NCD57540DWKR2G [ONSEMI]

Isolated Dual-Channel IGBT Gate Driver with >8mm Creepage and Clearance;
NCD57540DWKR2G
型号: NCD57540DWKR2G
厂家: ONSEMI    ONSEMI
描述:

Isolated Dual-Channel IGBT Gate Driver with >8mm Creepage and Clearance

栅 双极性晶体管
文件: 总23页 (文件大小:816K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Isolated Dual Channel IGBT  
Gate Driver  
1
NCD57530, NCV57530,  
NCD57540, NCV57540  
SOIC16 WB  
CASE 752AJ  
MARKING DIAGRAMS  
NCx575y0 are highcurrent two channel isolated IGBT gate drivers  
with 5 kV internal galvanic isolation from input to each output and  
rms  
CASE 752AJ  
16  
functional isolation between the two output channels. The device  
accepts 3.3 V to 20 V bias voltage and signal levels on the input side  
and up to 32 V bias voltage on the output side. The device accepts  
complementary inputs and offers separate pins for Disable  
(NCx57540) or Enable (NCx57530) and Dead Time control for  
system design convenience. Drivers are available in CASE 752AJ  
SOIC16 wide body package with increased insulation between  
channels (less pin 12 & 13) .  
575y0  
AWLYYWWG  
G
1
575y0  
= Specific Device Code  
= 3 or 4  
y
A
Features  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
High Peak Output Current ( 6.5 A)  
Configurable as a Dual LowSide or Dual HighSide or HalfBridge  
Driver  
WL  
YY, Y  
WW  
G
Programmable Overlap or Dead Time control  
(See page 21)  
Disable Pin to Turn Off Outputs for Power Sequencing (NCx57540)  
Enable Pin for Independent Driver Control (NCx57530)  
IGBT Gate Clamping during Short Circuit  
PIN CONNECTIONS  
Short Propagation Delays with Accurate Matching  
Tight UVLO Thresholds on all Power Supplies  
3.3 V, 5 V, and 15 V Logic Input  
INA  
INB  
V
DDA  
OUTA  
GNDA  
V
DDI  
5 kV Galvanic Isolation from Input to each Output  
rms  
GND  
and 1.5 kV Differential Voltage between Output Channels  
rms  
DIS or EN*  
DT  
1200 V Working Voltage (per VDE088411 Requirements)  
High Common Mode Transient Immunity  
V
DDB  
Case 752AJ for Improved Insulation Between Output Channels  
NC  
OUTB  
GNDB  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
V
DDI  
NCx575y0  
x = D or V  
y = 3 or 4  
This Device is PbFree, Halogen Free/BFR Free and is RoHS  
Compliant  
* depends on variant  
Typical Applications  
EV Chargers  
ORDERING INFORMATION  
Motor Control  
See detailed ordering and shipping information on page 21 of  
this data sheet.  
Uninterruptible Power Supplies (UPS)  
Industrial Power Supplies  
Solar Inverters  
Automotive Applications  
© Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
June, 2022 Rev. 0  
NCD57540/D  
NCD57530, NCV57530, NCD57540, NCV57540  
VDDI  
VDDI  
VDDA  
OUTA  
GNDA  
UVLOI
UVLOA
RESET
RESET
CONTROL
INA  
CONTROL
DT  
NC  
NC  
VDDI  
Functional Isolation  
Deadtime
and  
Interlock
EN  
VDDB  
OUTB  
GNDB  
UVLOB
RESET
CONTROL
RESET
CONTROL
INB  
GNDI  
NCx57530  
VDDI  
VDDI  
VDDA  
OUTA  
GNDA  
UVLOI
UVLOA
RESET
CONTROL
INA  
RESET
CONTROL
DT  
NC  
NC  
Functional Isolation  
Deadtime
and
Interlock
DIS  
VDDB  
OUTB  
GNDB  
UVLOB
RESET
CONTROL
RESET
CONTROL
INB  
GNDI  
NCx57540  
Figure 1. Simplified Block Diagram  
www.onsemi.com  
2
NCD57530, NCV57530, NCD57540, NCV57540  
+V2  
INA  
INB  
VDDA  
OUTA  
V1  
VDDI  
VDDI  
GNDA  
GND2  
+V3  
Functional  
Isolation  
GNDI  
EN  
VDDB  
GND1  
OUTB  
DT  
GNDB  
GND3  
NCx57530  
+V2  
INA  
INB  
VDDA  
OUTA  
V1  
VDDI  
VDDI  
GNDA  
GND2  
+V3  
Functional  
Isolation  
GNDI  
DIS  
DT  
VDDB  
GND1  
OUTB  
GNDB  
GND3  
NCx57540  
Figure 2. Typical Application, High and Low Side IGBT Gate Drive (Dead Time added)  
www.onsemi.com  
3
 
NCD57530, NCV57530, NCD57540, NCV57540  
+V2  
INA  
INB  
VDDA  
OUTA  
V1  
VDDI  
VDDI  
GNDA  
GND2  
+V3  
Functional  
Isolation  
GNDI  
EN  
VDDB  
GND1  
OUTB  
DT  
GNDB  
GND3  
NCx57530  
+V2  
INA  
INB  
VDDA  
OUTA  
V1  
VDDI  
VDDI  
GNDA  
GND2  
+V3  
Functional  
Isolation  
GNDI  
DIS  
DT  
VDDB  
GND1  
OUTB  
GNDB  
GND3  
NCx57540  
Figure 3. Typical Application, Two Channels IGBT Gate Drive (no added Dead Time)  
www.onsemi.com  
4
 
