NB7L86A [ONSEMI]

2.5 V/3.3 V SiGe Differential Smart Gate with Output Level Select;
NB7L86A
型号: NB7L86A
厂家: ONSEMI    ONSEMI
描述:

2.5 V/3.3 V SiGe Differential Smart Gate with Output Level Select

文件: 总18页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V SiGe Differential  
Smart Gate with Output  
Level Select  
NB7L86A  
The NB7L86A is a multifunction differential Logic Gate which  
can be configured as an AND/NAND, OR/NOR, XOR/XNOR, or 2:1  
MUX. This device is part of the GigaCommt family of high  
performance Silicon Germanium products. The device is housed in  
a 3 x 3 mm 16 pin QFN package.  
www.onsemi.com  
Differential inputs incorporate internal 50 W termination resistors  
and accept NECL (Negative ECL), PECL (Positive ECL),  
LVCMOS/LVTTL, CML, or LVDS. The Output Level Select (OLS)  
input is used to program the peaktopeak output amplitude between 0  
and 800 mV in five discrete steps.  
1
QFN16 3x3, 0.5P  
CASE 485G  
The NB7L86A employs input default circuitry so that under open  
input condition (Dx, Dx, VTDx, VTDx, VTSEL) the Outputs of the  
device remains stable.  
MARKING DIAGRAM  
1
NB7L  
86A  
Features  
Maximum Input Clock Frequency > 8 GHz Typical  
Maximum Input Data Rate > 8 Gb/s Typical  
165 ps Typical Propagation Delay  
40 ps Typical Rise and Fall Times  
Selectable Swing PECL Output with Operating Range:  
ALYWG  
G
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
V
CC  
= 2.375 V to 3.465 V with V = 0 V  
EE  
Selectable Swing NECL Output with NECL Inputs with Operating  
Range: V = 0 V with V = 2.375 V to 3.465 V  
CC  
EE  
(Note: Microdot may be in either location)  
Selectable Output Level  
(0 V, 200 mV, 400 mV, 600 mV, or 800 mV PeaktoPeak Output)  
50 W Internal Input Termination Resistors  
This is a PbFree Device  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 17 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
December, 2019 Rev. 0  
NB7L86A/D  
NB7L86A  
VTD0  
16  
D0  
15  
D0  
14  
VTD0  
13  
1
2
3
4
12  
11  
10  
9
V
EE  
OLS  
SEL  
Q
Q
Exposed  
Pad EP  
SEL  
VTSEL  
V
CC  
7
8
6
5
VTD1  
D1  
D1  
VTD1  
Figure 1. QFN16 Pinout (Top View)  
Table 1. PIN DESCRIPTION  
Pin  
Name  
I/O  
Description  
1
2
OLS (Note 3)  
SEL  
Input  
Input for OLS (Output Level Select) Pin. Refer Table 2  
Input: LVCMOS/LVTTL,  
ECL/CML/LVDS  
Input for Select Logic Pin, Single Ended or Inverted Differential  
3
4
5
6
7
SEL  
VTSEL (Note 1)  
VTD1 (Note 1)  
D1  
Input for Select Logic Pin, Single Ended or nonInverted Differential  
Input: LVCMOS/LVTTL,  
ECL/CML/LVDS  
Pin with a common internal 50 W termination from SEL/SEL Pins. Refer  
Table 7 for usage with different Interface options  
Pin with an internal 50 W termination from D1 Pin. Refer Table 7 for  
usage with different Interface options  
Input: LVCMOS/LVTTL,  
ECL/CML/LVDS  
Input Pin, Noninverted Differential or Single Ended with internal 75 kW  
connected to V  
EE  
D1  
Input: LVCMOS/LVTTL,  
ECL/CML/LVDS  
Input Pin, Inverted Differential or Single Ended with internal 75 kW  
connected to V and 36.5 kW connected to V  
EE  
CC  
8
VTD1 (Note 1)  
Pin with an internal 50 W termination from D1 Pin. Refer Table 7 for  
usage with different Interface options  
9
V
CC  
(Note 2)  
Q
Positive Supply Voltage  
10  
Output: Reduced Swing ECL Output Pin, noninverted Differential Output with typical 50 W termination  
to V = V 2 V  
TT  
CC  
11  
Q
Output: Reduced Swing ECL Output Pin, inverted Differential Output with typical 50 W termination to  
= V 2 V  
V
TT  
CC  
12  
13  
V
(Note 2)  
Negative Supply Voltage  
EE  
VTD0 (Note 1)  
Pin with an internal 50 W termination from D0 Pin. Refer Table 7 for  
usage with different Interface options  
14  
15  
16  
D0  
Input: LVCMOS/LVTTL,  
ECL/CML/LVDS  
Input Pin, Inverted Differential or Single Ended with internal 75 kW  
connected to V and 36.5 kW connected to V  
EE  
CC  
D0  
Input: LVCMOS/LVTTL,  
ECL/CML/LVDS  
Input Pin, Noninverted Differential or Single Ended with internal 75 kW  
connected to V  
EE  
VTD0 (Note 1)  
EP  
Pin with an internal 50 W termination from D0 Pin. Refer Table 7 for  
usage with different Interface options  
Exposed Pad (EP) is thermally connected to the die for improved heat  
transfer out of the package. The exposed pad can be connected  
electrically to V on the PCB board  
EE  
1. In the differential configuration when the input termination pins (VTD0/1, VTD0/1, VTSEL) are connected to a common termination voltage,  
or left open, and if no signal is applied then the device will be susceptible to selfoscillation.  
2. All V and V pins must be externally connected to Power Supply to guarantee proper operation.  
CC  
EE  
3. When an output level of 400 mV is desired and V V > 3.0 V, 2 kW resistor should be connected from OLS pin to V .  
CC  
EE  
EE  
www.onsemi.com  
2
 
