NCL30076AADR2G [ONSEMI]

Wide Analog Dimming Quasi-Resonant Buck Controller;
NCL30076AADR2G
型号: NCL30076AADR2G
厂家: ONSEMI    ONSEMI
描述:

Wide Analog Dimming Quasi-Resonant Buck Controller

文件: 总15页 (文件大小:879K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quasi-Resonant Buck  
Controller for Precise  
Current Regulation and  
Wide Analog Dimming  
NCL30076  
www.onsemi.com  
The NCL30076 is a DC−DC buck controller for wide dimming  
range down to 1% by analog dimming control to relieve audible noise  
and flicker in PWM dimming. ON Semiconductor’s proprietary LED  
current calculation technique driven by zero input offset amplifiers  
performs precise constant current in the whole analog dimming range.  
Multi−mode operation provides high efficiency with minimized  
switching loss by QR at heavy load and deep analog dimming by DCM  
at light load.  
8
1
SOIC−8 NB  
CASE 751  
PWM dimming control is also provided in case that constant LED  
color temperature is required. The NCL30076 has several protections  
such as LED short protection, over current protection, thermal  
shutdown and VDD over voltage protection for robust system  
reliability.  
MARKING DIAGRAM  
L30076AA  
AWLYYWW  
Features  
Wide Analog Dimming Range: 1~100%  
Low CC Tolerance: 2% at 100% Load & 20% at 1% Load  
Low System BOM  
L30076  
AA  
A
WL  
YYWW  
= Specific Device Code  
= Default Trimming Option  
= Assembly Location  
= Wafer Lot Traceability Code  
= 4 Digit Data Code  
LED Off Mode at Standby  
Low Standby Current  
PWM Dimming Available  
Gate Sourcing and Sinking Current of 0.5 A/0.8 A  
PIN ASSIGNMENT  
Robust Protection Features  
LED Short Protection  
Over Current Protection  
Thermal Shutdown  
BIAS  
PG  
CSZCD  
DRV  
V Over Voltage Protection  
DD  
SG  
FB  
VDD  
Typical Applications  
DIM  
LED Lighting System  
(Top View)  
ORDERING INFORMATION  
Device  
NCL30076AADR2G  
Package  
Shipping  
SOIC−8 NB  
3000 /  
Tape & Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
April, 2021 − Rev. 3  
NCL30076/D  
NCL30076  
APPLICATION SCHEMATIC  
200~500 Vin  
PFC  
VAC  
Stage  
FB  
DRV  
Dimming  
Signal  
DIM  
CSZCD  
RCS  
NCL30076  
SG  
PG  
BIAS  
VDD  
External source  
Figure 1. Application Schematic  
BLOCK DIAGRAM  
|| VSHUTDOWN  
VDD−ON  
VDD  
VPDIM  
VON  
VOF F  
10 V /  
8 V  
VPWM  
3.3 V  
LDO  
Q
DRV  
S
BIAS  
Soft  
Start  
VTO FF.SS  
VTO FF.ZCD  
VTO FF.FB  
R
TOF F.FB  
generator  
VCS.LIM  
CSZCD  
OTA  
VLED  
VFB  
FB  
VREF  
Precise LED  
current calculator  
Reference control  
PWM dimming control  
VPDIM  
VSHUTDOWN  
VCS.LIM  
VTO FF.ZCD  
ZCD  
detector  
DIM  
Standby mode control  
PG  
SG  
Over voltage protection  
Over current protection  
Thermal Shutdown  
VDD  
Protection  
AR control  
VCSZCD  
VSHUTDOWN  
T
J
Figure 2. Simplified Block Diagram  
www.onsemi.com  
2
NCL30076  
PIN CONFIGURATION  
BIAS  
PG  
CSZCD  
DRV  
SG  
FB  
VDD  
DIM  
(Top View)  
Figure 3. Pin Configuration  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
BIAS  
CSZCD  
SG  
Function  
3.3 V BIAS  
Description  
1
2
3
4
5
6
7
8
This pin is 3.3 V LDO output to bias the internal digital circuit  
This pin detects the switch current and the inductor current zero cross time  
Signal Ground is close to control pin circuit such as CSZCD, DIM and FB  
Output of feedback OTA  
CS and ZCD Sensing  
Signal Ground  
Feedback  
FB  
DIM  
Dimming Input  
Power Supply  