NCD57530, NCV57530, NCD57540, NCV57540  
Table 1. FUNCTION DESCRIPTION  
Pin  
Name  
No.  
I/O  
Description  
INA  
1
Input  
A non-inverting gate driver input that defines OUTA. It has an equivalent pulldown resistor of 125 kto  
ensure that output is low in the absence of an input signal.  
A positive or negative going pulse with pulse width longer than maximum value of t  
before OUTA reacts.  
is required at INA  
MIN2  
The input logic levels scale with V  
up to V  
= 5 V. With V  
above 5 V the input logic levels stay  
DDI  
DDI  
DDI  
.
the same as for V  
= 5 V. Maximum voltage on this pin is V  
DDI  
DDI  
INB  
2
Input  
A noninverting gate driver input that defines OUTB. It has an equivalent pulldown resistor of 125 kto  
ensure that output is low in the absence of an input signal.  
A positive or negative going pulse with pulse width longer than maximum value of t  
before OUTB reacts.  
is required at INB  
MIN2  
The input logic levels scale with V  
up to V  
= 5 V. With V  
above 5 V the input logic levels stay  
DDI  
DDI  
DDI  
.
the same as for V  
= 5 V. Maximum voltage on this pin is V  
DDI  
DDI  
V
DDI  
3, 8  
Power Low voltage side power supply. A good quality bypassing capacitor is required from this pin to GND and  
should be placed close to the pins for best results.  
The under voltage lockout (UVLOI) circuit enables the device to operate at power on when a typical  
supply voltage higher than V  
is present.  
UVLOI OUT ON  
Please see Figure 7 and 8 for more details.  
GNDI  
DIS  
4
5
Power  
Input  
Low voltage side ground.  
A high level on disable pin turns both OUTA and OUTB low simultaneously regardless of the states of  
INA, INB and DT. Minimum pulse width filter and propagation delays apply. It has an equivalent  
pulldown resistor of 125 kto ensure that OUTA and OUTB react to INA, INB and DT in the absence  
of an input signal.  
The input logic levels scale with V  
up to V  
= 5 V. With V  
above 5 V the input logic levels stay the  
DDI  
DDI  
DDI  
same as for V  
= 5 V. Maximum voltage on this pin is V  
.
DDI  
DDI  
EN  
DT  
5
6
Input  
Input  
Enable input allows additional gating of OUT, and can be used when the driver output needs to be turned  
off independent of the Microcontroller input. A low level on enable pin turns both OUTA and OUTB low  
simultaneously regardless of the states of INA, INB and DT.  
It has an equivalent pullup resistor of 125 kto ensure that OUTA and OUTB react to INA, INB and DT  
in the absence of an input signal.  
The input logic levels scale with V  
up to V  
= 5 V. With V  
above 5 V the input logic levels stay  
DDI  
DDI  
DDI  
the same as for V  
= 5 V. Maximum voltage on this pin is V  
.
DDI  
DDI  
A deadtime pin is used to configure the two outputs sequence. The deadtime (t ) and interlocking logic  
DT  
between INA and INB is defined by the value of the external resistor (R ) connected between DT pin  
DT  
and GNDI. The deadtime can be estimated as t (ns) 10 x R (k). If DT pin is pulled up to VDDI  
DT  
DT  
for disabling the deadtime and interlocking logic the OUTA and OUTB can be high simultaneously.  
Minimum deadtime will be observed between OUTA and OUTB when DT pin is left floating.  
Allowed resistance between this pin and GNDI is in range of 5 to 500 k.  
Maximum voltage on this pin is V  
.
DDI  
Corresponding waveforms are on Figure 4.  
GNDB  
OUTB  
9
Power Ground for channel B.  
10  
Output Output of channel B on the high voltage side. It has galvanic isolation from low voltage side and from  
channel A. OUTB provides the appropriate drive voltage and source/sink current to the IGBT gate.  
OUTB is actively pulled low during startup, when DIS is high and under UVLOB, UVLOI condition.  
There is interlocking logic that prevents OUTA and OUTB cross conduction when DT pin is not connect-  
ed to V  
.
DDI  
V
DDB  
11  
Power High voltage side power supply for channel B. A good quality bypassing capacitor is required from this  
pin to GNDB and should be placed close to the pins for best results.  
The under voltage lockout (UVLOB) circuit enables the device to operate at power on when a typical  
supply voltage higher than V  
is present.  
UVLOB OUT ON  
Please see Figure 9 and 10 for more details.  
NC  
7,12*,  
13*  
Not connected internally. (* Presence of pins depends on the type of case, see Page 21.)  
GNDA  
OUTA  
14  
15  
Power Ground for channel A.  
Output Output of channel A on the high voltage side. It has galvanic isolation from low voltage side and from  
channel B. OUTA provides the appropriate drive voltage and source/sink current to the IGBT gate.  
OUTA is actively pulled low during startup, when DIS is high and under UVLOA, UVLOI condition.  
There is interlocking logic that prevents OUTA and OUTB cross conduction when DT pin is not  
connected to V  
.
DDI  
V
DDA  
16  
Power High voltage side power supply for channel A. A good quality bypassing capacitor is required from this  
pin to GNDA and should be placed close to the pins for best results.  
The under voltage lockout (UVLOA) circuit enables the device to operate at power on when a typical  
supply voltage higher than V  
is present.  
UVLOA OUT ON  
Please see Figure 9 and 10 for more details.  
www.onsemi.com  
5
NCD57530, NCV57530, NCD57540, NCV57540  
Table 2. SAFETY AND INSULATION RATINGS  
Symbol  
Parameter  
Value  
IIV  
Unit  
Installation Classifications per DIN VDE 0110/1.89 Table 1 Rated  
Mains Voltage  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
RMS  
RMS  
RMS  
RMS  
IIV  
IIV  
IIV  
< 1000 V  
IIII  
RMS  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
Climatic Classification  
600  
40/125/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
V
PR  
InputtoOutput Test Voltage, Method b, V  
× 1.875 = V , 100% Production  
2250  
V
PK  
IORM  
PR  
Test with t = 1 s, Partial Discharge < 5 pC  
m
V
Maximum Working Insulation Voltage  
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
1200  
870  
8400  
8.0  
V
IORM  
PK  
V
IOWM  
V
RMS  
V
V
PK  
IOTM  
E
mm  
mm  
m  
°C  
CR  
E
External Clearance  
8.0  
CL  
DTI  
Insulation Thickness  
17.3  
150  
264  
1136  
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
Safety Limit Values – Maximum Values in Failure; Output Power  
T
Case  
P
mW  
mW  
S,INPUT  
P
S,OUTPUT  
9
R
Insulation Resistance at TS, V = 500 V  
IO  
IO  
10  
Table 3. ABSOLUTE MAXIMUM RATINGS (Note 1) Over operating freeair temperature range unless otherwise noted  
Symbol  
Parameter  
Supply voltage, low voltage side  
Minimum  
0.3  
Maximum  
Unit  
V
V
GNDI  
GNDA  
GNDB  
22  
36  
36  
DDI  
V
V
Supply voltage, high voltage side, channel A  
Supply voltage, high voltage side, channel B  
Gate driver output voltage, channel A  
Gate driver output voltage, channel B  
0.3  
V
DDA  
DDB  
0.3  
V
V
GNDA 0.3  
GNDB 0.3  
V
DDA  
V
DDB  
+ 0.3  
+ 0.3  
V
OUTA  
OUTB  
V
V
I
Gatedriver output sourcing current  
6.5  
A
PKSRC  
(maximum pulse width = 10 s, minimum period = 5 ms,  
V
DDA  
– GNDA = V  
– GNDB = 15 V)  
DDB  
I
Gatedriver output sinking current  
6.5  
10  
A
PKSNK  
(maximum pulse width = 10 s, minimum period = 5 ms,  
V
DDA  
– GNDA = V  
– GNDB = 15 V )  
DDB  
t
Maximum Short Circuit Clamping Time  
(I = I = 500 mA)  
s
CLP  
OUTA_CLAMP  
OUTB_CLAMP  
V
GNDI  
Voltage at INA, INB, DIS, DT  
Power Dissipation (Note 3)  
0.3  
V
DDI  
+ 0.3  
V
mW  
°C  
°C  
kV  
kV  
LIM  
PD  
T (max)  
1060  
150  
150  
4
Maximum Junction Temperature  
40  
65  
J
T
Storage Temperature Range  
STG  
ESDHBM  
ESDCDM  
MSL  
ESD Capability, Human Body Model (Note 4)  
ESD Capability, Charged Device Model (Note 4)  
Moisture Sensitivity Level  
2
1
T
SLD  
Lead Temperature Soldering Reflow, PbFree Versions (Note 5)  
260  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. The minimum value is verified by characterization with a single pulse of 100 mA for 100 s.  
2
3. The value is estimated for ambient temperature 25°C and junction temperature 150°C, 650 mm , 1 oz copper, 2 surface layers and 2 internal  
power plane layers. Power dissipation is affected by the PCB design and ambient temperature.  
www.onsemi.com  
6
 