NB7L86A  
Table 2. OUTPUT LEVEL SELECT OLS  
OLS  
Q/Q VPP  
800 mV  
200 mV  
600 mV  
0 mV  
OLS Sensitivity  
OLS 75 mV  
OLS 150 mV  
OLS 100 mV  
OLS 75 mV  
OLS 100 mV  
N/A  
V
CC  
V
V
V
0.4 V  
0.8 V  
1.2 V  
(Note 4)  
Float  
CC  
CC  
CC  
V
EE  
400 mV  
600 mV  
4. When an output level of 400 mV is desired and V V > 3.0 V, 2 kW resistor should be connected from OLS to to V .  
EE  
CC  
EE  
50 W  
VTD0  
D0  
R
1
R
2
D0  
VTD0  
Q
Q
R
1
50 W  
50 W  
VTD1  
D1  
R
1
V
V
R
CC  
2
50 W 50 W  
D1  
EE  
R
1
VTD1  
50 W  
VTSEL  
SEL  
SEL  
Figure 2. Logic Diagram  
50 W  
VTD0  
D0  
D0  
VT or V  
BB  
V
CC  
Table 3. AND/NAND TRUTH TABLE (Note 5)  
a
D1  
0
b
SEL  
0
a * b  
VTD0  
Q
Q
50 W  
50 W  
D0  
0
Q
0
0
0
1
VTD1  
0
0
1
D1  
D1  
0
1
0
0
1
1
a
5. D0, D1, SEL are inverse of D0, D1, SEL unless specified  
otherwise.  
50 W 50 W  
VTD1  
50 W  
VTSEL  
SEL  
SEL  
b
Figure 3. Configuration for AND/NAND Function  
www.onsemi.com  
3
 
NB7L86A  
50 W  
VTD0  
D0  
D0  
a
Table 4. OR/NOR TRUTH TABLE (*)  
a
D0  
0
b
SEL  
0
a or b  
D1  
1
Q
0
1
1
1
VTD0  
VTD1  
Q
Q
50 W  
50 W  
0
1
1
1
1
0
D1  
D1  
V
CC  
1
1
1
*D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise.  
VT or V  
BB  
50 W 50 W  
VTD1  
50 W  
VTSEL  
b
SEL  
SEL  
Figure 4. Configuration for OR/NOR Function  
50 W  
VTD0  
D0  
D0  
a
Table 5. XOR/XNOR TRUTH TABLE (*)  
α
β
α XOR β  
Q
Q
VTD0  
VTD1  
D0  
0
D1  
1
SEL  
Q
0
1
1
0
50 W  
50 W  
0
1
0
1
0
1
D1  
D1  
1
0
1
0
50 W 50 W  
*D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise.  
VTD1  
50 W  
VTSEL  
b
SEL  
SEL  
Figure 5. Configuration for XOR/XNOR Function  
50 W  
VTD0  
D0  
Table 6. 2:1 MUX TRUTH TABLE (*)  
D0  
SEL  
1
Q
Q
Q
VTD0  
50 W  
50 W  
D1  
D0  
VTD1  
D1  
0
*D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise.  
D1  
50 W 50 W  
VTD1  
50 W  
VTSEL  
SEL  
SEL  
Figure 6. Configuration for 2:1 MUX Function  
www.onsemi.com  
4
NB7L86A  
Table 7. INTERFACING OPTIONS  
INTERFACING OPTIONS  
CONNECTIONS  
Connect VTD0, VTD0, VTSEL, VTD1, VTD1 TO V  
CML  
LVDS  
CC  
Connect VTD0, VTD0, VTD1, and VTD1 together. Leave VTSEL open  
ACCOUPLED  
Bias VTD0, VTD0, VTSEL, VTD1, VTD1 and VTSEL inputs within the Common Mode range  
(VIHCMR)  
RSECL, PECL, NECL  
LVTTL, LVCMOS  
Standard ECL termination techniques  
An external voltage should be applied to the unused complementary differential input.  
Nominal voltage of 1.5 V for LVTTL and V /2 for LVCMOS inputs  
CC  
Table 8. ATTRIBUTES  
Characteristics  
Value  
75 kW  
Internal Input Pulldown Resistors (R )  
1
Internal Input Pullup Resistor (R )  
37.5 kW  
2
ESD Protection:  
Human Body Model  
Charged Device Model  
Machine Model  
4 kV  
2 kV  
200 V  
Moisture Sensitivity (Note 6), PbFree  
Level 1  
Flammability Rating, Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
6. For additional information, see Application Note AND8003/D.  
Table 9. MAXIMUM RATINGS  
Symbol  
Parameter  
Positive Power Supply  
Condition 1  
Condition 2  
Rating  
Unit  
V
CC  
V
= 0 V  
3.6  
V
EE  
CC  
V
EE  
Negative Power Supply  
Positive Input  
V
= 0 V  
= 0 V  
3.6  
V
V
V
I
V
VI V  
3.6  
EE  
CC  
CC  
Negative Input  
V
= 0 V  
VI V  
3.6  
V
V
EE  
Differential Input Voltage  
|Dn Dn|, |SEL SEL|  
V
V
V 2.8 V  
2.8  
CC  
EE  
V
INPP  
V 2.8 V  
|V V  
|
CC  
EE  
CC  
EE  
Static  
45  
mA  
I
IN  
Input Current through RT (50 W Resistor)  
Surge  
Continuous  
Surge  
80  
25  
50  
mA  
mA  
mA  
I
Output Current  
OUT  
°C  
°C  
T
Operating Temperature Range  
Storage Temperature Range  
40 to +85  
A
Tstg  
65 to +150  
0 lfpm  
41.6  
35.2  
4
°C/W  
°C/W  
°C/W  
°C  
Thermal Resistance (JunctiontoAmbient)  
qJA  
(Note 7)  
500 lfpm  
2S2P (Note 7)  
< 3 sec @ 260°C  
qJC  
Thermal Resistance (JunctiontoCase)  
Tsol  
Wave Solder  
(PbFree)  
265  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
7. JEDEC standard multilayer board 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.  
www.onsemi.com  
5
 
