NCID9400 [ONSEMI]

High Speed Quad-Channel Digital Isolator;
NCID9400
型号: NCID9400
厂家: ONSEMI    ONSEMI
描述:

High Speed Quad-Channel Digital Isolator

文件: 总15页 (文件大小:296K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed Quad-Channel  
Digital Isolator  
Product Preview  
NCID9401, NCID9411  
Description  
The NCID94xx is a galvanically isolated highspeed quadchannel  
digital isolator with output enable. This device supports isolated  
communications thereby allowing digital signals to communicate  
between systems without conducting ground loops or hazardous  
voltages.  
www.onsemi.com  
It utilizes ON Semiconductor’s patented galvanic offchip capacitor  
isolation technology and optimized IC design to achieve high  
insulation and high noise immunity, characterized by high common  
mode rejection and power supply rejection specifications. The thick  
ceramic substrate yields capacitors with ~25 times the thickness of  
thin film onchip capacitors and coreless transformers. The result is  
a combination of the electrical performance benefits that digital  
isolators offer with the safety reliability of a >0.5 mm insulator barrier  
similar to what has historically been offered by optocouplers.  
The device is housed in a 16pin wide body small outline package.  
SOIC16 W  
CASE 751EN  
MARKING DIAGRAM  
Features  
ON  
AWLYWW  
OffChip Capacitive Isolation to Achieve Reliable High Voltage  
9401  
Insulation  
DTI (Distance Through Insulation): 0.5 mm  
Maximum Working Insulation Voltage: 2000 V  
Bidirectional Communication  
peak  
A
WL  
Y
WW  
9401/9411  
= Assembly Location  
= Wafer Lot / Assembly Lot  
= Year  
= Work Week  
= Specific Device Code  
100 kV/ms Minimum Common Mode Rejection  
8 mm Creepage and Clearance Distance to Achieve Reliable High  
Voltage Insulation  
Specifications Guaranteed Over 2.5 V to 5.5 V Supply Voltage  
and 40°C to 125°C Extended Temperature Range  
Over Temperature Detection  
Output Enable Function (Primary and Secondary side)  
NCIV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable (Pending)  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 13 of  
this data sheet.  
Safety and Regulatory Approvals  
UL1577, 5000 VRMS for 1 Minute  
DIN VDE V 088411 (Pending)  
Typical Applications  
Isolated PWM Control  
Industrial Fieldbus Communications  
2
Microprocessor System Interface (SPI, I C, etc.)  
Programmable Logic Control  
Isolated Data Acquisition System  
Voltage Level Translator  
This document contains information on a product under development. ON Semiconductor  
reserves the right to change or discontinue this product without notice.  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
August, 2020 Rev. P1  
NCID9401/D  
NCID9401, NCID9411  
BLOCK DIAGRAM  
VDD1  
GND1  
VDD2  
GND2  
SYNC  
SER  
ENCODER  
TX  
RX  
DECODER  
DES  
IO A  
IOB  
IOC  
IOD  
IO A  
IOB  
IOC  
IOD  
IO  
SWITCH  
IO  
SWITCH  
SYNC  
DES  
DECODER  
RX  
TX  
ENCODER  
SER  
EN1  
EN2  
GND1  
GND2  
Figure 1. Functional Block Diagram  
www.onsemi.com  
2
NCID9401, NCID9411  
PIN CONFIGURATION  
NCID9401  
NCID9411  
1
2
3
4
5
6
7
8
16  
1
16  
V
V
V
V
DD2  
DD1  
DD2  
DD1  
GND1  
15 GND2  
GND1  
2
3
4
5
6
7
8
15 GND2  
14  
14  
V
V
V
V
V
V
V
V
V
V
V
V
INA  
INB  
OA  
INA  
INB  
OA  
13  
12  
11  
10  
9
13  
12  
11  
10  
9
OB  
OB  
V
V
V
INC  
INC  
IND  
OC  
OD  
OC  
V
OD  
IND  
NC  
EN2  
EN1  
EN2  
GND1  
GND2  
GND1  
GND2  
Figure 2. Pin and Channel Configuration  
PIN DEFINITION  
Name  
Pin No.  
NCID9401  
Pin No.  