Output Drive  
Dimming signal is provided to this pin  
VDD  
DRV  
PG  
IC operating current is supplied to this pin  
This pin is connected to drive external switch  
Power Ground  
Power Ground is close to the capacitors at BIAS and VDD pin  
www.onsemi.com  
3
NCL30076  
SPECIFICATIONS  
MAXIMUM RATINGS  
Parameter  
Symbol  
Value  
−0.3 to 30  
−0.3 to 5.5  
550  
Unit  
V
VDD, DRV Pin Voltage Range  
V
MV(MAX)  
DIM, FB, CSZCD, BIAS Pin Voltage Range  
V
V
LV(MAX)  
Maximum Power Dissipation (T < 50°C)  
P
mW  
°C  
A
D(MAX)  
Maximum Junction Temperature  
T
150  
J(max)  
Storage Temperature Range  
T
−55 to 150  
145  
°C  
STG  
Junction−to−Ambient Thermal Impedance  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
R
°C/W  
kV  
θJA  
ESD  
2
HBM  
CDM  
ESD  
1
kV  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2. This device series incorporates ESD protection and is tested by the following methods:  
− ESD Human Body Model per JEDEC Standard JESD22−A114  
− ESD Charged Device Model per JEDEC Standard JESD22−C101  
− Latch−up Current Maximum Rating 100 mA per JEDEC Standard JESD78  
RECOMMENDED OPERATING RANGES  
Parameter  
Symbol  
Min  
Max  
Unit  
Junction Temperature  
T
J
−40  
125  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
ELECTRICAL CHARACTERISTICS (V = 15 V and T = −40~125°C unless otherwise specified)  
DD  
J
Parameter  
VDD SECTION  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
IC Turn−On Threshold Voltage  
IC Turn−Off Threshold Voltage  
Startup Current  
V
9.3  
7.4  
10.0  
8.0  
10.7  
8.6  
V
V
DD(ON)  
V
DD(OFF)  
V
DD  
= V  
− 1.6 V  
I
250  
6.5  
400  
8.0  
mA  
mA  
mA  
DD(ON)  
DD(ST)  
DD(OP)  
Operating Current  
I
Standby Current  
I
200  
300  
DD(SB)  
BIAS SECTION  
BIAS Voltage  
V
BIAS  
3.23  
3.25  
3.30  
3.30  
3.37  
3.35  
V
T = 25~100°C (Note 4)  
J
DIM SECTION  
DIM Voltage for 100% V  
V
DIM  
= 1.9 V  
V
DIM(REF−MAX)  
1.755  
1.730  
50  
1.80  
1.78  
75  
1.845  
1.827  
100  
V
REF  
DIM Voltage for 99% V  
V
V
REF  
DIM(MAX−EFF)  
Standby Enabling DIM Voltage  
Standby Disabling DIM Voltage  
Standby Delay Time  
V
mV  
mV  
ms  
DIM(SB−ENA)  
V
60  
100  
10  
140  
DIM(SB−DIS)  
t
9
11  
SB(DELAY)  
www.onsemi.com  
4
 
NCL30076  
ELECTRICAL CHARACTERISTICS (V = 15 V and T = −40~125°C unless otherwise specified) (continued)  
DD  
J
Parameter  
FB SECTION  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
FB OTA Source Current  
IFB = (V  
− V  
) x g  
x 10  
I
−14.0  
9.0  
−11.5  
11.5  
−9.0  
14.0  
mA  
mA  
LED  
REF  
M(FB)  
FB(SOURCE)  
V
REF  
= 150 mV, V  
= 100 mV  
LED  
FB OTA Sink Current  
IFB = (V  
− V  
) x g  
x 10  
I
LED  
REF  
M(FB)  
FB(SINK)  
V
REF  
= 50 mV, V  
= 100 mV  
LED  
FB OTA Transconductance  
FB OTA High Voltage  
FB Minimum Clamping Voltage  
CS SECTION  
g
= I / {(V  
− V  
) x 10}  
g
M(FB)  
18  
4.7  
0.4  
23  
28  
mmho  
M(FB)  
FB  
REF  
LED  
V
= 150 mV, V  
= 100 mV  
V
V
V
REF  
REF  
LED  
FB(HIGH)  
V
= 0 mV, V  
= 100 mV  
V
0.5  
0.6  
LED  
FB(CLP)  
CS Regulation  
V
155  
390  
145  
160  
410  
155  
165  
430  
165  
mV  
mV  
mV  
CS(REG−MAX)  
CS Current Limit Maximum  
CS Current Limit Minimum  
DUTY SECTION  
V
CS(LIM−MAX)  
V
CS(LIM−MIN)  
Leading Edge Blanking Time at  
Turn−on  
t
t
360  
400  
440  
ns  
LEB(TON)  
Maximum Ton Time  
t
45  
50  
55  
ms  
ns  
ms  
V
ON(MAX)  
Minimum Toff Time  
V
V
= 3.8 V  
= 0.5 V  
900  
