ns  
ns  
RSMB  
IL  
IH  
t
(Min VIH + 0.15) to (Max V − 0.15) (Note 3)  
FSMB  
IL  
Maximum SMBus operating frequency  
(Notes 3 and 8)  
f
SMBus Operating Frequency  
100  
kHz  
MAXSMB  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Guaranteed by design and characterization, not tested in production.  
4. 100M_133M# Frequency Select (FS).  
5. Control input must be monotonic from 20% to 80% of input swing.  
6. Fmax measured until output violates output duty cycle specifications and output V  
7. CLK_IN input  
, V  
Low  
specification.  
High  
8. The differential input clock must be running for the SMBus to be active.  
www.onsemi.com  
8
 
NB3N1900K  
Table 10. ELECTRICAL CHARACTERISTICS − CLOCK INPUT PARAMETERS  
(V = V  
= 3.3 V 5%, T = −10°C to +70°C), See Test Loads for Loading Conditions.  
DD  
DDA  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input High Voltage − CLK_IN  
(Note 9)  
Differential inputs (single−ended  
measurement)  
V
IHDIF  
600  
1150  
mV  
Input Low Voltage − CLK_IN  
(Note 9)  
Differential inputs (single−ended  
measurement)  
V
300  
SS  
V
ILDIF  
300  
mV  
Input Common Mode Voltage −  
CLK_IN (Note 9)  
V
Common Mode Input Voltage  
Peak to Peak value  
300  
300  
0.4  
1000  
1450  
8
mV  
mV  
COM  
V
Input Amplitude − CLK_IN (Note 9)  
SWING  
Input Slew Rate − CLK_IN (Notes 9  
and 10)  
dv/dt  
Measured differentially  
V/ns  
I
Input Leakage Current (Note 9)  
Input Duty Cycle (Note 9)  
V
= V V = GND  
DD, IN  
−5  
45  
0
5
mA  
%
IN  
IN  
d
Measurement from differential waveform  
Differential Measurement  
55  
tin  
J
Input Jitter − Cycle to Cycle (Note 9)  
125  
ps  
DIFIn  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
9. Guaranteed by design and characterization, not tested in production.  
10.Slew rate measured through 75 mV window centered around differential zero.  
Table 11. ELECTRICAL CHARACTERISTICS − DIF 0.7 V CURRENT MODE DIFFERENTIAL OUTPUTS  
(V = V  
= 3.3 V 5%, T = −10°C to +70°C), See Test Loads for Loading Conditions  
DD  
DDA  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
dV/dt  
Slew rate (Notes 11, 12 and 13)  
Scope averaging on  
1
4
V/ns  
Slew rate matching  
(Notes 11, 12 and 14)  
DdV/dt  
DTrf  
Slew rate matching, Scope averaging on  
Rise/fall matching, Scope averaging off  
20  
%
Rise/Fall Time Matching  
(Notes 11, 12 and 18)  
125  
ps  
Statistical measurement on single−ended  
signal using oscilloscope math function.  
(Scope averaging on)  
V
Voltage High (Note 11)  
Voltage Low (Note 11)  
Max Voltage (Note 11)  
Min Voltage (Note 11)  
Vswing (Notes 11 and 12)  
660  
850  
150  
High  
mV  
mV  
V
V
−150  
Low  
1150  
max  
Measurement on single ended signal using  
Absolute value. (Scope averaging off)  
V
−300  
300  
min  
V
swing  
Scope averaging off  
Scope averaging off  
mV  
mV  
Crossing Voltage (abs)  
(Notes 11 and 15)  
V
250  
550  
140  
cross_abs  
Crossing Voltage (var)  
(Notes 11 and 16)  
DV  
Scope averaging off  
mV  
cross  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
11. Guaranteed by design and characterization, not tested in production. I  
= V /(3xR  
). For R  
= 475 W (1%), I  
= 2.32 mA. I  
REF OH  
REF  
DD  
REF  
REF  
= 6 x I  
and V = 0.7 V @ Z = 50 W (100 W differential impedance).  
REF  
OH O  
12.Measured from differential waveform.  
13.Slew rate is measured through the Vswing voltage range centered around differential 0 V. This results in a 150 mV window around  
differential 0 V.  
14.Matching applies to rising and falling edge rate of differential waveform. It is measured using a 75 mV window centered on the average cross  
point where the clock rising meets clock# falling. The median cross point is used to calculate voltage thresholds that the oscilloscope uses  
to calculate the slew rate. Measurement taken using a 100 W differential impedance 5” trace PCB.  
15.Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e.  
Clock rising and Clock# falling).  
16.The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute)  
allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.  
17.Measured from single−ended waveform  
18.Measured with scope averaging off, using statistics function. Variation is difference between min and max.  
www.onsemi.com  
9
 