NB7L86A  
°
Table 10. DC CHARACTERISTICS, INPUT WITH LVPECL OUTPUT: V = 2.5 V; V = 0 V, T = 40 C to +85°C (Note 8)  
CC  
EE  
A
405C  
255C  
855C  
Symbol  
POWER SUPPLY CURRENT  
Negative Power Supply Current  
LVPECL OUTPUTS (Note 9)  
Min  
23  
Typ  
Max  
39  
Min  
Typ  
Max  
Min  
Typ  
Max  
39  
Characteristic  
Unit  
I
EE  
30  
23  
30  
39  
23  
30  
mA  
V
Output HIGH Voltage  
Output LOW Voltage  
1460  
1510  
1570  
1490  
1540  
1600  
1515  
1565  
1625  
mV  
mV  
OH  
V
OL  
(OLS = V  
)
555  
705  
1295  
895  
855  
595  
1270  
810  
745  
1330  
930  
895  
625  
1295  
840  
775  
1355  
960  
925  
CC  
(OLS = V 0.4 V) 1235  
1385  
1015  
1585  
1215  
1420  
1050  
1620  
1250  
1445  
1080  
1640  
1275  
CC  
(OLS = V 0.8 V, OLS = FLOAT) 775  
CC  
(OLS = V 1.2 V) 1455  
1505  
1095  
1490  
1040  
1540  
1130  
1510  
1065  
1560  
1155  
CC  
(OLS = V  
)
)
1005  
670  
EE  
V
mV  
Output Voltage Amplitude  
OUTPP  
(OLS = V  
800  
215  
615  
5
660  
120  
505  
0
795  
210  
610  
0
655  
120  
500  
0
790  
210  
605  
5
CC  
(OLS = V 0.4 V) 125  
CC  
(OLS = V 0.8 V, OLS = FLOAT) 510  
CC  
(OLS = V 1.2 V)  
0
CC  
(OLS = V  
)
325  
415  
320  
410  
320  
410  
EE  
DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE ENDED (Figure 11 & 13) (Note 10)  
V
Input HIGH Voltage (SingleEnded):  
1200  
V
1200  
V
1200  
0
V
CC  
mV  
mV  
IH  
CC  
CC  
D, D, SEL, SEL  
V
Input LOW Voltage (SingleEnded):  
D, D, SEL, SEL  
0
V
CC  
150  
0
V
CC  
V
CC  
IL  
150  
150  
Vth  
Input Threshold Reference Voltage  
Range (Note 11)  
950  
150  
V
950  
150  
V
–75  
950  
150  
V
CC  
–75  
mV  
mV  
CC  
CC  
–75  
V
ISE  
SingleEnded Input Voltage  
2600  
2600  
2600  
(V – V )  
IH  
IL  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figure 12) (Note 12)  
V
Differential Input HIGH Voltage  
(D, D, SEL, SEL)  
1200  
V
1200  
0
V
1200  
0
V
CC  
mV  
mV  
mV  
mV  
IHD  
CC  
CC  
V
Differential Input LOW Voltage  
(D, D, SEL, SEL)  
0
V
CC  
75  
V
CC  
75  
V
CC  
75  
ILD  
V
Differential Input Voltage  
75  
2600  
2500  
75  
2600  
2500  
75  
2600  
2500  
ID  
(V –V ) (D, D, SEL, SEL)  
IHD  
ILD  
V
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 13) (Figure 15)  
1200  
1200  
1200  
IHCMR  
I
Input HIGH Current (@ V  
)
D, D,  
SEL, SEL  
D, D,  
30  
5
100  
50  
30  
5
100  
50  
30  
5
100  
50  
mA  
mA  
IH  
IH  
I
Input LOW Current (@ V )  
20  
5
100  
50  
20  
5
100  
50  
20  
5
100  
50  
IL  
IL  
SEL, SEL  
TERMINATION RESISTORS  
Internal Input Termination Resistor  
R
TIN  
45  
50  
55  
45  
50  
55  
45  
50  
55  
W
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm.  
8. Input and output parameters vary 1:1 with V  
.
CC  
9. LVPECL outputs loaded with 50 W to (V 2 V) for proper operation.  
CC  
10.V , V , V and V parameters must be complied with simultaneously.  
th  
IH  
IL,,  
ISE  
11. V is applied to the complementary input when operating in singleended mode. V = (V V ) / 2.  
th  
th  
IH  
IL  
12.V , V  
V
and V  
parameters must be complied with simultaneously.  
IHD  
IHCMR  
ILD, ID  
CMR  
13.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
EE IHCMR  
CC  
IHCMR  
input signal.  
www.onsemi.com  
6
 