NCID9411  
Description  
V
1
2
1
2
Power Supply, Side 1  
Ground Connection for V  
Input, Channel A  
DD1  
GND1  
DD1  
V
3
3
INA  
V
INB  
4
4
Input, Channel B  
V
INC  
5
5
Input, Channel C  
V
6
11  
7
Input, Channel D  
IND  
EN1  
GND1  
GND2  
EN2  
Output Enable 1  
8
8
Ground Connection for V  
Ground Connection for V  
Output Enable 2  
DD1  
9
9
DD2  
10  
11  
12  
13  
14  
15  
16  
7
10  
6
V
Output, Channel D  
Output, Channel C  
Output, Channel B  
Output, Channel A  
Ground Connection for V  
Power Supply, Side 2  
No Connect  
OD  
V
12  
13  
14  
15  
16  
OC  
V
OB  
V
OA  
GND2  
DD2  
V
DD2  
NC  
www.onsemi.com  
3
NCID9401, NCID9411  
SPECIFICATIONS  
TRUTH TABLE (Note 1)  
V
EN  
V
V
V
OX  
Comment  
Normal Operation  
Normal Operation  
INX  
X
DDI  
DDO  
H
H/NC  
H/NC  
L
Power Up  
Power Up  
Power Up  
Power Up  
Power Up  
Power Up  
H
L
L
X
X
Power Up  
HiZ  
L
H/NC  
Power Down  
Default low; V return to normal operation  
OX  
when V  
change to Power Up  
DDI  
X
H/NC  
Power Up  
Power Down  
Undetermined  
(Note 2)  
V
return to normal operation when V  
OX DDO  
change to Power Up  
1. VINX = Input signal of a given channel (A, B, C or D). EN = Enable pin for primary or secondary side (1 or 2). V = Output signal of a given  
X
OX  
channel (A, B, C or D). V  
= Inputside V . V  
= Outputside V . X = Irrelevant. H = High level. L = Low level. NC = No Connection.  
DDI  
DD DDO DD  
2. The outputs are in undetermined state when V  
< V  
.
DDO  
UVLO  
SAFETY AND INSULATION RATINGS  
As per DIN VDE V 088411, this digital isolator is suitable for “safe electrical insulation” only within the safety limit data. Compliance with  
the safety ratings must be ensured by means of protective circuits.  
Symbol  
Parameter  
Min  
Typ  
I–IV  
I–IV  
I–IV  
I–IV  
I–III  
40/100/21  
2
Max  
Unit  
Installation Classifications per DIN VDE 0110/1.89  
Table 1 Rated Mains Voltage  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
RMS  
RMS  
RMS  
RMS  
< 1000 V  
RMS  
Climatic Classification  
Pollution Degree (DIN VDE 0110/1.89)  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
InputtoOutput Test Voltage, Method b, V × 1.875 = V , 100%  
600  
3750  
V
PR  
V
peak  
IORM  
PR  
Production Test with t = 1 s, Partial Discharge < 5 pC  
m
InputtoOutput Test Voltage, Method a, V  
× 1.6 = V , Type  
3200  
V
peak  
IORM  
PR  
and Sample Test with t = 10 s, Partial Discharge < 5 pC  
m
V
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
2000  
8000  
8.0  
V
V
IORM  
peak  
V
IOTM  
peak  
E
External Creepage  
mm  
mm  
mm  
°C  
CR  
E
External Clearance  
8.0  
CL  
DTI  
Insulation Thickness  
0.50  
150  
100  
600  
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
Safety Limit Values – Maximum Values in Failure; Output Power  
T
Case  
P
mW  
mW  
W
S,INPUT  
P
S,OUTPUT  
9
R
Insulation Resistance at TS, V = 500 V  
IO  
IO  
10  
www.onsemi.com  
4
 
NCID9401, NCID9411  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Value  
55 to +150  
40 to +125  
40 to +150  
260 for 10 s  
0.5 to 6  
0.5 to 6  
15  
Unit  
°C  
°C  
°C  
°C  
V
T
Storage Temperature  
Operating Temperature  
Junction Temperature  
STG  
OPR  
T
T
J
T
SOL  
Lead Solder Temperature (Refer to Reflow Temperature Profile)  
Supply Voltage (V  
V
DD  
)
DDx  
V
Voltage (V , V , ENx)  
V
INx  
Ox  
I
O
Average Output Current  
Power Dissipation  
mA  
mW  
PD  
210  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
RECOMMENDED OPERATING RANGES  
Symbol  
Parameter  
Ambient Operating Temperature  
Min  
40  
2.5  
0.7 × V  
0
Max  
+125  
5.5  
Unit  
°C  
V
T
A
V
V
Supply Voltage (Notes 3, 4)  
High Level Input Voltage  
DD1 DD2  
V
INH  
V
DDI  
V
DDI  
V
INL  
Low Level Input Voltage  
0.3 × V  
V
DDI  
V
V
Supply Voltage UVLO Rising Threshold  
Supply Voltage UVLO Falling Threshold  
Supply Voltage UVLO Hysteresis  
High Level Output Current  
Low Level Output Current  
2.2  
2.0  
0.1  
2  
V
UVLO+  
V
UVLO  
UVLO  
V
HYS  
I
mA  
mA  
Mbps  
OH  
I
OL  
2
DR  
Signaling Rate  
0
10  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
3. During power up or down, ensure that both the input and output supply voltages reach the proper recommended operating voltages to avoid  
any momentary instability at the output state.  