NB3N1900K  
Table 12. ELECTRICAL CHARACTERISTICS − CURRENT CONSUMPTION  
(V = V  
= 3.3 V 5%, T = −10°C to +70°C), See Test Loads for Loading Conditions  
DD  
DDA  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
550  
36  
Unit  
mA  
mA  
All outputs active @ 100.00 MHz,  
CL = Full load  
I
Operating Supply Current (Note 19)  
DD3.3OP  
I
Powerdown Current (Note 19)  
All differential pairs tri−stated  
DD3.3PDZ  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
19.Guaranteed by design and characterization, not tested in production.  
Table 13. ELECTRICAL CHARACTERISTICS − SKEW AND DIFFERENTIAL JITTER PARAMETERS  
(V = V  
= 3.3 V 5%, T = −10°C to +70°C), See Test Loads for Loading Conditions  
DD  
DDA  
A
Symbol  
Parameter  
CLK_IN, DIF[x:0]  
Conditions  
Min  
Typ  
Max  
Unit  
Input−to−Output Skew in PLL mode nominal  
t
−100  
100  
ps  
SPO_PLL  
(Notes 20, 21, 23, 24 and 27)  
value @ 25°C, 3.3 V  
CLK_IN, DIF[x:0]  
(Notes 20, 21, 22, 24 and 27)  
Input−to−Output Skew in Bypass mode  
t
2.5  
4.5  
|100|  
250  
65  
ns  
ps  
ps  
ps  
dB  
dB  
PD_BYP  
nominal value @ 25°C, 3.3 V  
Input−to−Output Skew Variation in PLL mode  
across voltage and temperature  
CLK_IN, DIF[x:0]  
(Notes 20, 21, 22, 24 and 27)  
t
DSPO_PLL  
CLK_IN, DIF[x:0]  
(Notes 20, 21, 22, 24 and 27)  
Input−to−Output Skew Variation in Bypass  
mode across voltage and temperature  
t
−250  
DSPO_BYP  
Output−to−Output Skew across all outputs  
(Common to Bypass and PLL mode)  
t
DIF{x:0] (Notes 20, 21, 22 and 27)  
SKEW_ALL  
PLL Jitter Peaking  
(Notes 26 and 27)  
j
HBW_BYP_LBW# = 1  
0
0
2.5  
2
peak−hibw  
peak−lobw  
PLL Jitter Peaking  
(Notes 26 and 27)  
j
HBW_BYP_LBW# = 0  
pll  
PLL Bandwidth (Notes 27 and 28)  
PLL Bandwidth (Notes 27 and 28)  
Duty Cycle (Notes 20 and 27)  
HBW_BYP_LBW# = 1  
HBW_BYP_LBW# = 0  
2
4
MHz  
MHz  
%
HIBW  
pll  
LOBW  
0.7  
45  
1.4  
55  
t
Measured differentially, PLL Mode  
50  
0
DC  
Duty Cycle Distortion  
(Notes 20 and 29)  
Measured differentially, Bypass Mode  
@ 100.00 MHz  
t
−2  
2
%
DCD  
PLL mode  
50  
50  
ps  
ps  
Jitter, Cycle to cycle  
(Notes 20, 27 and 30)  
t
jcyc−cyc  
Additive Jitter in Bypass Mode  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
20.Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.  
21.Measured from differential cross−point to differential cross−point. This parameter can be tuned with external feedback path, if present.  
22.All Bypass Mode Input−to−Output specs refer to the timing between an input edge and the specific output edge created by it.  
23.This parameter is deterministic for a given device.  
24.Measured with scope averaging on to find mean value. CLK_IN slew rate must be matched to DIF output slew rate.  
25.t is the period of the input clock.  
26.Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.  
27.Guaranteed by design and characterization, not tested in production.  
28.Measured at 3 db down or half power point.  
29.Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.  
@ 100.00 MHz.  
30.Measured from differential waveform.  
www.onsemi.com  
10  
 
