NB7L572MNR4G [ONSEMI]

2.5V / 3.3V Differential 4:1 Mux Input to 1:2 LVPECL Clock/Data Fanout / Translator; 2.5V / 3.3V的差分4 : 1多路复用器输入至1 : 2的LVPECL时钟/数据扇出/翻译
NB7L572MNR4G
型号: NB7L572MNR4G
厂家: ONSEMI    ONSEMI
描述:

2.5V / 3.3V Differential 4:1 Mux Input to 1:2 LVPECL Clock/Data Fanout / Translator
2.5V / 3.3V的差分4 : 1多路复用器输入至1 : 2的LVPECL时钟/数据扇出/翻译

复用器 时钟
文件: 总9页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NB7L572  
2.5V / 3.3V Differential 4:1  
Mux Input to 1:2 LVPECL  
Clock/Data Fanout /  
Translator  
http://onsemi.com  
MARKING  
MultiLevel Inputs w/ Internal Termination  
The NB7L572 is a high performance differential 4:1 Clock/Data  
input multiplexer and a 1:2 LVPECL Clock/Data fanout buffer. The  
INx/INx inputs includes internal 50 W termination resistors and will  
accept differential LVPECL, CML, or LVDS logic levels. The  
NB7L572 incorporates a pair of Select pins that will choose one of  
four differential inputs and will produce two identical LVPECL output  
copies of Clock or Data operating up to 7 GHz or 10 Gb/s,  
respectively. As such, NB7L572 is ideal for SONET, GigE, Fiber  
Channel, Backplane and other Clock/Data distribution applications.  
The NB7L572 INx/INx inputs, outputs and core logic are powered  
by a 2.5 V $5% V or 3.3 V $10% power supply. The two differential  
LVPECL outputs will swing 750 mV when externally terminated with  
DIAGRAM*  
32  
1
32  
1
NB7L  
572  
AWLYYWWG  
QFN32  
MN SUFFIX  
CASE 488AM  
A
= Assembly Site  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
a 50 W resistor to V – 2 V, and are optimized for low skew and  
CC  
*For additional marking information, refer to  
Application Note AND8002/D.  
minimal jitter.  
The NB7L572 is offered in a low profile 5x5 mm 32-pin QFN  
Pb-free package. Application notes, models, and support  
documentation are available at www.onsemi.com.  
The NB7L572 is a member of the GigaCommfamily of high  
performance clock products.  
IN0  
50W  
T0  
50W  
V
IN0  
V
V
V
V
REFAC0  
Features  
0
IN1  
50W  
Input Data Rate > 10.7 Gb/s Typical  
Data Dependent Jitter < 15 ps  
Maximum Input Clock Frequency > 7 GHz Typical  
Random Clock Jitter < 0.8 ps RMS  
V
T1  
Q0  
Q0  
50W  
IN1  
REFAC1  
IN2  
1
2
Q1  
Q1  
50W  
V
T2  
50W  
Low Skew 1:2 LVPECL Outputs, < 15 ps max  
4:1 MultiLevel Mux Inputs, Accepts LVPECL, CML LVDS  
150 ps Typical Propagation Delay  
IN2  
3
REFAC2  
IN3  
50W  
T3  
V
45 ps Typical Rise and Fall Times  
50W  
IN3  
Differential LVPECL Outputs, 750 mV Peak-to-Peak, Typical  
REFAC3  
SEL0  
SEL1  
Operating Range: V = 2.375 V to 3.6 V  
CC  
Internal 50 W Input Termination Resistors  
V  
Reference Output  
ORDERING INFORMATION  
REFAC  
40°C to +85°C Ambient Operating Temperature  
These are PbFree Devices  
See detailed ordering and shipping information in the package  
dimensions section on page 8 of this data sheet.  
© Semiconductor Components Industries, LLC, 2008  
1
Publication Order Number:  
December, 2008 Rev. 1  
NB7L572/D  
NB7L572  
Exposed Pad (EP)  
GND  
24  
23  
22  
21  
20  
IN0  
VT0  
1
2
3
4
5
6
7
8
VCC  
Q1  
VREFAC0  
Q1  
IN0  
IN1  
NB7L572  
VCC  
VT1  
19 NC  
VREFAC1  
IN1  
18 SEL1  
VCC  
17  
Figure 1. Pinout Configuration (Top View)  
Table 1. INPUT SELECT FUNCTION TABLE  
SEL1*  
SEL0*  
Clock / Data Input Selected  
0
0
1
1
0
1
0
1
IN0 Input Selected  
IN1 Input Selected  
IN2 Input Selected  
IN3 Input Selected  
*Defaults HIGH when left open.  
http://onsemi.com  
2
 