4. For reliable operation at recommended operating conditions, V supply pins require at least a pair of external bypass capacitors, placed  
DD  
within 2 mm from V pins 1 and 16 and GND pins 2 and 15. Recommended values are 0.1 mF and 1 mF.  
DD  
ISOLATION CHARACTERISTICS  
Apply over all recommended conditions. All typical values are measured at T = 25°C.  
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
ISO  
InputOutput Isolation  
Voltage  
T = 25°C, Relative Humidity < 50%,  
5000  
V
RMS  
A
t = 1.0 minute, I  
(Notes 5, 6, 7)  
v 10 mA, 50 Hz  
IO  
11  
R
C
Isolation Resistance  
Isolation Capacitance  
V
V
= 500 V (Note 5)  
10  
ISO  
ISO  
IO  
= 0 V, Frequency = 1.0 MHz  
(Note 5)  
1
pF  
IO  
5. Device is considered a twoterminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
6. 5,000 V for 1minute duration is equivalent to 6,000 V for 1second duration.  
RMS  
RMS  
7. The inputoutput isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an inputoutput continuous voltage  
rating. For the continuous working voltage rating, refer to equipmentlevel safety specification or DIN VDE V 088411 Safety and Insulation  
Ratings Table on page 4.  
www.onsemi.com  
5
 
NCID9401, NCID9411  
ELECTRICAL CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C, V  
= V  
= 2.5 V to 5.5 V, unless otherwise specified. All typical values  
A
DD1  
DD2  
are measured at T = 25°C.  
A
Symbol  
Parameter  
Conditions  
Min  
– 0.4  
Typ  
V – 0.1  
DDO  
Max  
Unit  
Figure  
V
OH  
High Level Output  
Voltage  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 5 V, I = 4 mA  
V
DDO  
V
11  
OH  
= 3.3 V, I = 2 mA  
OH  
= 2.5 V, I = 1 mA  
OH  
V
OL  
Low Level Output  
Voltage  
= 5 V, I = 4 mA  
0.1  
0.4  
V
12  
OL  
= 3.3 V, I = 2 mA  
OL  
= 2.5 V, I = 1 mA  
OL  
V
V
Rising Input Voltage  
Threshold  
0.7 × V  
V
V
V
INT+  
DDI  
Falling Input Voltage  
Threshold  
0.1 × V  
0.1 × V  
INT−  
DDI  
V
Input Threshold Voltage  
Hysteresis  
0.2 × V  
INT(HYS)  
DDI  
DDI  
I
High Level Input Current  
Low Level Input Current  
V
V
= V  
1
mA  
mA  
INH  
IH  
DDI  
I
= 0 V  
1  
INL  
IL  
CMTI  
Common Mode Transient  
Immunity  
V = V  
or 0 V,  
100  
150  
kV/ms  
16  
I
DDI  
= 1500 V  
V
CM  
C
Input Capacitance  
V
= V /2 + 0.4 × sin (2pft),  
2
pF  
IN  
IN  
DDI  
f = 1 MHz, V = 5 V  
DD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
SUPPLY CURRENT CHARACTERISTICS  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
Parameter  
Conditions  
Min  
Typ  
8.3  
9.3  
8.0  
9.1  
7.9  
9.0  
8.4  
9.5  
8.1  
9.2  
8.0  
9.1  
8.9  
11.3  
8.4  
10.2  
8.2  
Max  
11.3  
12.3  
11  
Unit  
mA  
Figure  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
DC Supply Current  
V
IN  
= 5 V, EN = 0/5 V,  
DD  
= 0/5 V  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
V
V
V
= 3.3 V, EN = 0/3.3 V,  
= 0/3.3 V  
DD  
IN  
12  
V
V
= 2.5 V, EN = 0/2.5 V,  
= 0/2.5 V  
10.8  
11.8  
11.3  
12.3  
11  
DD  
IN  
AC Supply Current  
1 Mbps  
V
DD  
= 5 V, EN = 5 V,  
mA  
3, 4,  
5, 6  
C = 15 pF,  
L
V
IN  
= 5 V Square Wave  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
V
DD  
= 3.3 V, EN = 3.3 V,  
C = 15 pF,  
L
12  