NB3N1900K  
Table 14. ELECTRICAL CHARACTERISTICS − PHASE JITTER PARAMETERS  
(V = V  
= 3.3 V 5%, T = −10°C to +70°C), See Test Loads for Loading Conditions.  
DD  
DDA  
A
Symbol  
Parameter  
Conditions (Notes 31 and 36)  
Min  
Typ  
Max  
Unit  
t
PCIe Gen 1 (Notes 32 and 33)  
36  
86  
ps (p−p)  
jphPCIeG1  
PCIe Gen 2 Lo Band  
10 kHz < f < 1.5 MHz (Note 32)  
ps  
(rms)  
3
t
jphPCIeG2  
PCIe Gen 2 High Band  
1.5 MHz < f < Nyquist (50 MHz)  
(Note 32)  
ps  
(rms)  
3.1  
PCIe Gen 3  
(PLL BW of 2−4 MHz, CDR = 10 MHz)  
(Note 32)  
ps  
(rms)  
t
1
jphPCIeG3  
Jitter, Phase  
QPI & SMI  
(100.00 MHz or 133.33 MHz,  
4.8 Gb/s, 6.4 Gb/s 12UI) (Note 34)  
ps  
(rms)  
0.5  
0.3  
QPI & SMI  
(100.00 MHz, 8.0 Gb/s, 12UI) (Note 34)  
ps  
(rms)  
t
jphQPI_SMI  
QPI & SMI  
(100.00 MHz, 9.6 Gb/s, 12UI) (Note 34)  
ps  
(rms)  
0.2  
10  
t
PCIe Gen 1 (Notes 32 and 33)  
ps (p−p)  
jphPCIeG1  
PCIe Gen 2 Lo Band  
10 kHz < f < 1.5 MHz (Notes 32 and 35)  
ps  
(rms)  
0.3  
t
jphPCIeG2  
PCIe Gen 2 High Band  
1.5 MHz < f < Nyquist (50 MHz)  
(Notes 32 and 35)  
ps  
(rms)  
0.7  
0.3  
0.3  
PCIe Gen 3  
(PLL BW of 2−4 MHz, CDR = 10 MHz)  
(Notes 32 and 35)  
ps  
(rms)  
t
Additive Phase Jitter, Bypass  
mode  
jphPCIeG3  
QPI & SMI  
(100.00 MHz or 133.33 MHz, 4.8 Gb/s,  
6.4 Gb/s 12UI) (Notes 34 and 35)  
ps  
(rms)  
QPI & SMI  
ps  
(rms)  
t
jphQPI_SMI  
0.1  
0.1  
(100.00 MHz, 8.0 Gb/s, 12UI) (Notes 34 and 35)  
QPI & SMI  
ps  
(rms)  
(100.00 MHz, 9.6 Gb/s, 12UI) (Notes 34 and 35)  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
31.Applies to all outputs.  
32.See http://www.pcisig.com for complete specs  
33.Sample size of at least 100K cycles. This figures extrapolates to 108 ps pk−pk @ 1M cycles for a BER of 1−12.  
34.Calculated from Intel−supplied Clock Jitter Tool v 1.6.3.  
35.For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter) = (total jitter) - (input jitter)  
2
2
2
36.Guaranteed by design and characterization, not tested in production  
www.onsemi.com  
11  
 