NB7L572  
Table 2. PIN DESCRIPTION  
Pin  
Name  
I/O  
Description  
1, 4  
5, 8  
25, 28  
29, 32  
IN0, IN0  
IN1, IN1  
IN2, IN2  
IN3, IN3  
LVPECL, CML,  
LVDS Input  
Noninverted, Inverted, Differential Clock or Data Inputs.  
2, 6  
26, 30  
VT0, VT1  
VT2, VT3  
Internal 100 W Centertapped Termination Pin for INx / INx  
15  
18  
SEL0  
SEL1  
LVTTL/LVCMOS  
Input  
Input Select pins, default HIGH when left open through a 28kW pullup resistor. Input  
logic threshold is V /2. See Select Function, Table 1.  
CC  
14, 19  
NC  
No Connect  
10, 13, 16  
17, 20, 23  
VCC  
Positive Supply Voltage. All V pins must be connected to the positive power supply  
for correct DC and AC operation.  
CC  
11, 12  
21, 22  
Q0, Q0  
Q1, Q1  
LVPECL Output  
Inverted, Noninverted Differential Outputs.  
9, 24  
GND  
Negative Supply Voltage, connected to Ground  
3
7
27  
31  
VREFAC0  
VREFAC1  
VREFAC2  
VREFAC3  
Output Voltage Reference for CapacitorCoupled Inputs  
EP  
The Exposed Pad (EP) on the QFN32 package bottom is thermally connected to the  
die for improved heat transfer out of package. The exposed pad must be attached to a  
heatsinking conduit. The pad is electrically connected to the die, and must be elec-  
trically connected to GND.  
1. In the differential configuration when the input termination pins (VT0, VT1, VT2, VT3) are connected to a common termination voltage or left  
open, and if no signal is applied on INx / INx input, then the device will be susceptible to selfoscillation.  
2. All VCC, and GND pins must be externally connected to a power supply for proper operation.  
http://onsemi.com  
3
NB7L572  
Table 3. ATTRIBUTES  
Characteristic  
Value  
ESD Protection  
Human Body Model  
Machine Model  
> 4 kV  
> 150 V  
Input Pullup Resistor (R  
)
28 kW  
Level 1  
PU  
Moisture Sensitivity (Note 3)  
QFN32  
Flammability Rating Oxygen Index: 28 to 34  
Transistor Count  
UL 94 V0 @ 0.125 in  
205  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
3. For additional information, see Application Note AND8003/D.  
Table 4. MAXIMUM RATINGS  
Symbol  
Parameter  
Condition 1  
GND = 0 V  
GND = 0 V  
Condition 2  
Rating  
0.5 to +4.0  
Unit  
V
V
V
V
Positive Power Supply  
Positive Input Voltage  
CC  
0.5 to V +0.5  
V
IN  
CC  
Differential Input Voltage |IN – IN|  
LVPECL Output Current  
1.89  
V
INPP  
I
Continuous  
Surge  
50  
100  
mA  
mA  
out  
I
Input Current Through RT (50 W Resistor)  
Operating Temperature Range  
$40  
40 to +85  
mA  
°C  
IN  
T
A
T
stg  
Storage Temperature Range  
65 to +150  
°C  
q
Thermal Resistance (JunctiontoAmbient) (Note 4)  
0 lfpm  
500 lfpm  
QFN32  
QFN32  
31  
27  
°C/W  
°C/W  
JA  
q
Thermal Resistance (JunctiontoCase) (Note 4)  
QFN32  
12  
°C/W  
°C  
JC  
T
sol  
Wave Solder  
v 20 sec  
265  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
4. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.  
http://onsemi.com  
4
 