V
IN  
= 3.3 V Square Wave  
V
DD  
= 2.5 V, EN = 2.5 V,  
10.8  
11.8  
12.6  
13.6  
11.7  
12.7  
11.3  
C = 15 pF,  
L
V
IN  
= 2.5 V Square Wave  
AC Supply Current  
10 Mbps  
V
DD  
= 5 V, EN = 5 V,  
mA  
C = 15 pF,  
L
V
IN  
= 5 V Square Wave  
V
DD  
= 3.3 V, EN = 3.3 V,  
C = 15 pF,  
L
V
IN  
= 3.3 V Square Wave  
V
DD  
= 2.5 V, EN = 2.5 V,  
C = 15 pF,  
L
I
9.8  
12.3  
V
IN  
= 2.5 V Square Wave  
DD2  
www.onsemi.com  
6
NCID9401, NCID9411  
SWITCHING CHARACTERISTICS – NCID9401  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
Parameter  
Ch  
Conditions  
= 5 V, C = 15 pF  
Min  
Typ  
Max  
Unit  
Figure  
t
Propagation Delay to Logic Low  
Output (Note 8)  
All  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
136  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
8, 13  
PHL  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
Propagation Delay to Logic High  
Output (Note 9)  
All  
All  
All  
All  
All  
All  
All  
All  
All  
= 5 V, C = 15 pF  
137  
33  
200  
80  
80  
PLH  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
PWD  
Pulse Width Distortion  
= 5 V, C = 15 pF  
L
| t  
PHL  
– t  
| (Note 10)  
PLH  
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
Propagation Delay Skew  
(Part to Part) (Note 11)  
= 5 V, C = 15 pF  
80  
PSK(PP)  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
R
Output Rise Time (10% to 90%)  
Output Fall Time (90% to 10%)  
= 5 V, C = 15 pF  
3
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
F
= 5 V, C = 15 pF  
2
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
t
High Impedance to Logic Low  
Output Delay (Note 12)  
8.4  
25  
25  
1
14  
= 5 V, R = 1 kW  
PZL  
L
= 3.3 V, R = 1 kW  
9.9  
L
= 2.5 V, R = 1 kW  
12.3  
10.8  
14.5  
17.8  
0.53  
0.50  
0.50  
11.7  
13.1  
15.0  
L
Logic Low to High Impedance  
Output Delay (Note 13)  
= 5 V, R = 1 kW  
PLZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
t
t
High Impedance to Logic High  
Output Delay (Note 14)  
15  
= 5 V, R = 1 kW  
PZH  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
Logic High to High Impedance  
Output Delay (Note 15)  
25  
= 5 V, R = 1 kW  
PHZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
8. Propagation delay t  
signal.  
is measured from the 50% level of the falling edge of the input pulse to the 50% level of the falling edge of the V  
O
PHL  
9. Propagation delay t  
is measured from the 50% level of the rising edge of the input pulse to the 50% level of the rising edge of the V signal.  
O
PLH  
10.PWD is defined as | t  
– t  
PLH  
| for any given device.  
PHL  
11. Parttopart propagation delay skew is the difference between the measured propagation delay times of a specified channel of any two parts  
at identical operating conditions and equal load.  
12.Enable delay t  
is measured from the 50% level of the rising edge of the EN pulse to the 50% of the falling edge of the V signal as it switches  
PZL  
O
from high impedance state to low state.  
13.Disable delay t is measured from the 50% level of the falling edge of the EN pulse to 0.5 V level of the rising edge of the V signal as  
PLZ  
O
it switches from low state to high impedance state.  