NB7L86A  
Table 11. DC CHARACTERISTICS, INPUT WITH LVPECL OUTPUT V = 3.3 V; V = 0 V, T = 40°C to +85°C (Note 14)  
CC  
EE  
A
405C  
255C  
855C  
Min  
23  
Typ  
Max  
39  
Min  
Typ  
Max  
Min  
Typ  
Max  
39  
Symbol  
POWER SUPPLY CURRENT  
Characteristics  
Unit  
Negative Power Supply Current  
30  
23  
30  
39  
23  
30  
mA  
IEE  
LVPECL OUTPUTS (Note 15)  
V
V
Output HIGH Voltage  
Output LOW Voltage:  
2260  
1320  
2310  
2370  
2290  
2340  
2400  
2315  
2365  
2425  
mV  
mV  
OH  
OL  
(OLS = V  
)
1470  
2090  
1670  
1620  
2180  
1790  
1360  
2065  
1585  
1510  
2125  
1705  
1660  
2215  
1825  
1390  
2090  
1615  
1540  
2150  
1735  
1690  
2240  
1855  
CC  
(OLS = V 0.4 V) 2030  
(OLS = V 0.8 V, 1550  
CC  
CC  
OLS = FLOAT)  
(OLS = V 1.2 V) 2260  
2310  
1875  
2390  
1995  
2290  
1820  
2340  
1910  
2420  
2030  
2315  
1850  
2365  
1940  
2445  
2060  
CC  
(OLS = V ) (Note 20) 1785  
EE  
Output Amplitude Voltage:  
(OLS = V  
V
mV  
OUTPP  
)
705  
815  
220  
640  
695  
125  
530  
805  
215  
635  
690  
125  
525  
800  
215  
630  
CC  
(OLS = V 0.4 V) 130  
CC  
(OLS = V 0.8 V, 535  
CC  
OLS = FLOAT)  
(OLS = V 1.2 V)  
0
0
0
0
0
0
CC  
(OLS = V ) (Note 20) 345  
435  
340  
430  
335  
425  
EE  
DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLEENDED (Figure 11 & 13) (Note 16)  
V
Input HIGH Voltage  
(SingleEnded)  
D, D, SEL, SEL  
Input LOW Voltage  
(SingleEnded)  
D, D, SEL, SEL  
1200  
V
1200  
V
1200  
V
CC  
mV  
mV  
IH  
CC  
CC  
V
V
0
V
0
V
0
V
CC  
IL  
CC  
CC  
150  
150  
150  
V –75 mV  
CC  
Input Threshold Reference Voltage  
Range (Note 17)  
950  
150  
V
–75 950  
V
–75 950  
th  
CC  
CC  
V
ISE  
SingleEnded Input Voltage  
2600  
150  
2600  
150  
2600  
mV  
(V – V )  
IH  
IL  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figure 12) (Note 18)  
V
Differential Input HIGH Voltage  
(D, D, SEL, SEL)  
1200  
V
1200  
0
V
1200  
0
V
CC  
mV  
mV  
mV  
mV  
IHD  
CC  
CC  
V
Differential Input LOW Voltage  
(D, D, SEL, SEL)  
0
V
CC  
75  
V
CC  
75  
V
CC  
ILD  
75  
V
Differential Input Voltage  
75  
2600  
3300  
75  
2600  
3300  
75  
2600  
ID  
(V  
IHD  
– V ) (D, D, SEL, SEL)  
ILD  
V
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 19) (Figure 15)  
1200  
1200  
1200  
3300  
IHCMR  
Input HIGH Current (@V  
)
D, D  
SEL, SEL  
D, D  
30  
5
20  
5
100  
50  
100  
50  
30  
5
20  
5
100  
50  
100  
50  
30  
5
20  
5
100  
50  
100  
50  
I
mA  
mA  
IH  
IH  
Input LOW Current (@V )  
I
IL  
IL  
SEL, SEL  
TERMINATION RESISTORS  
Internal Input Termination Resistor  
R
TIN  
45  
50  
55  
45  
50  
55  
45  
50  
55  
W
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm.  
14.Input and output parameters vary 1:1 with V  
.
CC  
15.LVPECL outputs loaded with 50 W to (V 2 V) for proper operation.  
CC  
16.V , V , V and V parameters must be complied with simultaneously.  
th  
IH  
IL,,  
ISE  
17.V is applied to the complementary input when operating in singleended mode. V = (V V ) / 2.  
th  
th  
IH  
IL  
18.V , V  
V
and V  
parameters must be complied with simultaneously.  
IHD  
IHCMR  
ILD, ID  
CMR  
19.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
EE IHCMR  
CC  
IHCMR  
input signal.  
20.When an output level of 400 mV is desired and V V > 3.0 V, a 2 kW resistor should be connected from OLS to V .  
CC  
EE  
EE  
www.onsemi.com  
7
 