NCD57530, NCV57530, NCD57540, NCV57540  
4. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114).  
ESD Charged Device Model tested per AECQ100011 (EIA/JESD22C101).  
Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78, 25°C.  
5. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
Table 4. THERMAL CHARACTERISTICS  
Parameter  
Conditions  
Symbol  
Value  
Unit  
2
Thermal Resistance, JunctiontoAir  
R
°C/W  
81  
100 mm , 2 oz Copper, 1 Surface Layer  
JA  
2
57  
100 mm , 2 oz Copper, 2 Surface Layers  
and 2 Internal Power Plane Layers  
Table 5. RECOMMENDED OPERATING RANGES (Note 6)  
Symbol Parameter  
Supply voltage, low voltage side  
Minimum  
UVLOI  
UVLOA  
UVLOB  
GNDI  
Maximum  
Unit  
V
V
DDI  
GNDI  
GNDA  
GNDB  
20  
32  
32  
V
V
Supply voltage, high voltage side, channel A  
Supply voltage, high voltage side, channel B  
Logic Input Voltage at INA, INB, DIS, DT  
Common Mode Transient Immunity (CMTI)  
Ambient Temperature  
V
DDA  
DDB  
V
V
V
DDI  
V
IN  
| dV /dt |  
100  
kV/s  
°C  
ISO  
T
40  
125  
A
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
Table 6. ISOLATION CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
InputOutput Isolation  
Voltage  
T = 25°C, Relative Humidity < 50%,  
5000  
V
RMS  
ISO, INPUT  
A
t = 1.0 minute, I  
10 A, 50 Hz  
IO  
TO OUTPUT  
(Notes 7, 8, 9)  
V
OutputOutput Isolation  
T = 25°C, Relative Humidity < 50%,  
1500  
V
RMS  
ISO, OUTPUT  
TO OUTPUT  
A
Voltage  
t = 1.0 minute, I  
10 A, 50 Hz  
IO  
(Notes 7, 8, 9)  
11  
R
Isolation Resistance  
V
IO  
= 500 V (Note 7)  
10  
ISO  
7. Device is considered a twoterminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
8. 5,000 V for 1minute duration is equivalent to 6,000 V for 1second duration.  
RMS  
RMS  
9. The inputoutput isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an inputoutput continuous voltage  
rating. For the continuous working voltage rating, refer to equipmentlevel safety specification or DIN VDE V 088411 Safety and Insulation  
Ratings Table.  
Table 7. ELECTRICAL CHARACTERISTICS  
V
DDI  
= 5V, V  
= V  
= 15 V  
DDA  
DDB  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
VOLTAGE SUPPLY  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
Supply Under Voltage Output  
3.1  
V
V
V
V
UVLOIOUTON  
DDI  
Enabled  
V
V
DDI  
Supply Under Voltage Output  
2.4  
0.1  
12.4  
UVLOIOUTOFF  
Disabled  
V
V
DDI  
Supply Voltage Output  
UVLOIHYST  
Enabled/Disabled Hysteresis  
V
V
V
/V Supply Under Voltage  
12.9  
13.4  
UVLOAOUTON  
DDA DDB  
Output Enabled  
UVLOBOUTON  
V
V
V
/V  
Supply Under Voltage Output  
Supply Voltage Output  
DDA DDB  
11.5  
12  
12.5  
V
UVLOAOUTOFF  
DDA DDB  
Disabled  
UVLOBOUTOFF  
V
V
/V  
0.8  
1.0  
V
UVLOA/BHYST  
Enabled/Disabled Hysteresis  
I
Low Voltage Side Quiescent Current  
V
INA  
= V = 0 V  
INB  
2
mA  
QDDI0  
www.onsemi.com  
7
 