1.17  
3.30  
0.9  
1250  
1.30  
3.43  
1.1  
1500  
1.43  
3.55  
1.3  
FB  
OFF(MIN)  
Maximum Toff Time  
t
OFF(MAX)  
FB  
Maximum FB Voltage for Min. Toff  
Minimum FB Voltage for Max. Toff  
Quasi−Resonant Delay Time  
DRV SECTION  
V
FB(MAX−TOFF)  
V
V
FB(MIN−TOFF)  
t
0.45  
0.50  
0.55  
ms  
QR  
DRV Low Voltage  
V
0.2  
13  
V
V
DRV(LOW)  
DRV High Voltage  
V
= 15 V  
V
11  
60  
25  
12  
DD  
DRV(HIGH)  
DRV Rising Time  
C
C
= 3.3 nF  
= 3.3 nF  
t
100  
55  
145  
105  
ns  
ns  
DRV  
DRV  
DRV(R)  
DRV Falling Time  
t
DRV(F)  
AUTO RESTART SECTION  
Auto Restart Time at Protection  
t
0.9  
22  
1.0  
23  
1.1  
24  
s
V
V
AR(PROT)  
VDD OVER VOLTAGE PROTECTION SECTION  
VDD Over Voltage Threshold Voltage  
V
DD(OVP)  
OVER CURRENT PROTECTION SECTION  
CS Over Current Protection  
Threshold  
V
0.9  
1.0  
1.1  
CS(OCP)  
THERMAL SHUTDOWN SECTION  
Thermal Shut Down Temperature  
(Note 3)  
T
130  
25  
150  
30  
170  
35  
°C  
°C  
SD  
Thermal Shut Down Hysteresis  
(Note 3)  
T
SD(HYS)  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Guaranteed by design.  
4. Guaranteed by characterization.  
www.onsemi.com  
5
 
NCL30076  
TYPICAL CHARACTERISTICS  
(These characteristic graphs are normalized at T = 25°C)  
A
1.006  
1.004  
1.002  
1
1.006  
1.004  
1.002  
1
0.998  
0.996  
0.994  
0.998  
0.996  
0.994  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
140  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (5C)  
Temperature (5C)  
Figure 4. VBIAS vs. Temperature  
Figure 5. VDIM(MAX) vs. Temperature  
1.03  
1.02  
1.01  
1
1.006  
1.004  
1.002  
1
0.99  
0.98  
0.97  
0.998  
0.996  
0.994  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
140  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (5C)  
Temperature (5C)  
Figure 6. gM(FB) vs. Temperature  
Figure 7. VCS(REG−MAX) vs. Temperature  
1.006  
1.004  
1.002  
1
1.006  
1.004  
1.002  
1
0.998  
0.996  
0.994  
0.998  
0.996  
0.994  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
140  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (5C)  
Figure 9. VDD(OVP) vs. Temperature  
Temperature (5C)  
Figure 8. VCS(LIM−MIN) vs. Temperature  
www.onsemi.com  
6
NCL30076  
APPLICATION INFORMATION  
General  
Therefore, NCL30076 supports low CC tolerance less  
NCL30076 provides wide analog dimming down to 1%  
than 2% at full load and 20% at 1% load in the system  
variation.  
with accurate CC regulation. According to buck inductor,  
input voltage and output voltage, deep dimming down to  
0.1~0.2% load can be achieved. Thanks to  
ON Semiconductor’s proprietary LED current calculation  
technique, NCL30076 is able to sense the current of LED  
load connected at input voltage node with no upper limit of  
the input voltage with high design flexibility and system  
reliability. LED current sensed by internal zero input offset  
amplifiers performs accurate CC regulation in the whole  
analog dimming range. Therefore, CC tolerance is tightly  
controlled within 2% at 100% load and 20% at 1% load.  
Soft start  
At startup, an internal soft start block gradually reduces  
T
OFF  
time from maximum T  
limit so that LED current is  
OFF  
settled smoothly without overshoot current and unexpected  
flash.  
Standby Mode  
When V  
is lower than a standby threshold voltage for  
DIM  
10 ms, standby mode is triggered with LED turn−off and IC  
current consumption is minimized.  