NB7L86A  
Table 12. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT  
V
CC  
= 0 V; V = 3.465 V to 2.375 V, T = 40°C to +85°C (Note 21)  
EE A  
405C  
255C  
855C  
Min  
Typ  
Max  
Min  
Typ  
Max  
39  
Min  
23  
Typ  
Max  
39  
Symbol  
POWER SUPPLY CURRENT  
Negative Power Supply Current  
LVPECL OUTPUTS (Note 22)  
Characteristics  
Unit  
I
EE  
23  
30  
39  
23  
30  
30  
mA  
V
Output HIGH Voltage  
Output LOW Voltage:  
1040 990  
930 1010 960  
900  
985  
935  
875  
mV  
mV  
OH  
V
OL  
3.465 V V 3.0 V  
EE  
(OLS = V ) 1980 1830 1680 1940 1790 1640 1910 1760 1610  
CC  
(OLS = V 0.4 V) 1270 1210 1120 1235 1175 1085 1210 1150 1060  
CC  
(OLS = V 0.8 V, OLS = FLOAT) 1750 1630 1510 1715 1595 1475 1685 1565 1445  
CC  
(OLS = V 1.2 V) 1040 990  
910 1010 960  
880  
985  
935  
855  
CC  
EE  
(OLS = V ) (Note 27) 1515 1425 1305 1480 1390 1270 1450 1360 1240  
3.0 V < V 2.375 V  
EE  
(OLS = V  
)
1945 1795 1645 1905 1755 1605 1875 1725 1575  
CC  
(OLS = V 0.4 V) 1265 1205 1115 1230 1170 1080 1205 1145 1055  
CC  
(OLS = V 0.8 V, OLS = FLOAT) 1725 1605 1485 1690 1570 1450 1660 1540 1420  
CC  
(OLS = V 1.2 V) 1045 995  
915 1010 960  
880  
990  
940  
860  
CC  
(OLS = V ) 1495 1405 1285 1460 1370 1250 1435 1345 1225  
EE  
V
mV  
Output Voltage Amplitude:  
OUTPP  
3.465 V V 3.0 V  
EE  
(OLS = V  
)
705  
815  
220  
640  
0
695  
125  
530  
0
805  
215  
635  
0
690  
125  
525  
0
800  
215  
630  
0
CC  
(OLS = V 0.4 V) 130  
CC  
(OLS = V 0.8 V, OLS = FLOAT) 535  
CC  
(OLS = V 1.2 V)  
0
CC  
(OLS = V ) (Note 27) 345  
435  
340  
430  
335  
425  
EE  
3.0 V < V 2.375 V  
EE  
(OLS = V  
)
670  
800  
215  
615  
5
660  
120  
505  
0
795  
210  
610  
0
655  
120  
500  
0
790  
210  
605  
5
CC  
(OLS = V 0.4 V) 125  
CC  
(OLS = V 0.8 V, OLS = FLOAT) 510  
CC  
(OLS = V 1.2 V)  
0
CC  
(OLS = V  
)
325  
415  
320  
410  
320  
410  
EE  
DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLEENDED (Figure 11 & 13) (Note 23)  
V
Input HIGH Voltage (SingleEnded)  
V
+
V
V
+
V
V
+
V
CC  
mV  
mV  
mV  
IH  
EE  
CC  
EE  
CC  
EE  
D, D, SEL, SEL  
1200  
1200  
1200  
V
V
Input LOW Voltage (SingleEnded)  
D, D, SEL, SEL  
V
V
V
V
VEE  
V −  
IH  
150  
IL  
EE  
IH  
EE  
IH  
150  
150  
Input Threshold Reference Voltage  
Range (Note 24)  
V
EE  
+
V
CC  
V
EE  
+
V
CC  
V
EE  
+
V
CC  
–75  
th  
950  
–75  
950  
–75  
950  
V
ISE  
SingleEnded Input Voltage  
150  
2600  
150  
2600  
150  
2600  
mV  
(V – V )  
IH  
IL  
www.onsemi.com  
8
 