NB7L572  
Table 5. DC CHARACTERISTICS POSITIVE LVPECL OUTPUT V = 2.375 V to 3.6 V, GND = 0 V, TA = 40°C to +85°C  
CC  
(Note 6)  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
V
CC  
Power Supply Voltage  
V
CC  
= 2.5V  
= 3.3 V  
2.375  
3.0  
2.5  
3.3  
2.625  
3.6  
V
CC  
V
I
Power Supply Current for V (Inputs and Outputs Open)  
90  
110  
mA  
CC  
CC  
LVPECL OUTPUTS  
V
Output HIGH Voltage (Note 6)  
Output LOW Voltage (Note 6)  
V
– 1145  
1355  
2155  
V
– 900  
1600  
2400  
V – 825  
CC  
1675  
2475  
mV  
mV  
OH  
OL  
CC  
CC  
V
V
= 2.5 V  
= 3.3 V  
CC  
CC  
V
V
CC  
– 2000  
500  
1300  
V
CC  
– 1700  
800  
1600  
V
CC  
– 1500  
1000  
1800  
V
CC  
V
CC  
= 2.5 V  
= 3.3 V  
DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLEENDED (Figures 4 & 6) (Note 7)  
V
V
V
V
SingleEnded Input HIGH Voltage  
V
th  
+ 100  
V
CC  
mV  
mV  
mV  
mV  
IH  
IL  
SingleEnded Input LOW Voltage  
GND  
1100  
200  
V
– 100  
– 100  
th  
Input Threshold Reference Voltage Range (Note 8)  
V
CC  
th  
SingleEnded Input Voltage (V – V )  
1200  
ISE  
IH  
IL  
VREFAC  
V
Output Reference Voltage (100 mA Load)  
V
CC  
– 1500  
V
CC  
– 1200  
V – 1000  
CC  
mV  
REFAC  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 5 & 7) (Note 9)  
V
V
V
V
Differential Input HIGH Voltage (IN, IN)  
Differential Input LOW Voltage (IN, IN)  
1200  
V
mV  
mV  
mV  
mV  
IHD  
ILD  
ID  
CC  
0
V
– 100  
IHD  
Differential Input Voltage (IN, IN) (V  
– V  
)
100  
1200  
V – 50  
CC  
IHD  
ILD  
Input Common Mode Range (Differential Configuration, Note 10)  
(Figure 8)  
1150  
CMR  
I
I
Input HIGH Current IN/IN (VT IN/VT IN Open)  
Input LOW Current IN/IN (VT IN/VT IN Open)  
150  
150  
150  
150  
mA  
mA  
IH  
IL  
CONTROL INPUT (SELx Pin)  
V
V
Input HIGH Voltage for Control Pin  
Input LOW Voltage for Control Pin  
Input HIGH Current  
2.0  
V
V
V
IH  
IL  
CC  
GND  
0.8  
40  
0
I
IH  
I
IL  
mA  
mA  
Input LOW Current  
215  
TERMINATION RESISTORS  
Internal Input Termination Resistor (Measured from INx to VTx)  
R
TIN  
45  
50  
55  
W
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
5. Input and Output parameters vary 1:1 with V  
.
CC  
6. LVPECL outputs loaded with 50 W to V 2V for proper operation.  
CC  
7. Vth, V , V and V parameters must be complied with simultaneously.  
IH  
IL,,  
ISE  
8. Vth is applied to the complementary input when operating in singleended mode.  
9. V , V and V parameters must be complied with simultaneously.  
V
IHD  
CMR  
ILD, ID  
CMR  
10.V  
min varies 1:1 with GND, V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
CMR  
CC  
CMR  
input signal.  
http://onsemi.com  
5
 