NB3N1900K  
Table 15. CLOCK PERIODS − DIFFERENTIAL OUTPUTS WITH SPREAD SPECTRUM DISABLED  
Measurement Window  
1 Clock  
1us  
0.1s  
0.1s  
0.1s  
1us  
1 Clock  
−SSC  
− ppm  
Long−Term  
Average  
Min  
+SSC  
Short−Term  
Average  
Min  
−c2c jitter  
AbsPer  
Min  
0 ppm  
Period  
+ ppm Long−  
Term Average  
Max  
+c2c jitter  
AbsPer  
Max  
Center  
Short−Term  
Average Max  
Nominal  
Freq. MHz  
Unit Notes  
SSC OFF  
37,  
ns  
100.00  
133.33  
9.94900  
7.44925  
9.99900  
7.49925  
10.00000  
7.50000  
10.00100  
7.50075  
10.05100  
7.55075  
38, 39  
DIF  
37,  
ns  
38, 40  
37.Guaranteed by design and characterization, not tested in production.  
38.All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy  
requirements ( 100 ppm). The 9ZX21901 itself does not contribute to ppm error.  
39.Driven by SRC output of main clock, 100.00 MHz PLL Mode or Bypass mode  
40.Driven by CPU output of main clock, 133.33 MHz PLL Mode or Bypass mode  
Table 16. CLOCK PERIODS − DIFFERENTIAL OUTPUTS WITH SPREAD SPECTRUM ENABLED  
Measurement Window  
1 Clock  
1us  
0.1s  
0.1s  
0.1s  
1us  
1 Clock  
−SSC  
− ppm  
Long−Term  
Average  
Min  
+SSC  
Short−Term  
Average  
Min  
−c2c jitter  
AbsPer  
Min  
0 ppm  
Period  
+ ppm  
Long−Term  
Average Max  
+c2c jitter  
AbsPer  
Max  
Center  
Short−Term  
Average Max  
Nominal  
Freq. MHz  
SSC ON  
Unit Notes  
41,  
ns  
99.75  
9.94906  
7.44930  
9.99906  
7.49930  
10.02406  
7.51805  
10.02506  
7.51880  
10.02607  
7.51955  
10.05107  
7.53830  
10.10107  
7.58830  
42, 43  
DIF  
41,  
ns  
133.00  
42, 44  
41.Guaranteed by design and characterization, not tested in production.  
42.All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy  
requirements ( 100 ppm). The 9ZX21901 itself does not contribute to ppm error.  
43.Driven by SRC output of main clock, 100.00 MHz PLL Mode or Bypass mode  
44.Driven by CPU output of main clock, 133.33 MHz PLL Mode or Bypass mode  
Table 17. POWER MANAGEMENT TABLE  
Inputs  
Control Bits/Pins  
DIF(5:12) /  
Outputs  
Other DIF/  
DIF#  
FB_OUT /  
FB_OUT#  
PLL  
State  
DIF(5:12)#  
PWRGD/PWRDN# CLK_IN/CLK_IN# SMBus EN bit  
OE# Pin  
0
X
X
0
1
1
X
X
0
1
Hi−Z (Note 45) Hi−Z (Note 45)  
Hi−Z (Note 45) Hi−Z (Note 45)  
Hi−Z (Note 45)  
Running  
OFF  
ON  
ON  
ON  
Running  
Running  
Running  
Running  
1
Running  
Hi−Z (Note 45)  
Running  
45.Due to external pull down resistors, HI−Z results in Low/Low on the True/Complement outputs  
www.onsemi.com  
12  
 