NB7L86A  
Table 12. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT  
V
CC  
= 0 V; V = 3.465 V to 2.375 V, T = 40°C to +85°C (Note 21)  
EE A  
405C  
Typ  
255C  
Typ  
855C  
Typ  
Min  
Max  
Min  
Max  
Min  
Max  
Symbol  
Characteristics  
Unit  
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figure 12) (Note 25)  
V
Differential Input HIGH Voltage  
(D, D, SEL, SEL)  
V
+
V
V
+
V
V
+
V
CC  
mV  
mV  
mV  
mA  
IHD  
EE  
CC  
EE  
CC  
EE  
1200  
1200  
120  
V
Differential Input LOW Voltage  
(D, D, SEL, SEL)  
V
V
CC  
75  
V
V
CC  
75  
V
V
CC  
75  
ILD  
EE  
EE  
EE  
V
Differential Input Voltage  
75  
2600  
0
75  
2600  
0
75  
2600  
0
ID  
(V  
IHD  
– V ) (D, D, SEL, SEL)  
ILD  
V
Input HIGH Voltage Common Mode  
Range (Differential Configuration)  
(Note 26) (Figure 15)  
V
+
V
+
V
+
IHCMR  
EE  
EE  
EE  
1200  
1200  
1200  
I
mA  
mA  
(Input HIGH Current (@V  
)
D, D,  
SEL, SEL  
D, D,  
30  
5
100  
50  
30  
5
100  
50  
30  
5
100  
50  
IH  
IH  
I
(Input LOW Current (@V )  
20  
5
100  
50  
20  
5
100  
50  
20  
5
100  
50  
IL  
IL  
SEL, SEL  
TERMINATION RESISTORS  
45  
50  
55  
45  
50  
55  
45  
50  
55  
W
RTIN  
Internal Input Termination Resistor  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit  
board with maintained transverse airflow greater than 500 lfpm.  
21.Input and output parameters vary 1:1 with V  
.
CC  
22.LVPECL outputs loaded with 50 W to (V 2 V) for proper operation.  
CC  
23.V , V , V and V parameters must be complied with simultaneously.  
th  
IH  
IL,,  
ISE  
24.V is applied to the complementary input when operating in singleended mode. V = (V V ) / 2.  
th  
th  
IH  
IL  
25.V , V  
V
and V  
parameters must be complied with simultaneously.  
IHD  
IHCMR  
ILD, ID  
CMR  
26.V  
min varies 1:1 with V , V  
max varies 1:1 with V . The V  
range is referenced to the most positive side of the differential  
EE IHCMR  
CC  
IHCMR  
input signal.  
27.When an output level of 400 mV is desired and V V > 3.0 V, a 2 kW resistor should be connected from OLS to V .  
CC  
EE  
EE  
www.onsemi.com  
9
 
NB7L86A  
Table 13. AC CHARACTERISTICS V = 0 V; V = 3.465 V to 2.375 V or V = 2.375 V to 3.465 V; V = 0 V  
CC  
EE  
CC  
EE  
405C  
Typ  
8
255C  
Typ  
8
855C  
Typ  
8
Symbol  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
f
Maximum Input Clock Frequency  
(See Figure 7) (Note 28)  
7
7
7
GHz  
max  
f
f
< 7 GHz  
590  
270  
730  
440  
470  
230  
720  
420  
540  
180  
700  
390  
mV  
mV  
Output Voltage Amplitude  
in  
V
OUTPP  
(OLS = V  
)
CC  
= 8 GHz  
in  
t
t
PLH  
Propagation Delay to Output Differential  
110  
160  
5
210  
15  
115  
165  
5
215  
15  
120  
170  
5
220  
15  
ps  
ps  
ps  
ps  
ps  
(Figure 15) D/SEL Q  
PHL  
t
t
Duty Cycle Skew (Note 29)  
SKEW  
Q D/SEL  
Channel Skew  
5
20  
5
20  
5
20  
SKEW  
t
S
SetUp Time (Dx to SEL)  
HoldUp Time (Dx to SEL)  
30  
35  
30  
35  
30  
35  
t
H
RMS Random Clock Jitter  
(See Figure 7) (Note 31) fin 7 GHz  
PeaktoPeak Data Dependent Jitter  
(Note 32) fin 7 Gb/s  
0.5  
12  
1.5  
0.5  
12  
1.5  
0.5  
12  
1.5  
t
JITTER  
ps  
V
Input Voltage Swing/Sensitivity (Differential  
Configuration) (Note 30)  
75  
1890  
75  
1890  
75  
1890  
mV  
ps  
INPP  
t , t  
Output Rise/ Fall Times  
t
r
30  
17  
45  
35  
65  
65  
30  
17  
45  
35  
65  
65  
30  
17  
45  
35  
65  
65  
r
f
(20% 80%) (Q, Q) @ 1 GHz  
t
f
28.Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 W to V 2.0 V. Input edge rates 40 ps (20% 80%).  
CC  
29.t  
= |t  
t  
| for a nominal 50% differential clock input waveform. See Figure 15.  
SKEW  
INPP  
PLH  
PHL  
30.V  
(max) cannot exceed V V  
.
CC  
EE  
31.Additive RMS jitter with 50% duty cycle clock signal at 7 GHz.  
32.Additive PeaktoPeak data dependent jitter with NRZ PRBS 2 1 data rate at 7 Gb/s.  
31  
www.onsemi.com  
10  
 