NB7L572  
Table 6. AC CHARACTERISTICS V = 2.375 V to 3.6 V, GND = 0 V, TA = 40°C to +85°C (Note 11)  
CC  
Symbol  
Characteristic  
Min  
7
Typ  
8
Max  
Unit  
GHz  
Gbps  
mV  
f
f
Maximum Input Clock Frequency V  
w 400 mV  
MAX  
OUT  
Maximum Operating Data Rate NRZ, (PRBS23)  
10  
11  
DATAMAX  
V
Output Voltage Amplitude (@ V  
(Note 12)  
) (Figure 2 & 9)  
f
in  
f
in  
5 GHz  
7 GHz  
550  
400  
750  
500  
OUTPP  
INPPmin  
t
t
,
Propagation Delay to Differential Outputs  
Measured at Differential CrossPoint  
@ 1 GHz INx/INx to Qx/Qx (Figure 9)  
@ 50 MHz SELx to Qx (Figure 10)  
125  
300  
150  
175  
1000  
ps  
PLH  
PHL  
t
t
Differential Propagation Delay Temperature Coefficient  
115  
0
fs/°C  
PD Tempco  
skew  
Output – Output skew (within device) (Note 13)  
Device – Device skew (tpd max – tpd min)  
10  
50  
ps  
t
t
Output Clock Duty Cycle (Reference Duty Cycle = 50%)  
45  
50  
55  
%
DC  
Additive Random Clock Jitter, RJ(RMS) (Note 14)  
Data Dependent Jitter, DDJ (Note 15)  
f
f
v 7.0 GHz  
v 10 Gbps  
0.5  
6
0.8  
15  
ps rms  
ps pkpk  
JITTER  
in  
in  
V
Input Voltage Swing (Differential Configuration) (Note 16)  
100  
25  
1200  
65  
mV  
ps  
INPP  
t , t  
r,  
Output Rise/Fall Times @ 1 GHz; (20% 80%), V = 800 mV Q, Q  
45  
f
IN  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared  
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit  
values are applied individually under normal operating conditions and not valid simultaneously.  
11. Measured using a 100 mVpkpk source, 50% duty cycle clock source. All output loading with external 50 W to V 2 V. Input edge  
CC  
rates 40 ps (20% 80%).  
12.Output voltage swing is a singleended measurement operating in differential mode.  
13.Skew is measured between outputs under identical transitions and conditions. Duty cycle skew is defined only for differential operation when  
the delays are measured from crosspoint of the inputs to the crosspoint of the outputs.  
14.Additive RMS jitter with 50% duty cycle clock signal.  
15.Additive PeaktoPeak data dependent jitter with input NRZ data at K28.5.  
16.Input voltage swing is a singleended measurement operating in differential mode.  
800  
V
CC  
750  
700  
INx  
50 W  
50 W  
V
Tx  
650  
600  
INx  
0
1
2
3
4
5
6
7
8
fin, CLOCK INPUT FREQUENCY (GHz)  
Figure 3. Input Structure  
Figure 2. CLOCK Output Voltage Amplitude  
(VOUTPP) / RMS Jitter vs. Input Frequency (fin) at  
Ambient Temperature (typical)  
http://onsemi.com  
6
 