14.Enable delay t is measured from the 50% level of the rising edge of the EN pulse to the 50% of the rising edge of the V signal as it switches  
PZH  
O
from high impedance state to high state.  
15.Disable delay t is measured from the 50% level of the falling edge of the EN pulse to V 0.5 V level of the falling edge of the V signal  
PHZ  
OH  
O
as it switches from high state to high impedance state.  
www.onsemi.com  
7
 
NCID9401, NCID9411  
SWITCHING CHARACTERISTICS – NCID9411  
Apply over all recommended conditions, T =40°C to +125°C unless otherwise specified. All typical values are measured at T = 25°C.  
A
A
Symbol  
t
Parameter  
Ch  
Conditions  
= 5 V, C = 15 pF  
Min  
Typ  
Max  
Unit  
Figure  
Propagation Delay to Logic  
Low Output (Note 8)  
A, B, C  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
115  
170  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
9, 10, 13  
PHL  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
D
A,B,C  
D
= 5 V, C = 15 pF  
77  
117  
78  
26  
13  
110  
170  
110  
70  
40  
70  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
Propagation Delay to Logic  
High Output (Note 9)  
= 5 V, C = 15 pF  
L
PLH  
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
= 5 V, C = 15 pF  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
PWD  
Pulse Width Distortion  
A,B,C  
D
= 5 V, C = 15 pF  
70  
40  
70  
L
| t  
PHL  
– t  
| (Note 10)  
PLH  
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
= 5 V, C = 15 pF  
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
Propagation Delay Skew  
(Part to Part) (Note 11)  
All  
= 5 V, C = 15 pF  
L
PSK(PP)  
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
R
Output Rise Time  
(10% to 90%)  
All  
= 5 V, C = 15 pF  
3
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
F
Output Fall Time  
(90% to 10%)  
All  
= 5 V, C = 15 pF  
2
L
= 3.3 V, C = 15 pF  
L
= 2.5 V, C = 15 pF  
L
t
t
High Impedance to Logic  
Low Output Delay (Note 12)  
All  
8.5  
25  
25  
1
14  
= 5 V, R = 1 kW  
PZL  
L
= 3.3 V, R = 1 kW  
10.2  
12.6  
10.8  
14.6  
17.8  
0.54  
0.50  
0.50  
11.6  
12.9  
14.6  
L
= 2.5 V, R = 1 kW  
L
Logic Low to High Impedance  
Output Delay (Note 13)  
All  
= 5 V, R = 1 kW  
PLZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
t
t
High Impedance to Logic High  
Output Delay (Note 14)  
All  
15  
= 5 V, R = 1 kW  
PZH  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
Logic High to High Impedance  
Output Delay (Note 15)  
All  
25  
= 5 V, R = 1 kW  
PHZ  
L
= 3.3 V, R = 1 kW  
L
= 2.5 V, R = 1 kW  
L
www.onsemi.com  
8
NCID9401, NCID9411  
TYPICAL PERFORMANCE CHARACTERISTICS  
12  
11  
12  
T = 25°C  
T = 25°C  
A
A
LOAD = No Load  
LOAD = 15 pF  
11  
I
V
= 5 V  
I
V
= 5 V  
DD2 DD  
DD2 DD  
I
V
= 3.3 V  
DD2 DD  
I
V
= 3.3 V  
DD2 DD  
10  
9
10  
9
I
V
= 2.5 V  
DD2 DD  
I
V
= 2.5 V  
DD2 DD  
I
V
= 5 V  
I
V
= 3.3 V  
I
V
= 2.5 V  
I
V
= 5 V  
I
V
= 3.3 V  
I
V
= 2.5 V  
DD1 DD  
DD1 DD  
DD1 DD  
DD1 DD  
DD1 DD  
DD1 DD  
8
8
7
7
0
2
4
6
8
10  
0
2
4
6
8
10  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 3. NCID9401 Supply Current vs. Data Rate  
(No Load)  
Figure 4. NCID9401 Supply Current vs. Data Rate  
(Load = 15 pF)  
12  
12  
T = 25°C  
T = 25°C  
A
A
LOAD = 15 pF  
LOAD = No Load  
I
V
= 5 V  
DD2 DD  
I
V
= 5 V  
DD2 DD  
11  
11  
I
V
= 3.3 V  
DD2 DD  
I
V
= 3.3 V  
DD2 DD  
I
V
= 2.5 V  
DD2 DD  
I
V
= 2.5 V  
DD2 DD  
10  
9
10  
9
8
8
I
V
= 5 V  
I
V
= 3.3 V  
I
V
= 2.5 V  
DD1 DD  
DD1 DD  
DD1 DD  
I
V
= 5 V  
I
V
= 3.3 V  
I
V
= 2.5 V  
DD1 DD  
DD1 DD  
DD1 DD  
7
7
0
2
4
6
8
10  
0
2
4
6
8
10  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 5. NCID9411 Supply Current vs. Data Rate  
(No Load)  
Figure 6. NCID9411 Supply Current vs. Data Rate  
(Load = 15 pF)  
3.0  
150  
V
DD  
= 2.5 V to 5 V  
Ch A/B/C/D  
2.5  
140  
130  
120  
V
t
UVLO+  
PHL  
t
PLH  
V
UVLO−  
2.0  
1.5  
40 20  
0
20  
40  
60  
80 100 120  
40 20  
0
20  
40  
60  
80 100 120  
T
A
Ambient Temperature (5C)  
T
A
Ambient Temperature (5C)  
Figure 7. Supply Voltage UVLO Threshold vs.  