NCD57530, NCV57530, NCD57540, NCV57540  
Table 7. ELECTRICAL CHARACTERISTICS (continued) V  
= 5V, V  
= V  
= 15 V  
DDI  
DDA  
DDB  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
VOLTAGE SUPPLY  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
I
Low Voltage Side Operating Current at  
50% Duty Cycle  
INA PWM, INB Low (or INA Low,  
INB PWM), f = 200 kHz  
4
6.5  
2
mA  
mA  
mA  
QDDI50  
I
Low Voltage Side Operating Current  
at 100% Duty Cycle  
INA or INB High  
QDDI100  
I
, I  
High Voltage Side Quiescent Current  
V
INA  
= V  
= 0 V,  
QDDA0 QDDB0  
INB  
Current per Channel  
I
,
High Voltage Side Operating  
Current at 50% Duty Cycle  
Current per Channel,  
10  
2
mA  
mA  
QDDA50  
I
f = 200 kHz, C = 1 nF  
QDDB50  
G
(see Figure 18)  
I
,
High Voltage Side Operating  
Current at 100% Duty Cycle  
Current per Channel  
QDDA100  
I
QDDB100  
LOGIC INPUT  
, V  
V
INAL  
,
Low Level Input Voltage  
High Level Input Voltage  
Input Hysteresis  
Level scale for V = 3.3 to 5 V  
DDI  
0.3 ×  
V
V
V
INBL  
for V  
> 5 V is the same  
V
DDI  
DDI  
V
DISL  
, V  
ENL  
as for V  
= 5 V  
DDI  
V
INAH  
, V  
INBH  
,
Level scale for V = 3.3 to 5 V  
DDI  
0.7 ×  
V
DDI  
for V  
> 5 V is the same  
DDI  
DDI  
V
DISH  
, V  
ENH  
as for V  
= 5 V  
V
V
V
,
,
,
Level scale for V  
= 3.3 to 5 V  
0.15 ×  
V
DDI  
INAHYS  
INBHYS  
DISHYS  
DDI  
for V  
> 5 V is the same  
DDI  
as for V  
= 5 V  
DDI  
V
ENHYS  
V
, V  
DISN  
(Note 10)  
,
Negative Input Transient  
50 ns  
5  
V
INAN  
INBN  
ENN  
V
, V  
I
I
, I , I  
Logic “1” Input Bias Current  
Logic “1” Input Bias Current  
Logic “0” Input Bias Current  
Logic “1” Input Bias Current  
Logic “1” Input Bias Current  
Logic “0” Input Bias Current  
V
INA  
V
INA  
V
INA  
V
INA  
V
INA  
V
INA  
= V  
= V  
= V  
= V  
= V  
= V  
= 3.3 V  
= 20 V  
50  
50  
1
A  
A  
A  
A  
A  
A  
INAH INBH DISH  
INB  
INB  
INB  
INB  
INB  
INB  
DIS  
DIS  
DIS  
DDI  
, I  
, I  
= V  
= V  
= V  
= V  
= V  
INAH INBH DISH  
DDI  
I
, I  
, I  
= 0 V  
INAL INBL DISL  
I
= V = V  
= 3.3 V  
= 20 V  
= 0 V  
1
ENH  
ENH  
EN  
DDI  
DDI  
DDI  
I
= V = V  
1
EN  
I
= V = V  
50  
ENL  
EN  
DRIVER OUTPUT  
V
,
Output Low State  
I
I
= 200 mA, T = 25°C  
0.1  
0.22  
0.5  
V
V
OUTAL1  
SINK  
A
V
OUTBL1  
= 200 mA, T = 40°C  
SINK  
A
V
,
to 125°C  
OUTAL2  
V
OUTBL2  
V
,
Output High State  
I
I
= 200 mA, T = 25°C  
14.7  
14.2  
14.8  
OUTAH1  
SRC  
A
V
OUTBH1  
= 200 mA, T = 40°C  
SRC  
A
V
,
to 125°C  
OUTAH2  
V
OUTBH2  
I
I
Peak Driver Current, Sink (Note 10)  
6.5  
6
A
A
PKSNK1  
Peak Miller Plateau Current, Sink  
(Note 10)  
V
= V  
= 6 V  
PKSNK2  
OUTA  
OUTB  
(near IGBT Miller Plateau)  
I
I
Peak Driver Current, Source (Note 10)  
6.5  
6
A
A
PKSRC1  
Peak Miller Plateau Current, Source  
(Note 7)  
V
= V  
= 9 V  
PKSRC2  
OUTA  
OUTB  
(near IGBT Miller Plateau)  
IGBT SHORT CIRCUIT CLAMPING  
Clamping Voltage  
V
,
I
= I = 500 mA  
OUTB  
1
1.3  
V
CLAMPOUTA  
OUTA  
V
(V  
(V  
V  
V  
),  
(pulse test, t  
= 10 s)  
CLAMPOUTB  
CLAMPOUTA  
CLAMPOUTB  
DDA  
DDB  
CLPmax  
)
(see Figure 30)  
www.onsemi.com  
8
NCD57530, NCV57530, NCD57540, NCV57540  
Table 7. ELECTRICAL CHARACTERISTICS (continued) V  
= 5V, V  
= V  
= 15 V  
DDI  
DDA  
DDB  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
DYNAMIC CHARACTERISTIC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
t
OUTA High Propagation Delay  
OUTA Low Propagation Delay  
Propagation Delay Distortion  
C
= 10 nF, V to 10%  
INAH  
40  
40  
60  
60  
0
90  
90  
20  
90  
90  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PDONA  
LOAD  
of Output Change for PW > 150 ns  
C = 10 nF, V to 90%  
LOAD  
t
PDOFFA  
INAL  
of Output Change for PW > 150 ns  
t
PW >150 ns  
20  
40  
DISTORTA  
(Channel A) (t  
t  
)
)
PDONA  
PDOFFA  
t
OUTB High Propagation Delay  
OUTB Low Propagation Delay  
Propagation Delay Distortion  
C
= 10 nF, V to 10%  
INBH  
60  
60  
0
PDONB  
LOAD  
of Output Change for PW > 150 ns  
t
C
= 10 nF, V to 90%  
40  
PDOFFB  
DISTORTB  
LOAD  
INBL  
of Output Change for PW > 150 ns  
t
PW >150 ns  
20  
20  
20  
(Channel B) (t  
t  
PDOFFB  
PDONB  
t
Rising Edge Propagation Delay  
Distortion (t t  
PW >150 ns  
PW >150 ns  
0
DISTORTON  
)
PDONA  
PDONB  
t
Falling Edge Propagation Delay  
0
DISTORTOFF  
Distortion (t  
t  
PDOFFB  
)
PDOFFA  
t
t
Rise Time for Both Channel A and B  
Fall Time for Both Channel A and B  
Deadtime between channels  
C
= 1 nF, 10% to 90%  
LOAD  
12  
10  
RISE  
of Output Change  
C
= 1 nF, 90% to 10%  
FALL  
LOAD  
of Output Change  
t
DT  
DT pin Float  
<20  
5
ns  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
R
R
= 500 kꢀ  
= 20 kꢀ  
DT  
DT  
200  
60  
60  
t
Disable Delay (NCx57540 only)  
Enable Delay (NCx57530 only)  
Input Pulse Width for no output  
DIS  
t
EN  
t
t
Positive pulse (LHL), T = 25°C  
10  
10  
MIN1  
MIN2  
A
Negative pulse (HLH), T = 25°C  
A
Input Pulse Width for guaranteed output  
Positive pulse (LHL), T = 25°C  
40  
40  
A
Negative pulse (HLH), T = 25°C  
A
t
UVLOI/UVLOA/UVLOB Fall Delay  
UVLOI/UVLOA/UVLOB Rise Delay  
(Note 10)  
(Note 10)  
1.5  
20  
UVF  
t
10  
UVR  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
10.Values based on design and/or characterization.  
11. PW = Pulse Width  
Modes of Operation  
The typical application schematics are on Figure 2 and  
Figure 3.  
The NCx575y0 can operate in 2 distinct modes:  
1. The lowside, highside halfbridge driver with  
programmable deadtime.  
The deadtime is set by resistor R connected between  
DT  
DT pin and GNDI. Adjusting deadtime is described in  
the section Deadtime (DT).  
2. The two independent (potentially overlapping)  
channels with two inputs.  
nd  
2
mode – driver with two independent channels and two  
st  
1
mode – halfbridge driver with two inputs and  
inputs is different from previous mode because it allows for  
completely independent and even overlapping PWMs to  
drive the outputs individually.  
adjustable deadtime is for applications where you have  
highside and lowside PWM available. The driver  
provides interlock function to prevent activation of  
highside and lowside outputs at the same time. In addition  
the driver generates deadtime which is adjustable by DT  
pin.  
DT pin has to be connected to V . This disables the  
DDI  
interlock function and deadtime generator and allows  
the overlapping PWMs. So the channel A and B can be  
driven completely independently.  
www.onsemi.com  
9
 