NB7L572  
IN  
V
IH  
V
IN  
IN  
th  
IL  
V
IN  
V
th  
Figure 4. Differential Input Driven  
Figure 5. Differential Inputs  
Driven Differentially  
SingleEnded  
V
CC  
thmax  
V
V
IHmax  
V
ILmax  
V
ID  
= |V  
V  
IHD(IN) ILD(IN)|  
V
IH  
V
th  
V
IL  
IN  
IN  
V
th  
V
IHD  
IN  
V
ILD  
V
V
IHmin  
V
thmin  
ILmin  
GND  
Figure 6. Vth Diagram  
Figure 7. Differential Inputs Driven Differentially  
V
CC  
V
V
IHDmax  
ILDmax  
IHDtyp  
V
CMmax  
IN  
V
V
= V (IN) V (IN)  
IH IL  
INPP  
IN  
Q
V
IN  
IN  
V
CMR  
V
ID  
= V  
V  
IHD ILD  
V
ILDtyp  
= V (Q) V (Q)  
OUTPP  
OH  
OL  
Q
V
V
IHDmin  
V
CMmin  
t
PHL  
ILDmin  
t
PLH  
GND  
Figure 8. VCMR Diagram  
Figure 9. AC Reference Measurement  
V
CC  
/2  
V
CC  
/2  
SELx  
t
t
PLH  
PHL  
Qx  
Qx  
Figure 10. SELx to Qx Timing Diagram  
http://onsemi.com  
7
NB7L572  
Z = 50 W  
Q
Q
D
D
o
Receiver  
Device  
Driver  
Device  
Z = 50 W  
o
50 W  
50 W  
V
TT  
V
TT  
= V 2.0 V  
CC  
Figure 11. Typical Termination for Output Driver and Device Evaluation  
(See Application Note AND8020/D Termination of ECL Logic Devices.)  
V
CC  
V
CC  
V
CC  
V
CC  
NB7L572  
NB7L572  
D
D
D
D
Z
= 50 W  
Z
Z
= 50 W  
O
O
50 W  
50 W  
50 W  
50 W  
LVPECL  
Driver  
LVDS  
Driver  
VT = V 2 V  
V = Open  
T
CC  
Z
O
= 50 W  
= 50 W  
O
V
EE  
V
EE  
V
EE  
V
EE  
Figure 12. LVPECL Interface  
Figure 13. LVDS Interface  
V
CC  
V
CC  
V
CC  
V
CC  
NB7L572  
NB7L572  
D
D
Z
O
= 50 W  
Z
O
= 50 W  
50 W  
50 W  
CML  
Driver  
50 W  
50 W  
Differential  
Driver  
V = V  
T
VT = V  
*
CC  
REFAC  
Z
O
= 50 W  
Z
O
= 50 W  
D
D
V
EE  
V
EE  
V
EE  
V
EE  
Figure 15. CapacitorCoupled  
Figure 14. Standard 50 W Load CML Interface  
Differential Interface  
(VT Connected to VREFAC  
)
*V  
REFAC  
bypassed to ground with a 0.01 mF capacitor  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NB7L572MNG  
QFN32  
(PbFree)  
79 Units / Rail  
NB7L572MNR4G  
QFN32  
(PbFree)  
1000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
8
NB7L572  
PACKAGE DIMENSIONS  
QFN32 5x5, 0.5P  
CASE 488AM01  
ISSUE O  
A
B
NOTES:  
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM TERMINAL  
PIN ONE  
LOCATION  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
E
MILLIMETERS  
DIM MIN  
0.800 0.900 1.000  
A1 0.000 0.025 0.050  
NOM MAX  
A
2 X  
0.15  
C
TOP VIEW  
A3  
b
D
0.200 REF  
0.180 0.250 0.300  
5.00 BSC  
2 X  
0.15  
C
C
D2 2.950 3.100 3.250  
5.00 BSC  
E2 2.950 3.100 3.250  
E
(A3)  
0.10  
0.08  
e
K
L
0.500 BSC  
0.200 −−−  
0.300 0.400 0.500  
A
−−−  
SEATING  
PLANE  
32 X  
C
A1  
SIDE VIEW  
D2  
C
SOLDERING FOOTPRINT*  
L
5.30  
EXPOSED PAD  
32 X  
K
16  
9
32 X  
3.20  
17  
8
32 X  
0.63  
E2  
1
24  
3.20 5.30  
25  
32  
32 X  
b
e
0.10  
0.05  
C
A
B
32 X  
C
28 X  
0.50 PITCH  
0.28  
BOTTOM VIEW  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NB7L572/D  

相关型号:

NB7L585

2.5V / 3.3V Differential 2:1 Mux Input to 1:6 LVPECL Clock/Data Fanout Buffer / Translator
ONSEMI

NB7L585MNG

2.5V / 3.3V Differential 2:1 Mux Input to 1:6 LVPECL Clock/Data Fanout Buffer / Translator
ONSEMI

NB7L585MNR4G

2.5V / 3.3V Differential 2:1 Mux Input to 1:6 LVPECL Clock/Data Fanout Buffer / Translator
ONSEMI

NB7L585MNTWG

2.5V / 3.3V Differential 2:1 Mux Input to 1:6 LVPECL Clock/Data Fanout Buffer Translator
ONSEMI

NB7L585R

2.5V/3.3V, 7GHz/10Gbps Differential 2:1 Mux Input to 1:6 RSECL Clock/Data Fanout Buffer / Translator
ONSEMI

NB7L585RMNG

2.5V/3.3V, 7GHz/10Gbps Differential 2:1 Mux Input to 1:6 RSECL Clock/Data Fanout Buffer / Translator
ONSEMI

NB7L585RMNR4G

2.5V/3.3V, 7GHz/10Gbps Differential 2:1 Mux Input to 1:6 RSECL Clock/Data Fanout Buffer / Translator
ONSEMI

NB7L585_14

2.5V / 3.3V Differential 2:1 Mux Input to 1:6 LVPECL Clock/Data Fanout Buffer Translator
ONSEMI

NB7L72M

Multi−Level Inputs w/ Internal Termination
ONSEMI

NB7L72MMNG

Multi−Level Inputs w/ Internal Termination
ONSEMI

NB7L72MMNHTBG

Multi−Level Inputs w/ Internal Termination
ONSEMI

NB7L72MMNR2G

Multi−Level Inputs w/ Internal Termination
ONSEMI