NB3N1900K  
10 inches  
Differential Zo  
Rs  
Rs  
2pF  
2pF  
Rp  
Rp  
HCSL Output  
Buffer  
Figure 3. NB3N1900K Differential Test Loads  
Table 18. DIFFERENTIAL OUTPUT TERMINATION TABLE  
DIF Zo (W)  
100  
Iref (W)  
475  
Rs (W)  
33  
Rp (W)  
50  
85  
412  
27  
42.2 or 43.2  
PWRGD/PWRDN#  
asserted low by two consecutive rising edges of DIF#, all  
differential outputs are held tri−stated on the next DIF# high  
to low transition. The assertion and de-assertion of  
PWRDN# is absolutely asynchronous.  
PWRGD/PWRDN# is a dual function pin. PWRGD is  
asserted high and de−asserted low. De−assertion of PWRGD  
(pulling the signal low) is equivalent to indicating a  
powerdown condition. PWRGD (assertion) is used by the  
NB3N1900K to sample initial configurations such as  
frequency select condition and SA selections.  
After PWRGD has been asserted high for the first time,  
the pin becomes a PWRDN# (Power Down) pin that can be  
used to shut off all clocks cleanly and instruct the device to  
invoke power savings mode. PWRDN# is a completely  
asynchronous active low input. When entering power  
savings mode, PWRDN# should be asserted low prior to  
shutting off the input clock or power to ensure all clocks  
shut down in a glitch free manner. When PWRDN# is  
WARNING: Disabling of the CLK_IN input clock prior  
to assertion of PWRDN# is an undefined  
mode and not recommended. Operation in  
this mode may result in glitches, excessive  
frequency shifting, etc.  
Table 19. PWRGD/PWRDN# FUNCTIONALITY  
PWRGD/PWRDN#  
DIF  
DIF#  
0
1
Tri−state  
Running  
Tri−state  
Running  
www.onsemi.com  
13  
NB3N1900K  
Buffer Power−Up State Machine  
Table 20. BUFFER POWER−UP STATE MACHINE  
State  
Description  
0
1
2
3
3.3 V Buffer power off  
After 3.3 V supply is detected to rise above 3.135 V, the buffer enters State 1 and initiates a 0.1 ms–0.3 ms delay.  
Buffer waits for a valid clock on the CLK input and PWRDN# de−assertion (or PWRGD assertion low to high)  
Once the PLL is locked to the CLK_IN input clock, the buffer enters state 3 and enables outputs for normal operation.  
(Notes 46, 47)  
46.The total power up latency from power on to all outputs active must be less than 1.8 ms (assuming a valid clock is present on CLK_IN input).  
47.If power is valid and powerdown is de−asserted (PWRGD asserted) but no input clocks are present on the CLK_IN input, DIF clocks must  
remain disabled. Only after valid input clocks are detected, valid power, PWRDN# de−asserted (PWRGD asserted) with the PLL  
locked/stable and the DIF outputs enabled.  
No input clock  
State 1  
State 2  
Wait for input  
clock and  
powerdown  
de−assertion  
Delay  
0.1 ms − 0.3 ms  
Powerdown Asserted  
State 3  
State 0  
Normal  
Operation  
Power Off  
Figure 4. Buffer Power−Up State Diagram  
Device Power−Up Sequence  
3. Apply power to the device.  
Follow the power−up sequence below for proper device  
functionality:  
4. Once the VDD pin has reached a valid VDDmin  
level (3.3V −5%), the PWRGD/PWRDN# pin  
must be asserted High. See Figure 5.  
1. PWRGD/PWRDN# pin must be Low.  
2. Assign remaining control pins to their required  
state (100M_133M#, HBW_BYPASS_LBW#,  
SDA, SCL)  
Note: If no clock is present on the CLK_IN/CLK_IN#  
pins when device is powered up, there will be no clock on  
DIF/DIF# outputs.  
Figure 5. PWRGD and VDD Relationship Diagram  
www.onsemi.com  
14  
 