NCD57530, NCV57530, NCD57540, NCV57540  
DeadTime (DT)  
achieved. The lowest allowed value of R = 5 kwhich  
DT  
The deadtime pin is controlling the integrated interlock  
and deadtime generator.  
reduces the deadtime to about 70 ns.  
The Figures 2 and 3 illustrate the behavior of the  
If DT pin is connected to V  
the interlock and  
deadtime generator are disabled. The channels A and B  
DDI  
st  
NCx575y0 in 1 mode (highside, lowside halfbridge  
driver with two inputs). The outputs for various input PWM  
combinations are shown in Figure 4.  
are completely independent.  
If DT pin is floating the interlock is enabled but deadtime  
generator is disabled. There is a minimal deadtime  
shorter than 20 ns.  
The deadtime is a time from lowside output going low  
to highside output going high or from highside output  
going low to low side output going high. The overlap is  
a situation where both signals are high at the same time.  
Overlap causes cross conduction in the halfbridge and must  
be avoided.  
In the “Nonoverlap and Deadtime are met” column in  
Fig. 4, the channel A PWM, INA (highside), and channel  
B PWM, INB (lowside), are not overlapping and have  
sufficient deadtime. Therefore, the driver does not apply  
corrections to the signals and passes them as they are to their  
respective output.  
If there is a resistor R connected between the DT pin  
DT  
and GNDI the interlock and deadtime generator are both  
enabled. The deadtime can be adjusted in range from  
200 ns (R 20 k) to 5 s (R 500 k). Deadtime  
DT  
DT  
can be estimated by the equation t (ns) 10 x R (k).  
DT  
DT  
With high R values the potential noise pickup on high  
DT  
impedance of R should be considered. R should be  
DT  
DT  
as close to driver pins as possible and the loop should be  
minimized.  
If R is below 20 kthe DT is not closely following the  
DT  
equation but deadtimes lower than 200 ns could be  
Figure 4. Deadtime, Interlock and Output Minimum Pulse Width  
In the “Deadtime corrected” column, the highside and  
lowside signals are not overlapping but the deadtime  
value is less than the value set through the DT pin.  
Consequently, the driver increases the deadtime value to  
the value set by the DT pin.  
In the “Overlap and Deadtime corrected” column, the  
highside and lowside input signals are high at the same  
time (overlapping). This condition could cause  
crossconduction in the halfbridge. Therefore, the driver’s  
interlock function trims signal OUTB which is going low  
when INA goes high, and not when INB goes low. The driver  
also inserts the deadtime set through DT pin, thus the  
output pulses are not overlapping and crossconduction in  
the halfbridge is avoided.  
In the “Overlap, Deadtime corrected and Short pulses  
filtered out” column, the highside and low side signals are  
overlapping and could cause crossconduction in the  
halfbridge. Therefore, the driver’s interlock function trims  
the output signals and a short spike remains on each output  
signal. If the spike is shorter than tMIN1 (Minimum pulse  
width filtering time), it will be suppressed and no output is  
generated.  
www.onsemi.com  
10  
 
NCD57530, NCV57530, NCD57540, NCV57540  
Enable (EN) Pin (NCx57530)  
In the “Overlap corrected” column the deadtime is met  
but the signals are overlapping so just the nonoverlapping  
parts pass to the output.  
EN (Enable) is a useful feature as it allows to deactivate  
both outputs independently of inputs INA, INB, DT. If EN  
is set to high both OUTA and OUTB work depending on  
INA and INB. If EN is set to low, the outputs OUTA/OUTB  
are set to low immediately, then if EN is set to high,  
OUTA/OUTB follows INA/INB immediately (see  
Figure 5). It has an internal pullup resistor of 125 kto  
ensure that OUTA and OUTB react to INA, INB and DT in  
the absence of an external signal. External pullup resistor  
1047 kis recommended to prevent unwanted EN  
activation by external interference. Direct connection to  
VDDI is recommended if the pin is not used.  
Inputs INA, INB, DIS, EN  
Unused inputs INA, INB, DIS should be tied to GNDI.  
Unused EN should be tied to V  
.
DDI  
Disable (DIS) Pin (NCx57540)  
DIS (disable) pin allows to deactivate both outputs  
independently of inputs INA, INB, DT.  
If the pin is set high both OUTA and OUTB are set low  
immediately.  
If DIS is set low, the outputs OUTA/OUTB are restored  
after rising edge is detected on the INA/INB respectively.  
It has an internal pulldown resistor of 125 kto ensure  
that OUTA and OUTB react to INA, INB and DT in the  
absence of an external signal. External pulldown resistor  
1047 kis recommended to prevent unwanted DIS  
activation by external interference. Direct connection to  
GNDI is recommended if the pin is not used.  
Input Voltage Levels  
The NCx575y0 has a two modes for high and low levels  
on all input pins:  
1. For V  
from 3.3 to 5 V the high and low input  
DDI  
levels are scaling with the V  
as stated in the  
DDI  
Electrical characteristics table. Low input level is  
0.3 × V , high input level is 0.7 × V  
.
DDI  
DDI  
2. For V  
above 5 V the high and low input levels  
DDI  
NCx57530  
clamp at the same value as for V  
means the low input level is 0.3 × 5 = 1.5 V and the  
high input level is 0.7 × 5 = 3.5 V.  
= 5 V. That  
DDI  
EN (ENABLE)  
VDDI  
tEN  
tEN  
tEN  
Clamping  
Circuit  
INA  
(INB)  
INx  
tPD-ON-X  
tPD-OFF-X  
Figure 6. Input Pin Structure  
OUTx  
Edge Triggered Inputs  
The INA, INB and DIS inputs are activated by a signal  
edge (edge triggered), not with signal level. This means that  
after power cycling the driver, a rising edge has to occur on  
INA, INB for OUTA and OUTB to go high, respectively.  
The same conditions apply if the output signals are disabled  
through the DIS pin. Therefore, after DIS signal goes low,  
a rising edge has to occur on INA, INB for OUTA and OUTB  
to go high, respectively.  
NCx57540  
DIS (DISABLE)  
tDIS  
tDIS  
Under Voltage Lockout UVLOI, UVLOA, UVLOB  
NCx575y0 UVLOA and UVLOB ensures reliable  
switching of the IGBT connected to the driver output.  
Driving the IGBT with low gate voltage causes it to switch  
outside the saturation region (in the linear region) which  
significantly increases the power losses and there is a danger  
of damage.  
INx  
OUTx WAITING  
FOR INx RISING  
EDGE TRIGGER  
tPD-ON-X  
tPD-ON-X  
OUTx  
UVLOI ensures correct transmission of the signals from  
the primary side to the secondary side of the driver.  
NCx575y0 is equipped by edge triggered inputs in order  
to prevent output pulse trimming. Therefore, after returning  
from safe state to active state, a rising edge has to occur on  
Figure 5. Disable Function  
www.onsemi.com  
11  
 