Ambient Temperature  
Figure 8. NCID9401 Propagation Delay vs. Ambient  
Temperature  
www.onsemi.com  
9
NCID9401, NCID9411  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
130  
125  
120  
90  
V
= 2.5 V to 5 V  
V
Ch D  
= 2.5 V to 5 V  
DD  
DD  
Ch A/B/C  
85  
80  
t
PHL  
t
PHL  
t
PLH  
115  
110  
75  
70  
t
PLH  
105  
100  
65  
60  
40 20  
0
20  
40  
60  
80 100 120  
40 20  
0
20  
40  
60  
80 100 120  
T
A
Ambient Temperature (5C)  
T
A
Ambient Temperature (5C)  
Figure 9. NCID9411 Channel A/B/C Propagation Delay  
vs. Ambient Temperature  
Figure 10. NCID9411 Channel D Propagation Delay vs.  
Ambient Temperature  
130  
1.0  
T = 25°C  
A
T = 25°C  
A
125  
120  
0.8  
0.6  
V
= 5 V  
DD  
V
= 2.5 V  
DD  
V
= 3.3 V  
DD  
115  
110  
V
V
= 3.3 V  
= 2.5 V  
DD  
DD  
0.4  
0.2  
0.0  
V
= 5 V  
DD  
105  
100  
10  
8  
6  
4  
2  
0
0
2
4
6
8
10  
I
High Level Output Current (mA)  
I
Low Level Output Current (mA)  
OH  
OL  
Figure 11. High Level Output Voltage vs. Current  
Figure 12. Low Level Output Voltage vs. Current  
www.onsemi.com  
10  
NCID9401, NCID9411  
TEST CIRCUITS  
50%  
V
I
V
DDI  
V
DDO  
V
I
V
O
+
+
t
t
PHL  
PLH  
V
IN  
90%  
10%  
V
EN  
50%  
+
C
L
V
O
t
R
t
F
Figure 13. VIN to VO Propagation Delay Test Circuit and Waveform  
R
1 kW  
L
50%  
V
I
V
DDI  
V
DDO  
V
O
+
+
t
t
PZL  
PLZ  
V
I
V
IN  
0.5 V  
V
O
+
50%  
C
L
V
EN  
Figure 14. EN to Logic Low VO Propagation Delay Test Circuit and Waveform  
50%  
V
I
V
DDO  
V
DDI  
V
O
+
+
t
t
PZH  
PHZ  
V
I
V
IN  
1 kW  
R
C
L
+
L
0.5 V  
50%  
V
O
V
EN  
Figure 15. EN to Logic High VO Propagation Delay Test Circuit and Waveform  
1
V
V
DDI  
S at 0, VO remain consistently low  
S at 1, VO remain consistently high  
DDO  
V
V
O
IN  
2
S
0
S at 2, VO data same as V data  
IN  
SCOPE  
V
CM  
Figure 16. Common Mode Transient Immunity Test Circuit  
www.onsemi.com  
11  
NCID9401, NCID9411  
APPLICATION INFORMATION  
Theory of Operation  
In the layout with digital isolators, it is required that the  
isolated circuits have separate ground and power planes. The  
section below the device should be clear with no power,  
ground or signal traces. Maintain a gap equal to or greater  
than the specified minimum creepage clearance of the  
device package.  