NB3N1900K  
GENERAL SMBUS SERIAL INTERFACE INFORMATION FOR THE NB3N1900K  
How to Write:  
Clock(device) will acknowledge  
Controller (host) sends a start bit.  
Controller (host) sends the write address XX  
Clock(device) will acknowledge  
Controller (host) will send a separate start bit.  
Controller (host) sends the read address YY  
(H)  
(H)  
Clock(device) will acknowledge  
vclock will send the data byte count = X  
Clock(device) sends Byte N + X −1  
Controller (host) sends the beginning byte location = N  
Clock(device) will acknowledge  
Controller (host) sends the data byte count = X  
Clock(device) will acknowledge  
Clock(device) sends Byte 0 through byte X (if X was  
(H)  
written to byte 8).  
Controller (host) starts sending Byte N through Byte  
Controller (host) will need to acknowledge each byte  
Controller (host) will send a not acknowledge bit  
Controller (host) sends a Stop bit  
N + X − 1  
Clock(device) will acknowledge each byte one at a  
time  
Controller (host) sends a Stop bit  
Table 22. INDEX BLOCK READ OPERATION  
Controller (Host)  
Clock (Device)  
Table 21. INDEX BLOCK WRITE OPERATION  
T
starT bit  
Controller (Host)  
Clock (Device)  
Slave Address XX(H)  
T
starT bit  
WR  
WRite  
Slave Address XX(H)  
ACK  
ACK  
WR  
WRite  
Beginning Byte = N  
ACK  
ACK  
ACK  
Beginning Byte = N  
Data Byte Count = X  
Beginning Byte N  
RT  
Repeat starT  
Slave Address YY(H)  
RD  
ReaD  
ACK  
ACK  
Data Byte Count = X  
ACK  
ACK  
O
O
O
O
O
Beginning Byte N  
X Byte  
O
O
O
Byte N + X - 1  
O
O
O
X Byte  
ACK  
P
stoP bit  
Note: XX is defined by SMBus address select pins  
(H)  
Byte N + X - 1  
Not  
acknowledge  
How to Read:  
N
P
Controller (host) will send start bit.  
Controller (host) sends the write address XX  
Clock(device) will acknowledge  
stoP bit  
(H)  
Note: XX is defined by SMBus address select pins  
(H)  
Controller (host) sends the beginning byte location = N  
www.onsemi.com  
15  
NB3N1900K  
Table 23. SMBusTable: PLL MODE, AND FREQUENCY SELECT REGISTER  
Byte 0 Pin #  
Name  
Control Function  
PLL Operating Mode Rd back 1  
PLL Operating Mode Rd back 0  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Reserved  
Type  
R
0
1
Default  
Bit 7  
Bit 6  
5
5
PLL Mode 1  
PLL Mode 0  
DIF_18_En  
DIF_17_En  
DIF_16_En  
Latch  
See PLL Operating Mode  
Readback Table  
R
Latch  
Bit 5 72/71  
Bit 4 70/69  
Bit 3 67/66  
Bit 2  
RW  
RW  
RW  
Hi−Z  
Hi−Z  
Hi−Z  
Enable  
Enable  
Enable  
1
1
1
0
Bit 1  
Reserved  
0
Bit 0  
4
100M_133M#  
Frequency Select Readback  
R
133 MHz  
100 MHz  
Latch  
Table 24. SMBusTable: OUTPUT CONTROL REGISTER  
Byte 1 Pin #  
Bit 7 39/38  
Bit 6 35/36  
Bit 5 32/33  
Bit 4 29/30  
Bit 3 27/28  
Bit 2 24/25  
Bit 1 22/23  
Bit 0 19/20  
Name  
Control Function  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
DIF_7_En  
DIF_6_En  
DIF_5_En  
DIF_4_En  
DIF_3_En  
DIF_2_En  
DIF_1_En  
DIF_0_En  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
1
1
1
1
1
1
1
1
Hi−Z  
Enable  
Table 25. SMBusTable: OUTPUT CONTROL REGISTER  
Byte 2 Pin #  
Bit 7 65/64  
Bit 6 62/61  
Bit 5 60/59  
Bit 4 56/55  
Bit 3 53/52  
Bit 2 50/49  
Bit 1 47/46  
Bit 0 42/41  
Name  
Control Function  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
Default  
DIF_15_En  
DIF_14_En  
DIF_13_En  
DIF_12_En  
DIF_11_En  
DIF_10_En  
DIF_9_En  
DIF_8_En  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
Output Control overrides OE# pin  
1
1
1
1
1
1
1
1
Hi−Z  
Enable  
Table 26. SMBusTable: OUTPUT ENABLE PIN STATUS READBACK REGISTER  
Byte 3 Pin #  
Name  
Control Function  
Type  
R
0
1
Default  
Real time  
Real time  
Real time  
Real time  
Real time  
Real time  
Real time  
Real time  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
57  
54  
51  
48  
43  
40  
37  
34  
OE_RB12  
OE_RB11  
OE_RB10  
OE_RB9  
OE_RB8  
OE_RB7  
OE_RB6  
OE_RB5  
Real Time readback of OE#12  
Real Time readback of OE#11  
Real Time readback of OE#10  
Real Time readback of OE#9  
Real Time readback of OE#8  
Real Time readback of OE#7  
Real Time readback of OE#6  
Real Time readback of OE#5  
R
R
R
OE# Pin High  
OE# pin Low  
R
R
R
R
www.onsemi.com  
16  
NB3N1900K  
Table 27. SMBusTable: RESERVED REGISTER  
Byte 4 Pin #  
Bit 7  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Table 28. SMBusTable: VENDOR & REVISION ID REGISTER  
Byte 5 Pin #  
Name  
RID3  
RID2  
RID1  
RID0  
VID3  
VID2  
VID1  
VID0  
Control Function  
Type  
R
0
1
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
X
X
X
X
1
1
1
1
R
REVISION ID  
R
R
R
R
VENDOR ID  
R
R
Table 29. SMBusTable: DEVICE ID  
Byte 6 Pin #  
Name  
Control Function  
Type  
R
0
1
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Device ID 7 (MSB)  
1
1
0
1
1
0
1
1
Device ID 6  
Device ID 5  
Device ID 4  
Device ID 3  
Device ID 2  
Device ID 1  
Device ID 0  
R
R
R
Device ID is 120 decimal or  
78 hex.  
R
R
R
R
Table 30. SMBusTable: BYTE COUNT REGISTER  
Byte 7 Pin #  
Bit 7  
Name  
Control Function  
Reserved  
Type  
0
1
Default  
0
0
0
0
1
0
0
0
Bit 6  
Reserved  
Reserved  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BC4  
BC3  
BC2  
BC1  
BC0  
RW  
RW  
RW  
RW  
RW  
Default value is 8 hex, so 9  
bytes (0 to 8) will be read  
back by default.  
Writing to this register configures how  
many bytes will be read back.  
www.onsemi.com  
17  
NB3N1900K  
Table 31. SMBusTable: RESERVED REGISTER  
Byte 8 Pin #  
Bit 7  
Name  
Control Function  
Type  
0
1
Default  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DIF Reference Clock  
Common Recommendations for Differential Routing  
Dimension or Value  
Unit  
inch  
inch  
inch  
W
L1 length, route as non−coupled 50 W trace (Figure 6)  
L2 length, route as non−coupled 50 W trace (Figure 6)  
L3 length, route as non−coupled 50 W trace (Figure 6)  
Rs (Figure 6)  
0.5 max  
0.2 max  
0.2 max  
33  
Rt (Figure 6)  
49.9  
W
Down Device Differential Routing  
L4 length, route as coupled microstrip 100 W differential trace (Figure 6)  
L4 length, route as coupled stripline 100 W differential trace (Figure 6)  
2 min to 16 max  
inch  
inch  
1.8 min to 14.4 max  
Differential Routing to PCI Express Connector  
L4 length, route as coupled microstrip 100 W differential trace (Figure 7)  
L4 length, route as coupled stripline 100 W differential trace (Figure 7)  
0.25 to 14 max  
inch  
inch  
0.225 min to 12.6 max  
L2  
L1  
Rs  
Rs  
L4  
L4’  
L2’  
L1’  
Rt  
Rt  
HCSL Output Buffer  
PCI Express  
Down Device  
REF_CLK Input  
L3’  
L3  
Figure 6. Down Device Routing  
www.onsemi.com  
18  
 