NB7L86A  
Figure 7. (VCC VEE = 2.5 V @ 25°C)  
NOTE: Output Voltage Amplitude (V  
) / RMS Jitter vs. Input Frequency (f ) for 2:1 MUX Mode, Repetitive 1010 Input Data Pattern.  
in  
OUTPP  
*When an output level of 400 mV is desired and V V > 3.0 V, a 2 kW resistor should be connected from OLS to V  
CC  
EE  
EE.  
NOTE: Output Voltage Amplitude (V  
) / RMS Jitter vs. Input Frequency (f ) for 2:1 MUX Mode, Repetitive 1010 Input Data Pattern.  
in  
OUTPP  
*When an output level of 400 mV is desired and V V > 3.0 V, a 2 kW resistor should be connected from OLS to V  
CC  
EE  
EE.  
Figure 8. (VCC VEE = 3.3 V @ 25°C)  
www.onsemi.com  
11  
NB7L86A  
Figure 9. Typical OLS Input Current vs. OLS Input Voltage  
(VCC VEE = 3.3 V @ 25°C)  
Figure 10. OLS Operating Area  
www.onsemi.com  
12  
NB7L86A  
V
IH  
IN  
Vth  
V
IL  
IN  
Vth  
Figure 11. Differential Input Driven Single Ended  
IN  
IN  
Figure 12. Differential Input Driven Differentially  
V
CC  
V
IHmax  
V
thmax  
V
ILmax  
V
IH  
V
th  
V
V
th  
IN  
IL  
V
IHmin  
V
ILmin  
V
thmin  
V
EE  
Figure 13. VTH Diagram  
V
ID  
= I V  
V  
I
IHD(IN)  
ILD(IN)  
V
IN  
IN  
IHD  
V
ILD  
Figure 14. Differential Inputs Driven Differentially  
V
CC  
V
V
IHCMRmax  
IHDmax  
V
ILDmax  
V
IHDtyp  
IN  
IN  
V
V
ID  
= V V  
IHD ILD  
IHCMR  
V
ILDtyp  
V
IHCMRmin  
V
V
IHDmin  
ILDmin  
V
EE  
Figure 15. VIHCMR Diagram  
www.onsemi.com  
13  
NB7L86A  
D
V
V
= V  
= V  
V  
V  
INPP(D)  
IH(D)  
IL(D)  
INPP(D)  
IH(D)  
IL(D)  
D
Q
t
t
PLH  
PHL  
V
V
= V  
V  
V  
OUTPP(Q)  
OH(Q)  
OL(Q)  
= V  
OUTPP(Q)  
OH(Q)  
OL(Q)  
Q
Figure 16. AC Reference Measurement  
SEL  
SEL  
Qx  
t
t
PLH  
PHL  
Qx  
Figure 17. SELX to QX Timing Diagram  
www.onsemi.com  
14  
NB7L86A  
APPLICATION INFORMATION  
All NB7L86A inputs can accept PECL, CML, LVTTL,  
LVCMOS and LVDS signal levels. The limitations for  
differential input signal (LVDS, PECL, or CML) are  
minimum input swing of 75 mV and the maximum input  
swing of 2500 mV. Within these conditions, the input  
voltage can range from V to 1.2 V. Examples interfaces  
are illustrated below in a 50 W environment (Z = 50 W). For  
output termination and interface, refer to application note  
AND8020/D.  
CC  
Table 14. INTERFACING OPTIONS  
INTERFACING OPTIONS  
CONNECTIONS  
CML  
Connect VTD and VTD to V (refer Figure 18)  
CC  
LVDS  
Connect VTD and VTD together. (refer Figure 19)  
ACCOUPLED  
RSECL, PECL, NECL  
LVTTL, LVCMOS  
Bias VTD and VTD inputs within the Common Mode range (V  
Standard ECL termination techniques (refer Figure 21)  
) (refer Figure 20)  
CMR  
An external voltage (V  
) should be applied to the unused complementary  
THR  
differential input. Nominal V  
is 1.5 V for LVTTL and V /2 for LVCMOS inputs.  
THR  
THR  
CC  
This voltage must be within the V  
specification (refer Figure 22)  
V
CC  
V
CC  
Z = 50 W  
Q
D
50 W  
NB7L86A  
VTD  
V
V
CML  
Driver  
CC  
CC  
VTD  
50 W  
Z = 50 W  
Q
D
V
EE  
V
EE  
Figure 18. CML Interface  
V
CC  
V
CC  
Z = 50 W  
D
50 W  
NB7L86A  
50 W  
VTD  
LVDS  
Driver  
VTD  
D
Z = 50 W  
V
EE  
V
EE  
Figure 19. LVDS Interface  
www.onsemi.com  
15  
 