NCID9401 and NCID9411 are quadchannel digital  
isolators. Each channel enables communication between  
two isolated circuits. It uses offchip ceramic capacitors that  
serve both as the isolation barrier and as the medium of  
transmission for signal switching using OnOff keying  
(OOK) technique, illustrated in the single channel  
operational block diagram in Figure 17.  
Signal Lines / VDD2 Fill  
Signal Lines / VDD1 Fill  
At the transmitter side, the V input logic state is  
IN  
GND1  
Plane  
GND2  
Plane  
modulated with a high frequency carrier signal. The  
resulting signal is amplified and transmitted to the isolation  
barrier. The receiver side detects the barrier signal and  
demodulates it using an envelope detection technique. The  
No Trace  
VDD1 Plane  
VDD2 Plane  
Signal Lines / GND2 Fill  
Signal Lines / GND1 Fill  
Figure 19. 4Layer PCB for Digital Isolator  
output signal determines the V output logic state when the  
O
output enable control EN is at high. When EN is at low,  
It is highly advised to connect at least a pair of low ESR  
supply bypass capacitors, placed within 2mm from the  
power supply pins 1 and 16 and ground pins 2 and 15.  
Recommended values are 1 mF and 0.1 mF, respectively.  
output V is at high impedance state. V is at default state  
O
O
low when the power supply at the transmitter side is turned  
off or the input V is disconnected.  
IN  
Place them between the V pins of the device and the via  
DD  
ISOLATION  
TRANSMITTER  
EN  
RECEIVER  
BARRIER  
to the power planes, with the higher frequency, lower value  
capacitor closer to the device pins. Directly connect the  
device ground pins 2, 8, 9 and 15 by via to their  
corresponding ground planes.  
TX  
Amplifier  
OOK  
Modulator  
RX  
Amplifier  
Envelope  
Detector  
V
V
O
IO  
IN  
OFFCHIP  
CAPACITORS  
OSC  
Figure 17. Operational Block Diagram of  
Single Channel  
1 mF 0.1 mF  
0.1 mF 1 mF  
V
V
DD2  
GND2  
DD1  
GND1  
V
IN  
ISOLATION  
BARRIER  
SIGNAL  
GND1  
GND2  
V
O
Figure 20. Placement of Bypass Capacitors  
Figure 18. OnOff Keying Modulation Signals  
Over Temperature Detection  
NCID9401 and NCID9411 have builtin Over  
Temperature Detection (OTD) feature that protects the IC  
from thermal damage. The output pins will automatically  
switch to default state when the ambient temperature  
exceeds the maximum junction temperature at threshold of  
approximately 160°C. The device will return to normal  
operation when the temperature decreases approximately  
20°C below the OTD threshold.  
Layout Recommendation  
Layout of the digital circuits relies on good suppression of  
unwanted noise and electromagnetic interference. It is  
recommended to use 4layer FR4 PCB, with ground plane  
below the components, power plane below the ground plane,  
signal lines and power fill on top, and signal lines and ground  
fill at the bottom. The alternating polarities of the layers  
creates interplane capacitances that aids the bypass  
capacitors required for reliable operation at digital  
switching rates.  
www.onsemi.com  
12  
 
NCID9401, NCID9411  
ORDERING INFORMATION  
Part Number  
Grade  
Package  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
SOIC16 W  
Shipping  
NCID9401  
Industrial  
Industrial  
50 Units / Tube  
750 Units / Tape & Reel  
50 Units / Tube  
NCID9401R2  
NCID9411  
Industrial  
NCID9411R2  
Industrial  
750 Units / Tape & Reel  
50 Units / Tube  
NCIV9401* (pending)  
NCIV9401R2* (pending)  
NCIV9411* (pending)  
NCIV9411R2* (pending)  
Automotive  
Automotive  
Automotive  
Automotive  
750 Units / Tape & Reel  
50 Units / Tube  
750 Units / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCIV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
www.onsemi.com  
13  
NCID9401, NCID9411  
PACKAGE DIMENSIONS  
SOIC16 W  
CASE 751EN  
ISSUE O  
www.onsemi.com  
14  
NCID9401, NCID9411  
2
ON Semiconductor is licensed by the Philips Corporation to carry the I C bus protocol.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY