NB6L14_07 [ONSEMI]

2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer; 2.5 V / 3.3 V 3.0 GHz差分1 : 4 LVPECL扇出缓冲器
NB6L14_07
型号: NB6L14_07
厂家: ONSEMI    ONSEMI
描述:

2.5 V/3.3 V 3.0 GHz Differential 1:4 LVPECL Fanout Buffer
2.5 V / 3.3 V 3.0 GHz差分1 : 4 LVPECL扇出缓冲器

文件: 总10页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB6L14  
2.5 V/3.3 Vꢀ3.0 GHz  
Differential 1:4 LVPECL  
Fanout Buffer  
Multi- Level Inputs with Internal Termination  
http://onsemi.com  
MARKING  
DIAGRAM*  
Description  
The NB6L14 is a 3.0 GHz differential 1:4 LVPECL clock or data  
fanout buffer. The differential inputs incorporate internal 50  
16  
termination resistors that are accessed through the VT pin. This feature  
allows the NB6L14 to accept various logic standards, such as  
LVPECL, LVCMOS, LVTTL, CML, or LVDS logic levels. The  
VREF_AC reference output can be used to rebias capacitor-coupled  
differential or single-ended input signals. The 1:4 fanout design was  
optimized for low output skew applications.  
1
NB6L  
14  
QFN-16  
MN SUFFIX  
CASE 485G  
ALYWG  
G
A
L
= Assembly Location  
= Wafer Lot  
= Year  
The NB6L14 is a member of the ECLinPS MAXfamily of high  
performance clock and data management products.  
Y
W
G
= Work Week  
= Pb-Free Package  
Features  
ꢀInput Clock Frequency > 3.0 GHz  
ꢀInput Data Rate > 2.5 Gb/s  
ꢀ< 20 ps Within Device Output Skew  
ꢀ350 ps Typical Propagation Delay  
ꢀ150 ps Typical Rise and Fall Times  
ꢀDifferential LVPECL Outputs, 700 mV Amplitude, Typical  
(Note: Microdot may be in either location)  
*For additional marking information, refer to  
Application Note AND8002/D.  
Q0  
Q0  
LVPECL Mode Operating Range: V = 2.375 V to 3.63 V with  
CC  
GND = 0 V  
Q1  
Q1  
ꢀInternal 50 Input Termination Resistors Provided  
ꢀVREF_AC Reference Output Voltage  
ꢀ-40 °C to +85°C Ambient Operating Temperature  
ꢀAvailable in 3 mm x 3 mm 16 Pin QFN  
ꢀThese are Pb-Free Devices  
IN  
VT  
IN  
Q2  
Q2  
D
Q
EN  
Q3  
Q3  
Figure 1. Simplified Logic Diagram  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
©ꢀ Semiconductor Components Industries, LLC, 2007  
1
Publication Order Number:  
NB6L14/D  
May, 2007 - Rev. 1  
NB6L14  
Q0  
Q0 Q0  
16 15  
V
GND  
13  
CC  
/Q0  
Exposed Pad (EP)  
14  
Q1  
Q1  
1
2
3
4
12  
11  
10  
9
IN  
/Q1  
IN  
VT  
/IN  
50  
50  
Q1  
Q2  
Q2  
VT  
VREF_AC  
IN  
Q2  
/Q2  
D
Q
EN  
5
6
7
8
CLK  
Q3  
VREF_AC  
Q3 Q3  
V
EN  
CC  
/Q3  
Figure 2. QFN-16 Pinout  
(Top View)  
Figure 3. Logic Diagram  
Q0:Q3  
Table 1. EN TRUTH TABLE  
IN  
IN  
EN  
Q0:Q3  
0
1
x
1
0
x
1
1
0
0
1
0+  
1
0
1+  
+ = On next negative transition of the input signal (IN).  
x = Don't care.  
Table 2. PIN DESCRIPTION  
Pin  
Name  
I/O  
Description  
1
Q1  
LVPECL Output  
Non-inverted Differential Output. Typically Terminated with 50 Resistor to  
–2.0 V.  
V
CC  
2
3
Q1  
Q2  
LVPECL Output  
LVPECL Output  
Inverted Differential Output. Typically Terminated with 50 Resistor to V  
– 2.0 V.  
CC  
Non-inverted Differential Output. Typically Terminated with 50 Resistor to  
– 2.0 V.  
V
CC  
4
5
Q2  
Q3  
LVPECL Output  
LVPECL Output  
Inverted Differential Output. Typically Terminated with 50 Resistor to V  
– 2.0 V.  
– 2.0 V.  
CC  
Non-inverted Differential Output. Typically Terminated with 50 Resistor to  
– 2.0 V.  
V
CC  
6
7
8
Q3  
LVPECL Output  
Inverted Differential Output. Typically Terminated with 50 Resistor to V  
CC  
V
CC  
-
Positive Supply Voltage  
EN  
LVTTL/LVCMOS  
Synchronous Output Enable. When LOW, Q outputs will go LOW and Q outputs will  
go HIGH on the next negative transition of IN input. The internal DFF register is  
clocked on the falling edge of IN input (see Figure 16). The EN pin has an internal  
pullup resistor and defaults HIGH when left open.  
9
IN  
LVPECL, CML,  
LVDS, HSTL  
Inverted Differential Clock Input. Internal 50 Resistor to Termination Pin, VT.  
10  
11  
12  
VREF_AC  
Output Voltage Reference for capacitor-coupled inputs, only.  
VT  
IN  
Internal 100 center-tapped Termination Pin for IN and IN.  
LVPECL, CML,  
LVDS, HSTL  
Non-inverted Differential Clock Input. Internal 50 Resistor to Termination Pin, VT.  
13  
14  
15  
GND  
-
Negative Supply Voltage  
V
CC  
-
Positive Supply Voltage  
Q0  
LVPECL Output  
Noninverted Differential Output. Typically Terminated with 50 Resistor to  
–2.0 V.  
V
CC  
16  
-
Q0  
EP  
LVPECL Output  
-
Inverted Differential Output. Typically Terminated with 50 Resistor to V –2.0 V.  
CC  
The Exposed Pad (EP) on the QFN-16 package bottom is thermally connected to the  
die for improved heat transfer out of package. The exposed pad must be attached to  
a heat-sinking conduit. The pad is not electrically connected to the die, but is  
recommended to be electrically and thermally connected to GND on the PC board.  
1. In the differential configuration when the input termination pin VT, is connected to a common termination voltage or left open, and if no signal  
is applied on IN/IN inputs, then the device will be susceptible to self-oscillation.  
http://onsemi.com  
2
NB6L14  
Table 3. ATTRIBUTES  
Characteristics  
Value  
ESD Protection  
Human Body Model  
Machine Model  
> 4 kV  
> 100 V  
Moisture Sensitivity (Note 2)  
Flammability Rating  
Transistor Count  
QFN-16  
Level 1  
UL 94 V-0 @ 0.125 in  
167  
Oxygen Index: 28 to 34  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
2. For additional information, see Application Note AND8003/D.  
Table 4. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply  
Condition 1  
GND = 0 V  
Condition 2  
Rating  
4.0  
Unit  
V
V
CC  
Io  
V
I
Positive Input/Output  
Input Current  
GND = 0 V  
-0.5 V v V v V + 0.5 V  
4.0  
V
Io  
CC  
"50  
mA  
IN  
Source or Sink Current (IN/IN)  
I
I
Source or Sink Current on VT Pin  
Output Current  
"2.0  
mA  
VREF_AC  
Continuous  
Surge  
50  
100  
mA  
mA  
OUT  
T
Operating Temperature Range  
Storage Temperature Range  
-40 to +85  
°C  
°C  
A
T
stg  
-65 to +150  
Thermal Resistance  
(Junction-to-Ambient) (Note 3)  
0 lfpm  
500 lfpm  
QFN-16  
QFN-16  
42  
35  
°C/W  
°C/W  
JA  
Thermal Resistance (Junction-to-Case) (Note 3)  
Wave Solder Pb-Free  
QFN-16  
4
°C/W  
°C  
JC  
T
sol  
265  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
3. JEDEC standard multilayer board - 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.  
http://onsemi.com  
3
 