NCD57530, NCV57530, NCD57540, NCV57540  
INA, INB in order to set OUTA and OUTB high,  
respectively (see Figures 7, 8 and Figures 9, 10).  
Another note for the t  
is that it is valid if the V  
rises  
. The  
UVR  
DD2  
from just below V  
to V  
UVLOOUTOFF  
UVLOOUTON  
As a side effect of this feature is that the t  
time is  
coldstart time from V  
= 0 V to PWM at the output  
UVR  
DDA(B)  
always prolonged by a t  
. The t  
is the  
is t  
+ startup time of the internal bias circuits. The whole  
UVRspread  
UVRspread  
UVR  
delay caused by the time before next rising edge of PWM  
signal comes.  
time is about 20 s and the internal bias circuit startup time  
is about 10 s.  
V
DDA  
V
DDB  
V
UVLOI-HYST  
V
V
UVLOI-OUT-ON  
UVLOI-OUT-OFF  
V
DDI  
t
t
t
t
t
UVF  
UVR  
UVF  
UVR  
UVR  
t
UVR-spread  
INA/INB  
OUTA/OUTB  
Figure 7. Output Rampup and Rampdown Times during UVLOI  
V
DDA  
V
DDB  
V
V
UVLOI-OUT-ON  
UVLOI-OUT-OFF  
V
DDI  
t
t
UVF  
t
t
t
UVR  
UVR  
UVF  
UVR  
t
UVR-spread  
INA/INB  
OUTA/OUTB  
Figure 8. VDDI Glitch Filtering  
www.onsemi.com  
12  
 
NCD57530, NCV57530, NCD57540, NCV57540  
V
V
DDI  
V
UVLOA,B-HYST  
UVLOA,B-OUT-ON  
UVLOA,B-OUT-OFF  
V
V
/V  
DDA DDB  
t
t
t
UVR  
t
t
UVR  
UVF  
UVR  
UVF  
t
UVR-spread  
INA/INB  
OUTA/OUTB  
Figure 9. Output Rampup and Rampdown Times during UVLOA, UVLOB  
V
DDI  
V
V
UVLOA,B-OUT-ON  
UVLOA,B-OUT-OFF  
V
/V  
DDA DDB  
t
t
t
UVR  
t
t
UVF  
UVF  
UVR  
UVR  
t
UVR-spread  
INA/INB  
OUTA/OUTB  
Figure 10. VDDA/VDDB Glitch Filtering  
Power Supply  
Cooling Polygons on GNDA/GNDB  
It is important to provide cooling polygons if driving  
IGBTs with higher gate capacitance values and using higher  
switching frequencies. They have to be connected to GNDA  
and GNDB (See Figure 12).  
Decoupling (VDDI, VDDA, VDDB)  
Suitable external power capacitors are required for  
reliable driving of IGBT gate with high current. Parallel  
combination of 100 nF + 4,7 F low ESR ceramic capacitors  
is optimal for a wide range of applications using IGBT. For  
reliable driving of IGBT modules (containing several  
parallel IGBT’s) with a gate capacitance over 10 nF a higher  
decoupling capacity is required (typically 100 nF + 10 F).  
Capacitors should be as close as possible to the driver’s  
power pins. The recommended layout is provided in the  
Figure 12.  
Output Current on GNDA/GNDB  
The NCx575y0 has a high current, lowdrop MOSFET  
output stage. It is capable of driving IGBTs with gate  
capacitance C of up to 100 nF. For optimal IGBT driving  
G
a few conditions have to be met:  
www.onsemi.com  
13  
NCD57530, NCV57530, NCD57540, NCV57540  
Low inductance (wide and short) traces from OUTA  
(OUTB) to R and to IGBT gate and from emitter  
G
(source) to GNDA (GNDB).  
Sufficient power rating of gate resistors R .  
G
Reasonable combination of switching frequency f and  
gate capacitance C of the IGBT.  
G
Good V  
and V  
decoupling (discussed above).  
DDA  
DDB  
Sufficient cooling pads (discussed above).  
Low Inductance Traces  
All the traces have to be as low inductance as possible due  
to the high current path from the driver output to IGBT gate.  
In practice that means wide tracks which are as short as  
possible. Tracks also have to be routed in order to not create  
big loops. The driving path (driver output, RG, IGBT gate)  
and return path (IGBT emitter, GNDA or GNDB pin) have  
to be routed as a pair and not enclosing other components.  
Figure 12. SOIC16 Recommended Layer Stack  
(CASE 752AJ)  
Highspeed  
signals  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Ground plane  
Keep this space free  
from traces, pads  
and vias  
40 mils  
1 mm  
40 mils  
1 mm  
Power plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Lowspeed  
signals  
314 mils  
(8 mm)  
Figure 11. SOIC16WB Recommended Layer Stack  
www.onsemi.com  
14  
NCD57530, NCV57530, NCD57540, NCV57540  
TYPICAL CHARACTERISTICS  
6
5
4
3
2
1
0
6
(6)  
5
(6)  
(3)  
(3)  
4
(5)  
(5)  
3
(2)  
(4)  
(2)  
(4)  
2
(1)  
1
(1)  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) I  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
0, I = 0 V, I = 0 V, D = 5 V  
NA NB T  
QDDI  
(1) I  
, I = 0 V, I = 0 V, D = 5 V  
NB T  
QDDI0 NA  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 V  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 V  
QDDI50 NA  
NB  
T
QDDI50 NA  
NB  
T
, I = 5 V, I = 0 V, D = 5 V  
, I = 5 V, I = 0 V, D = 5 V  
QDDI100 NA  
NB  
T
QDDI100 NA  
NB  
T
, I = 0 V, I = 0 V, D = 5 k  
, I = 0 V, I = 0 V, D = 5 k  
QDDI0 NA  
NB  
T
QDDI0 NA  
NB  
T
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 k  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 k  
QDDI50 NA  
NB  
T
QDDI50 NA  
NB  
T
, I = 5 V, I = 0 V, D = 5 k  
, I = 5 V, I = 0 V, D = 5 k  
QDDI100 NA  
NB  
T
QDDI100 NA  
NB  
T
(Note: V  
DDI  
= 5 V, V  
DDA  
= 15 V, V  
= 15 V)  
(Note: V  
= 3.3 V, V  
DDA  
= 15 V, V  
= 15 V)  
DDB  
DDI  
DDB  
Figure 14. IQDDI Supply Current, VDDI = 5 V  
Figure 13. IQDDI Supply Current, VDDI = 3.3 V  
8
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
(5)  
(6)  
(3)  
(5)  
(2)  
(6)  
(2)  
(4)  
(1)  
(3)  
(4)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) I  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
, V  
, V  
, V  
= 15 V, I = 0 V, I = 0 V, D = 5 V  
(1) I  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
, I = 0 V, I = 0 V, D = 5 V  
QDDA0 DDA NA NB T  
QDDI0 NA  
NB  
T
= 15 V, I = 5 V/200 kHz/50%, I = 0 V, D = 5 V  
NA NB T  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 V  
QDDA50 DDA  
QDDI50 NA  
NB  
T
= 15 V, I = 5 V, I = 0 V, D = 5 V  
NA NB T  
, I = 5 V, I = 0 V, D = 5 V  
QDDA100 DDA  
QDDI100 NA  
NB  
T
, V  
= 32 V, I = 0 V, I = 0 V, D = 5 V  
NA NB T  
, I = 0 V, I = 0 V, D = 5 k  
QDDA0 DDA  
QDDI0 NA  
NB  
T
, V  
, V  
= 32 V, I = 5 V/200 kHz/50%, I = 0 V, DT = 5 V  
NA NB  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 k  
QDDA50 DDA  
QDDI50 NA  
NB  
T
, I = 5 V, I = 0 V, D = 5 k  
= 32 V, I = 5 V, I = 0 V, D = 5 V  
QDDA100 DDA NA NB T  
QDDI100 NA  
NB  
T
(Note: V  
= 5 V, V  
= 15 V)  
(Note: V  
= 20 V, V  
DDA  
= 15 V, V  
= 15 V)  
DDI  
DDB  
DDI  
DDB  
Figure 16. IQDDA Supply Current  
Figure 15. IQDDI Supply Current, VDDI = 20 V  
www.onsemi.com  
15  
NCD57530, NCV57530, NCD57540, NCV57540  
TYPICAL CHARACTERISTICS  
20  
8
7
6
5
4
3
2
1
0
(5)  
(1)  
(3)  
(2)  
15  
(2)  
10  
(6)  
5
(3)  
(4)  
(1)  
0
40 20  
0
20  
40  
60  
80  
100 120  
1
10  
100  
1000  
Temperature (5C)  
Frequency (kHz)  
(1) I  
, V  
= 15 V, I = 0 V, I = 0 V, D = 5 V  
QDDB0 DDB  
NA  
NB  
T
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
, V  
= 15 V, I = 0 V, I 5 V/200 kHz/50%, D = 5 V  
NB = T  
= 15 V, I = 0 V, I = 5 V, D = 5 V  
NA NB T  
= 32 V, I = 0 V, I = 0 V, D = 5 V  
NA NB T  
(1) C = 1 nF  
(2) C = 10 nF  
G
(3) C = 100 nF  
G
QDDB50 DDB  
NA  
G
, V  
QDDB100 DDB  
, V  
QDDB0 DDB  
, V  
= 32 V, I = 0 V, I = 5 V/200 kHz/50%, D = 5 V  
QDDB50 DDB  
NA  
NB  
T
(Note: V  
= 5 V, V  
= 15 V, V = 15 V, I = 5 V/50%, I = 0 V,  
DDB NA NB  
DDI  
DDA  
, V  
= 32 V, I = 0 V, I = 5 V, D = 5 V  
NA NB T  
QDDB100 DDB  
D = V , DIS = GNDI, R = 0 Ω)  
T DDI G  
(Note: V  
= 5 V, V  
= 15 V)  
DDI  
DDA  
Figure 18. IQDDA (IQDDB) Supply Current  
vs. Switching Frequency  
Figure 17. IQDDB Supply Current  
0.1  
0.2  
0.3  
0.4  
0.5  
28  
27  
26  
25  
24  
23  
22  
21  
(3)  
(2)  
(1)  
(3)  
(2)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(3) I  
(2) I  
(2) I  
(3) I  
(1) I  
INAL  
(1) I  
DISL  
INBL  
INBH  
DISH  
INAH  
(Note: V  
= 3.3 V, V  
= V  
INB  
= V  
DIS  
= GNDI, V  
= V = 15 V)  
DDB  
(Note: V  
= V  
INA  
= V  
INB  
= V  
DIS  
= 3.3 V, V  
= V  
DDB  
= 15 V)  
DDI  
INA  
DDA  
DDI  
DDA  
Figure 20. Input Bias Current Logic “0”  
Figure 19. Input Bias Current Logic “1”  
www.onsemi.com  
16  
Temperature (5  
                                            