NB7L86A  
V
CC  
V
CC  
Z = 50 W  
C
C
D
Recommended  
RT values  
50 W  
NB7L86A  
VTD  
PECL  
Driver  
VCC  
R
T
Vbias*  
Vbias*  
Z = 50 W  
5.0 V 290 W  
3.3 V 150 W  
VTD  
D
50 W  
2.5 V  
80 W  
R
T
R
T
V
EE  
V
EE  
V
EE  
Vbias must be within common mode range limits (V  
*
)
CMR  
Figure 20. PECL Interface  
Z = 50 W  
O
Q
Q
D
D
Driver  
Receiver  
Device  
Device  
Z = 50 W  
O
50 W  
50 W  
V
TT  
= V 2.0 V  
CC  
V
TT  
Figure 21. Typical termination for Output Driver and Device Evaluation  
(refer AND8020/D – termination of ECL Logic Devices)  
V
CC  
V
CC  
Z = 50 W  
D
Recommended V  
values  
REF  
50 W  
V
REF  
LVTTL/  
LVCMOS  
Driver  
VTD  
No Connect *  
No Connect  
V
V  
CC  
EE  
LVCMOS  
LVTTL  
NB7L86A  
2
VTD  
1.5 V  
50 W  
V
REF  
D
V
EE  
* or 60 pF to GND  
V
EE  
Figure 22. LVCMOS/LVTTL Interface  
www.onsemi.com  
16  
NB7L86A  
ORDERING INFORMATION  
Device  
Package Type  
Shipping  
NB7L86AMNG  
QFN16  
123 Units / Rail  
(PbFree / HalideFree)  
NB7L86AMNHTBG  
QFN16  
100 / Tape & Reel  
(PbFree / HalideFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
17  
NB7L86A  
PACKAGE DIMENSIONS  
QFN16 3x3, 0.5P  
CASE 485G01  
ISSUE F  
NOTES:  
D
A
B
L
L
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
L1  
PIN 1  
LOCATION  
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
E
MILLIMETERS  
DIM MIN  
0.80  
A1 0.00  
NOM MAX  
A
0.90  
1.00  
0.05  
0.03  
2X  
A3  
0.10  
C
EXPOSED Cu  
MOLD CMPD  
A3  
b
D
0.20 REF  
0.24  
3.00 BSC  
1.75  
0.18  
0.30  
1.85  
1.85  
2X  
0.10  
C
TOP VIEW  
D2 1.65  
E
3.00 BSC  
1.75  
0.50 BSC  
0.18 TYP  
0.40  
DETAIL B  
A1  
(A3)  
E2 1.65  
e
K
L
0.05  
0.05  
C
DETAIL B  
ALTERNATE  
A
C
0.30  
0.50  
0.15  
CONSTRUCTIONS  
L1 0.00  
0.08  
NOTE 4  
A1  
SEATING  
PLANE  
C
SIDE VIEW  
RECOMMENDED  
SOLDERING FOOTPRINT*  
16X  
0.10  
C
A
B
0.58  
DETAIL A  
D2  
PACKAGE  
16X  
L
OUTLINE  
8
1
4
1
9
2X  
2X  
E2  
1.84  
3.30  
16X  
K
16X  
0.30  
16  
16X b  
e
e/2  
0.10  
0.05  
C
C
A B  
0.50  
PITCH  
NOTE 3  
BOTTOM VIEW  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
GigaComm is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NB7L86AMNG

2.5 V/3.3 V SiGe Differential Smart Gate with Output Level Select
ONSEMI

NB7L86AMNHTBG

2.5 V/3.3 V SiGe Differential Smart Gate with Output Level Select
ONSEMI

NB7L86M

2.5V/3.3V 12 Gb/s Differential Clock/Data SmartGate with CML Output and Internal Termination
ONSEMI

NB7L86MMN

2.5V/3.3V 12 Gb/s Differential Clock/Data SmartGate with CML Output and Internal Termination
ONSEMI

NB7L86MMNG

2.5V/3.3V 12 Gb/s Differential Clock/Data SmartGate with CML Output and Internal Termination
ONSEMI

NB7L86MMNR2

2.5V/3.3V 12 Gb/s Differential Clock/Data SmartGate with CML Output and Internal Termination
ONSEMI

NB7L86MMNR2G

2.5V/3.3V 12 Gb/s Differential Clock/Data SmartGate with CML Output and Internal Termination
ONSEMI

NB7LQ572

2.5V / 3.3V Differential 4:1 Mux w/Input Equalizer to 1:2 LVPECL Clock/Data Fanout / Translator
ONSEMI

NB7LQ572MNG

2.5V / 3.3V Differential 4:1 Mux w/Input Equalizer to 1:2 LVPECL Clock/Data Fanout / Translator
ONSEMI

NB7LQ572MNR4G

2.5V / 3.3V Differential 4:1 Mux w/Input Equalizer to 1:2 LVPECL Clock/Data Fanout / Translator
ONSEMI

NB7LQ572MNR4G

7L SERIES, LOW SKEW CLOCK DRIVER, 2 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQCC32, 5 X 5 MM, LEAD FREE, QFN-32
ROCHESTER

NB7MAAH0-0-B

N e u t r i k ® P a r t N u m b e r G u i d e
ETC