NB6L14  
Table 5. DC CHARACTERISTICS, Multi-Level Inputs, LVPECL Outputs  
= 2.375 V to 3.63 V, GND = 0 V, T = -40°C to +85°C  
A
V
CC  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
I
Power Supply Current (Inputs and Outputs Open)  
35  
47  
65  
mA  
CC  
LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS  
V
Output HIGH Voltage (Notes 4 and 5) (Q, Q)  
V
- 1145  
V
V
- 1020  
V - 895  
CC  
mV  
mV  
OH  
CC  
CC  
V
CC  
V
CC  
= 3.3 V  
= 2.5 V  
2155  
1355  
2280  
1480  
2405  
1605  
V
OL  
Output LOW Voltage (Notes 4 and 5) (Q, Q)  
V
CC  
- 1945  
- 1875  
V
CC  
- 1695  
CC  
V
CC  
V
CC  
= 3.3 V  
= 2.5 V  
1355  
555  
1475  
675  
1605  
805  
DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (See Figures 5 and 6)  
V
V
V
V
Input Threshold Reference Voltage Range (Note 6)  
Single-Ended Input High Voltage  
1100  
V
- 100  
mV  
mV  
mV  
mV  
th  
CC  
V
+ 100  
V
CC  
IH  
th  
Single-Ended Input LOW Voltage  
V
EE  
V - 100  
th  
IL  
Single-Ended Input Voltage Amplitude (V - V )  
IH IL  
200  
V
CC  
- GND  
ISE  
REFAC  
V
V
Output Reference Voltage (V w 2.5 V)  
CC  
V
CC  
- 1.525  
V
CC  
- 1.425  
V
CC  
- 1.325  
mV  
REFAC  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (See Figures 7 and 8) (Note 7)  
V
V
V
Differential Input HIGH Voltage  
Differential Input LOW Voltage  
1200  
GND  
950  
V
mV  
mV  
mV  
IHD  
ILD  
CC  
V
- 100  
IHD  
Input Common Mode Range (Differential Configuration)  
(Note 8)  
V
– 50  
CMR  
CC  
V
ID  
Differential Input Voltage (IN-IN) (V  
V
IHD- ILD  
)
100  
V - GND  
CC  
mV  
I
Input HIGH Current  
(VT Open)  
IN/IN  
IN/IN  
-150  
+150  
A
IH  
I
IL  
Input LOW Current  
(VT Open)  
-150  
+150  
A
LVTTL/LVCMOS INPUT DC ELECTRICAL CHARACTERISTICS  
V
V
Input HIGH Voltage  
Input LOW Voltage  
2.0  
GND  
-10  
V
V
V
IH  
IL  
CC  
0.8  
50  
0
I
Input HIGH Current, V = V = 3.63 V  
CC IN  
A  
A  
IH  
IL  
I
Input LOW Current, V = 3.63 V, V = 0 V  
CC IN  
-150  
TERMINATION RESISTORS  
R
R
Internal Input Termination Resistor (IN to VT)  
Differential Input Resistance (IN to IN)  
40  
80  
50  
60  
TIN  
100  
120  
DIFF_IN  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
4. LVPECL outputs loaded with 50 to V - 2.0 V for proper operation.  
.
CC  
5. Input and output parameters vary 1:1 with V  
CC  
6. V is applied to the complementary input when operating in single-ended mode.  
th  
7. V , V , V and V  
8. V  
parameters must be complied with simultaneously.  
max varies 1:1 with V . The V  
IHD ILD ID  
CMR  
min varies 1:1 with GND, V  
range is referenced to the most positive side of the differential  
CMR  
input signal.  
CMR  
CC  
CMR  
http://onsemi.com  
4
 
NB6L14  
Table 6. AC CHARACTERISTICS V = 2.375 V to 3.63 V, GND = 0 V, T = -40°C to +85°C (Note 9)  
CC  
A
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
V
Output Voltage Amplitude (@ V  
) (Note 10)  
INPPmin  
mV  
OUTPP  
f
1.25 GHz  
in  
550  
380  
250  
700  
500  
320  
IN  
1.25 GHz f 2.0 GHz  
2.0 GHz f 3.0 GHz  
in  
f
Maximum Operating Data Rate  
Propagation Delay  
2.5  
Gb/s  
ps  
DATA  
t
t
t
t
IN to Q  
EN to IN, IN  
EN to IN, IN  
350  
PD  
S
Set-Up Time (Note 11)  
Hold Time (Note 11)  
300  
300  
ps  
ps  
H
Within-Device Skew (Note 12)  
Device to Device Skew (Note 13)  
5.0  
20  
ps  
SKEW  
150  
t
RMS Random Jitter (Note 14)  
ps  
JITTER  
f
= 2.5 GHz  
= 2.5 Gb/s  
1.0  
IN  
Peak-to-Peak Data Dependent Jitter  
(Note 15)  
f
14  
DATA  
V
Input Voltage Swing/Sensitivity  
(Differential Configuration) (Note 10)  
100  
70  
V
CC  
- GND  
mV  
ps  
INPP  
t ,t  
r f  
Output Rise/Fall Times @ Full Output Swing  
(20%-80%)  
150  
200  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
9. Measured by forcing V  
INPP  
rates 40 ps (20%-80%).  
10.Input and output voltage swing is a single-ended measurement operating in differential mode.  
(min) from a 50% duty cycle clock source. All loading with an external R = 50 to V  
L
– 2.0 V. Input edge  
CC  
11. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous  
applications, set-up and hold times do not apply.  
12.Within device skew is measured between two different outputs under identical power supply, temperature and input conditions.  
13.Device to device skew is measured between outputs under identical transition @ 0.5 GHz.  
14.Additive RMS jitter with 50% duty cycle clock signal.  
^23  
15.Additive peak-to-peak data dependent jitter with input NRZ data at PRBS 2 -1 and K28.5 at 2.5Gb/s.  
http://onsemi.com  
5
 
NB6L14  
INn  
50  
50  
VTn  
INn  
Figure 4. Input Structure  
V
CC  
V
V
IN  
IHmax  
V
thmax  
V
IH  
ILmax  
V
th  
IL  
V
IH  
V
th  
V
IL  
V
th  
V
IN  
V
V
IHmin  
V
thmin  
ILmin  
V
th  
GND  
Figure 6. Vth Diagram  
Figure 5. Differential Input Driven  
Single-Ended  
V
CC  
V
V
V
IH(MAX)  
IL  
D
D
IH  
V
V
= V  
- V  
IHD ILD  
CMR  
ID  
V
IL  
V
V
IH  
Figure 7. Differential Inputs  
Driven Differentially  
IL(MIN)  
GND  
Figure 8. VCMR Diagram  
IN  
V
V
= V (IN) - V (IN)  
IH IL  
INPP  
IN  
Q
= V (Q) - V (Q)  
OH OL  
OUTPP  
Q
t
PD  
t
PD  
Figure 9. AC Reference Measurement  
http://onsemi.com  
6
NB6L14  
V
CC  
V
CC  
V
CC  
V
CC  
NB6L14  
NB6L14  
Zo = 50  
Zo = 50 ꢀ  
IN  
IN  
IN  
IN  
50  
50  
50  
50  
LVPECL  
Driver  
LVDS  
Driver  
VT = V  
CC  
Zo = 50  
- 2 V  
VT = Open  
Zo = 50  
GND  
GND  
GND  
GND  
Figure 10. LVPECL Interface  
Figure 11. LVDS Interface  
V
CC  
V
CC  
NB6L14  
Zo = 50  
IN  
IN  
50  
50  
CML  
Driver  
VT = V  
CC  
Zo = 50  
GND  
GND  
Figure 12. Standard 50 W Load CML Interface  
V
CC  
V
CC  
V
CC  
V
CC  
NB6L14  
NB6L14  
Zo = 50  
Zo = 50  
VT = V  
IN  
IN  
IN  
50  
50  
50  
50  
Differential  
Driver  
Single-Ended  
Driver  
VT = V  
REF  
Zo = 50  
_AC*  
_AC*  
REF  
IN (Open)  
GND  
GND  
GND  
GND  
Figure 13. Capacitor-Coupled  
Differential Interface  
Figure 14. Capacitor-Coupled  
Single-Ended Interface  
(VT Connected to VREFAC)  
(VT Connected to VREFAC  
)
*V  
REFAC  
bypassed to ground with a 0.01 F capacitor  
http://onsemi.com  
7
NB6L14  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
f , CLOCK OUTPUT FREQUENCY (GHz)  
out  
Figure 15. Output Voltage Amplitude (VOUTPP) versus Output  
Frequency at Ambient Temperature (Typical)  
EN  
V /2  
CC  
V /2  
CC  
t
S
t
H
/IN  
IN  
V
INPP  
t
pd  
/Q  
Q
V
OUTPP  
Figure 16. EN Timing Diagram  
Z = 50  
o
Q
Q
D
D
Receiver  
Device  
Driver  
Device  
Z = 50  
o
50  
50 ꢀ  
V
TT  
= V  
V
TT  
- 2.0 V  
CC  
Figure 17. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D - Termination of ECL Logic Devices.)  
http://onsemi.com  
8
NB6L14  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB6L14MNG  
QFN-16, 3x3 mm  
(Pb-Free)  
123 Units / Rail  
NB6L14MNR2G  
QFN-16, 3x3 mm  
(Pb-Free)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
9
NB6L14  
PACKAGE DIMENSIONS  
16 PIN QFN  
MN SUFFIX  
CASE 485G-01  
ISSUE C  
D
A
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN 1  
LOCATION  
E
5.  
L
CONDITION CAN NOT VIOLATE 0.2 MM  
max  
MINIMUM SPACING BETWEEN LEAD TIP  
AND FLAG  
0.15  
C
TOP VIEW  
MILLIMETERS  
0.15  
C
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
(A3)  
0.10  
0.08  
C
C
A3  
b
0.20 REF  
0.18  
0.30  
D
D2 1.65  
E 3.00 BSC  
E2 1.65  
3.00 BSC  
A
1.85  
SEATING  
PLANE  
16 X  
1.85  
SIDE VIEW  
D2  
A1  
e
K
L
0.50 BSC  
0.18 TYP  
0.30 0.50  
C
SOLDERING FOOTPRINT*  
e
L
16X  
EXPOSED PAD  
5
8
NOTE 5  
3.25  
0.128  
0.30  
4
9
0.575  
0.022  
EXPOSED PAD  
E2  
e
0.012  
K
16X  
12  
1
16  
13  
16X b  
1.50  
0.059  
3.25  
0.128  
0.10  
0.05  
C
C
A
B
BOTTOM VIEW  
NOTE 3  
0.30  
0.012  
0.50  
0.02  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb-Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ECLinPS MAX is a trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800-282-9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
ꢁLiterature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada  
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
ꢁ2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051  
Phone: 81-3-5773-3850  
For additional information, please contact your  
local Sales Representative.  
NB6L14/D  

相关型号:

NB6L16

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16D

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16DG

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16DR2

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16DR2G

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16DT

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16DTG

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16DTR2

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16DTR2G

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L16_07

2.5V / 3.3V Multilevel Input to Differential LVPECL/LVNECL Clock or Data Receiver/ Driver/Translator Buffer
ONSEMI

NB6L239

2.5 V / 3.3 V Any Differential Clock IN to Differential LVPECL OUT ±1/2/4/8, ±2/4/8/16 Clock Divider
ONSEMI

NB6L239MN

2.5 V / 3.3 V Any Differential Clock IN to Differential LVPECL OUT ±1/2/4/8, ±2/4/8/16 Clock Divider
ONSEMI