Temperature (5C)  
NCD57530, NCV57530, NCD57540, NCV57540  
TYPICAL CHARACTERISTICS  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
0.1  
(3)  
0.2  
(2)  
0.3  
(3)  
(1)  
0.4  
(2)  
(1)  
0.5  
40 20  
0
20  
40  
60  
C)  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
(2) I  
(3) I  
(3) I  
DISL  
(1) I  
(2) I  
INBL  
(1) I  
INBH  
DISH  
INAH  
INAL  
(Note: V  
= V  
INA  
= V  
INB  
= V  
DIS  
= 5 V, V  
= V  
DDB  
= 15 V)  
(Note: V  
= 5 V, V  
= V  
INB  
= V  
DIS  
= GNDI, V  
= V = 15 V)  
DDB  
DDI  
DDA  
DDI  
INA  
DDA  
Figure 21. Input Bias Current Logic “1”  
Figure 22. Input Bias Current Logic “0”  
0.1  
0.2  
0.3  
0.4  
0.5  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
(3)  
(2)  
(1)  
(3)  
(2)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(3) I  
(2) I  
(2) I  
(3) I  
(1) I  
INAL  
(1) I  
DISL  
INBL  
INBH  
DISH  
INAH  
(Note: V  
= 20 V, V  
= V  
= V  
= GNDI, V  
= V = 15 V)  
DDB  
(Note: V  
= V  
INA  
= V  
INB  
= V  
DIS  
= 20 V, V  
= V  
DDB  
= 15 V)  
DDI  
INA  
INB  
DIS  
DDA  
DDI  
DDA  
Figure 23. Input Bias Current Logic “1”  
Figure 24. Input Bias Current Logic “0”  
www.onsemi.com  
17  
NCD57530, NCV57530, NCD57540, NCV57540  
TYPICAL CHARACTERISTICS  
13  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
2.9  
2.8  
(1)  
(3)  
2.7  
2.6  
2.5  
(1)  
(2)  
(2)  
(4)  
11.9  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) V  
(4) V  
(1) V  
UVLOAOUTOFF  
UVLOAOUTON  
(2) V  
(1) V  
UVLOIOUTOFF  
UVLOIOUTON  
(3) V  
UVLOBOUTON  
UVLOBOUTOFF  
Figure 26. UVLOI Threshold Voltage  
Figure 25. NCx57540 UVLOA and UVLOB  
Threshold Voltage  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
140  
130  
120  
110  
100  
90  
(3)  
(1)  
(2)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) t  
(1) V  
(2) V  
(3) V  
UVFI  
UVLOIHYST  
UVLOAHYST  
UVLOBHYST  
Figure 27. UVLOx Enable/Disable Voltage  
Hysteresis  
Figure 28. UVLOI Fall Delay  
www.onsemi.com  
18  
NCD57530, NCV57530, NCD57540, NCV57540  
TYPICAL CHARACTERISTICS  
1.1  
1.5  
1.4  
1.3  
1.05  
(1)  
1
(1)  
(2)  
(2)  
0.95  
0.9  
0.85  
0.8  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) t  
(1) V  
(2) V  
(1) t  
UVFB  
CLAMPOUTA  
CLAMPOUTB  
UVFA  
Figure 29. UVLOA and UVLOB Fall Delay  
Figure 30. IGBT Short Circuit Clamping Voltage  
84  
82  
80  
78  
76  
74  
72  
70  
80  
78  
76  
74  
72  
70  
(1)  
(4)  
(1)  
(3)  
(2)  
(5)  
(6)  
(2)  
(3)  
(5)  
(6)  
(4)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) t  
(3) t  
(5) t  
, V  
= 3.3 V  
= 5 V  
= 20 V  
(2) t  
(4) t  
(6) t  
, V  
= 3.3 V  
= 5 V  
= 20 V  
PDONA DD1  
PDONB DD1  
(1) t  
(3) t  
(5) t  
, V  
= 3.3 V  
= 5 V  
= 20 V  
(2) t  
(4) t  
(6) t  
, V  
= 3.3 V  
, V = 5 V  
PDOFFB DD1  
PDOFFA DD1  
PDOFFB DD1  
, V  
, V  
PDONA DD1  
PDONB DD1  
, V  
PDOFFA DD1  
, V  
, V  
PDONA DD1  
PDONB DD1  
, V  
, V = 20 V  
PDOFFB DD1  
PDOFFA DD1  
Figure 32. Propagation Delay Turnoff  
Figure 31. Propagation Delay Turnon  
www.onsemi.com  
19  
NCD57530, NCV57530, NCD57540, NCV57540  
TYPICAL CHARACTERISTICS  
16.5  
16  
76  
(1)  
(1)  
15.5  
15  
74  
(3)  
(2)  
14.5  
14  
72  
(2)  
13.5  
13  
70  
68  
12.5  
12  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) t  
(2) t  
(3) t , V  
= 20 V  
(1) t , V  
DIS DD1  
= 3.3 V  
(2) t , V  
= 5 V  
RISE  
FALL  
DIS DD1  
DIS DD1  
Figure 33. Rise Time / Fall Time  
Figure 34. Disable Delay Time  
80  
18  
16  
14  
12  
10  
8
(1)  
(1)  
(3)  
78  
76  
74  
72  
70  
(2)  
(3)  
6
4
2
(2)  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) t , V  
= 5 V  
(3) t , V  
= 20 V  
(2) t , V  
= 5 V  
(1) t , V  
= 3.3 V  
(1) t , V  
= 3.3 V  
(3) t , V  
= 20 V  
DT DDI  
DT DDI  
DT DDI  
DT DDI  
DT DDI  
DT DDI  
(Note: V  
is inverted from V , V  
= V  
DDB  
= 15 V)  
INA  
INB DDA  
(Note: V  
is inverted from V , V  
= V  
DDB  
= 15 V)  
INA  
INB DDA  
Figure 36. Deadtime, DT pin 5 kW to GNDI  
Figure 35. Deadtime, DT pin FLOAT  
www.onsemi.com  
20  
NCD57530, NCV57530, NCD57540, NCV57540  
TYPICAL CHARACTERISTICS  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
(1)  
(2)  
(3)  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
(2) t , V  
= 5 V  
(1) t , V  
= 3.3 V  
(3) t , V  
= 20 V  
DT DDI  
DT DDI  
DT DDI  
(Note: V  
is inverted from V , V  
= V  
DDB  
= 15 V)  
INA  
INB DDA  
Figure 37. Deadtime, DT pin 500 kW to GNDI  
ORDERING INFORMATION  
Device  
Qualification  
Package  
Case  
Shipping  
NCD57530DWKR2G  
NCD57540DWKR2G  
NCV57530DWKR2G*  
Industrial  
SOIC16 Wide Body (less pin 12 & 13) (PbFree)  
752AJ 1,000 / Tape & Reel  
Automotive  
(AECQ100 Qualified  
and PPAP Capable)  
NCV57540DWKR2G*  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
www.onsemi.com  
21  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16 WB LESS PINS 12 & 13  
CASE 752AJ  
ISSUE O  
DATE 17 FEB 2021  
1
SCALE 1:1  
GENERIC  
MARKING DIAGRAM*  
16  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
AWLYYWW  
XXXXX = Specific Device Code  
*This information is generic. Please refer to  
A
= Assembly Location  
= Wafer Lot  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
WL  
YY  
WW  
= Year  
= Work Week  
1
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON30578H  
SOIC16 WB LESS PINS 12 & 13  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCD5R1J1KN150TRF