NB3N1900K  
L2  
L1  
Rs  
Rs  
L4  
L4’  
L2’  
L1’  
Rt  
Rt  
HCSL Output Buffer  
PCI Express  
Add−in Board  
REF_CLK Input  
L3’  
L3  
Figure 7. PCI Express Connector Routing  
Table 32. ALTERNATIVE TERMINATION FOR LVDS AND OTHER COMMON DIFFERENTIAL SIGNALS (Figure 8)  
Vdiff (V)  
0.45  
Vpp (V)  
0.22  
Vcm (V)  
1.08  
0.6  
R1 (W)  
33  
R2 (W)  
150  
R3 (W)  
100  
R4 (W)  
100  
Note  
0.58  
0.28  
33  
78.7  
174  
137  
100  
0.60  
0.3  
1.2  
33  
140  
100  
Standard LVDS  
R1a = R1b = R1  
R2a = R2b = R2  
L2  
L1  
R3  
R4  
R1a  
L4  
L4’  
L2’  
L1’  
R1b  
R2a  
R2b  
HCSL Output Buffer  
Down Device  
REF_CLK Input  
L3’  
L3  
Figure 8. Alternate Termination for LVDS  
Table 33. CABLE CONNECTED AC COUPLED APPLICATION (Figure 9)  
Component  
R5a, R5b  
R6a, R6b  
Cc  
Value  
8.2k 5%  
1k 5%  
Note  
0.1 mF  
Vcm  
0.350 V  
www.onsemi.com  
19  
 