Ceramic Capacitor, Ceramic, 1000V, 5% +Tol, 5% -Tol, N150, -150ppm/Cel TC, 0.0000051uF,
NICHICON

NCD5R6M500SLJ.1LSTBF

Ceramic Capacitor, Ceramic, 500V, 20% +Tol, 20% -Tol, SL, -330ppm/Cel TC, 0.0000056uF,
NICHICON

NCD6

CIT SWITCH
CIT

NCD680C2KVNPOCTBF

Ceramic Capacitor, Ceramic, 2000V, 0.37% +Tol, 0.37% -Tol, C0G, 30ppm/Cel TC, 0.000068uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
NICHICON

NCD680D50N1500K.1LSTBF

Ceramic Capacitor, Ceramic, 50V, 0.7353% +Tol, 0.7353% -Tol, N1500, -1500ppm/Cel TC, 0.000068uF,
NICHICON

NCD680D5KVNPOETRF

Ceramic Capacitor, Ceramic, 5000V, 0.74% +Tol, 0.74% -Tol, C0G, 30ppm/Cel TC, 0.000068uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
NICHICON

NCD680Z3KVNPOETBF

Ceramic Capacitor, Ceramic, 3000V, 80% +Tol, 20% -Tol, C0G, 30ppm/Cel TC, 0.000068uF, Through Hole Mount, RADIAL LEADED, ROHS COMPLIANT
NICHICON

NCD681D100N1500K.1LSTBF

Ceramic Capacitor, Ceramic, 100V, 0.0735% +Tol, 0.0735% -Tol, N1500, -1500ppm/Cel TC, 0.00068uF,
NICHICON

NCD681D50N3300D.2LSF

Ceramic Capacitor, Ceramic, 50V, 0.0735% +Tol, 0.0735% -Tol, N3300, -3300ppm/Cel TC, 0.00068uF,
NICHICON

NCD681J1KSLD.295LSF

Ceramic Capacitor, Ceramic, 1000V, 5% +Tol, 5% -Tol, SL, -330ppm/Cel TC, 0.00068uF,
NICHICON

NCD681K1KVY5PJ.1LSTRF

Ceramic Capacitor, Ceramic, 1000V, 10% +Tol, 10% -Tol, Y5P, -/+10ppm/Cel TC, 0.00068uF,
NICHICON

NCD681K50N3300K.1LSTRF

Ceramic Capacitor, Ceramic, 50V, 10% +Tol, 10% -Tol, N3300, -3300ppm/Cel TC, 0.00068uF,
NICHICON