NB3N1900K  
3.3 V  
R5a  
R6a  
R5b  
R6b  
Cc  
L4  
L4’  
Cc  
Figure 9. Cable−Connected AC Coupled Application  
POWER FILTERING EXAMPLE  
Ferrite Bead Power Filtering  
Recommended ferrite bead filtering equivalent to the following:  
600 W impedance at 100 MHz, 0.1 W DCR max., 800 mA current rating.  
V3P3  
Place at pin  
VDD for PLL  
FB1  
R1  
2.2  
VDDA  
C7  
FERRITE  
C9  
1 mF  
0.1 mF  
R2  
2.2  
VDDR  
C8  
VDD for Input Receiver  
VDD  
C10  
1 mF  
0.1 mF  
F C5  
C5  
0.1 mF  
0.1 mF  
VDD  
C2  
C1  
10 mF  
C4  
0.1 mF  
C3  
0.1 mF  
C5  
0.1 mF  
C5  
0.1 mF  
0.1 mF  
Figure 10. Schematic Example of the NB3N1900K Power Filtering  
Table 34. ORDERING INFORMATION  
Device  
Package  
Shipping  
NB3N1900KMNG  
QFN−72  
(Pb−Free)  
168 Units / Tray  
1000 / Tape & Reel  
1000 / Tape & Reel  
NB3N1900KMNTXG  
NB3N1900KMNTWG  
QFN−72  
(Pb−Free)  
QFN−72  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
NOTE: Pin 1 orientation for TWG Suffix is Quadrant 1, upper left; Pin 1 orientation for TXG Suffix is Quadrant 2, upper right  
www.onsemi.com  
20  
NB3N1900K  
PACKAGE DIMENSIONS  
QFN72 10x10, 0.5P  
CASE 485DK  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
A B  
L
L
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.25mm FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
LOCATION  
L1  
DETAIL A  
ALTERNATE  
CONSTRUCTIONS  
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
E
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
EXPOSED Cu  
MOLD CMPD  
0.18  
0.30  
D
D2  
E
10.00 BSC  
0.15  
C
5.85  
6.15  
10.00 BSC  
E2  
e
L
5.85  
0.50 BSC  
0.30  
0.00  
6.15  
0.15  
C
TOP VIEW  
DETAIL B  
0.50  
0.15  
ALTERNATE  
L1  
CONSTRUCTION  
DETAIL B  
(A3)  
0.10  
C
C
RECOMMENDED  
SOLDERING FOOTPRINT*  
A
0.08  
A1  
72X  
0.63  
10.30  
6.25  
SEATING  
PLANE  
NOTE 4  
C
SIDE VIEW  
D2  
M
0.10  
C A B  
1
DETAIL A  
72X  
L
19  
36  
M
0.10  
C A B  
10.30  
6.25  
E2  
72X  
0.32  
PKG  
OUTLINE  
0.50  
PITCH  
1
DIMENSIONS: MILLIMETERS  
55  
72  
72X b  
e
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
M
M
0.10  
C
C
A B  
NOTE 3  
0.05  
BOTTOM VIEW  
Intel is a registered trademark of Intel Corporation.  
PCIe and PCI−SIG are registered trademarks of PCI−SIG.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB3N1900K/D  

相关型号:

NB3N1900KMNG

Differential 1:19 HCSL Clock ZDB/Fanout Buffer for PCIe
ONSEMI

NB3N1900KMNTWG

Differential 1:19 HCSL Clock ZDB/Fanout Buffer for PCIe
ONSEMI

NB3N1900KMNTXG

Differential 1:19 HCSL Clock ZDB/Fanout Buffer for PCIe
ONSEMI

NB3N1900K_16

Differential 1:19 HCSL Clock ZDB/Fanout Buffer for PCIe
ONSEMI

NB3N1900K_17

3.3V 100/133 MHz Differential 1:19 HCSL
ONSEMI

NB3N200S

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver
ONSEMI

NB3N200SDG

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver
ONSEMI

NB3N200SDR2G

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver
ONSEMI

NB3N200S_15

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver
ONSEMI

NB3N201S

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver
ONSEMI

NB3N201SDG

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver
ONSEMI

NB3N201SDR2G

3.3 V Differential Multipoint Low Voltage M-LVDS Driver Receiver
ONSEMI