Wide Analog Dimming  
Auto Restart (AR) at Protection  
Wide analog dimming range is obtained by transitioning  
multi−mode operation between QR and DCM according to  
the dimming condition. At full load condition, QR with  
valley switching minimizes switching loss for high system  
efficiency and DCM is activated at light load condition to  
perform deep analog dimming. Internal LED current  
calculator and a digital compensator provide dimming  
linearity over the entire dimming range.  
Once protection is triggered, IC operation stops for  
1 second and begins soft start operation after the auto restart  
time delay.  
VDD Over Voltage Protection (OVP)  
When VDD is higher than V  
voltage protection is triggered.  
threshold, over  
DD (OVP)  
Short LED Protection (SLP)  
PWM Dimming  
When LED is short circuited, the buck stage operates at  
minimum switching frequency, so the maximum turn−off  
time control protects the freewheeling diode from thermal  
stress.  
Analog dimming has benefits for less audible noise and  
flicker compared to PWM dimming. However, PWM  
dimming method is generally required to keep the constant  
LED color temperature in specific applications. NCL30076  
supports PWM diming by simply providing PWM dimming  
signal to DIM pin.  
Over Current Protection (OCP)  
When CSZCD voltage exceeds the over current threshold  
voltage, switching is immediately shut down after leading  
edge blanking time in the short circuit condition of the  
inductor or the freewheeling diode.  
Precise CC Regulation  
CC regulation is very important especially in  
programmable LED driver system to keep constant LED  
current under system variation of LED load, inductor,  
temperature, etc. NCL30076 applies zero input offset  
amplifiers at LED current calculator and OTA. Those blocks  
can implement precise LED current sensing and FB voltage  
generation.  
Thermal Shot Down (TSD)  
When IC junction temperature is higher than 150°C, TSD  
is triggered and released when the temperature is lower than  
120°C.  
www.onsemi.com  
7
NCL30076  
BASIC OPERATION  
Wide Analog Dimming  
NCL30076 operates in QR at full load and in DCM at light  
load for a wide dimming range. Figure 11 shows how  
NCL30076 is the current mode buck controller in which  
DRV is off when V reaches to V and DRV is on  
CSZCD  
CS.LIM  
by inductor current zero cross signal (V  
) in QR and  
TOFF.ZCD  
NCL30076 operates with V  
.
T
generator output (V  
) in DCM as shown in  
DIM  
OFF.FB  
TOFF.FB  
Figure 10. V  
is calculated based on V  
in precise  
LED  
CSZCD  
ILBUC K x RCS  
A(QR)  
LED current calculator block composed of zero input offset  
amplifiers and V  
equation.  
C
B
A
is controlled by DIM signal by below  
REF  
~320 mV  
155 mV  
V
DIM * 0.2 V  
(eq. 1)  
VREF [V] +  
VCS .LIM  
16 0 mV  
B(DCM)  
10  
V
LED  
is compared with V  
by OTA to generate V .  
REF FB  
V
FB  
sets V  
as below equation.  
VREF  
CS.LIM  
VFB  
(eq. 2)  
VCS.LIM [V] +  
) 37.5 mV  
t
10  
VDIM  
V
also controls V  
signal by T  
generator  
after DRV is  
FB  
TOFF.FB  
OFF.FB  
VFB  
in which V  
turned off.  
is triggered at T  
TOFF.FB  
OFF.FB  
1.1 V  
0.5 V  
2.7  
(eq. 3)  
VDIM  
TOFF.FB [ms] +  
) 0.1  
tOFF (MA X)  
500 ms  
V
FB * 1.1  
TOFF  
TOFF.FB  
When V  
drops after the inductor current zero cross,  
CSZCD  
TOFF.ZCD  
IC counts t (0.5 ms) and trigger V  
. In QR mode,  
QR  
TOFF.ZCD  
V
signal is generated later than V  
signal  
TOFF.ZCD  
TOFF.FB  
and DRV on is determined by V  
for valley  
TOFF.ZCD  
~ 1 V  
1.8 V VDIM  
0.2 V  
0.1/0.07 5 V  
switching. In DCM mode, DRV on is set by V  
as  
TOFF.FB  
T
is longer than V  
triggering time.  
OFF.FB  
TOFF.ZCD  
Figure 11. Operation Mode vs. VDIM  
A: V controls V  
and T  
with QR switching as T  
is determined by  
FB  
CS.LIM  
OFF  
DLED  
PFC  
CIN  
CLED  
DBUCK  
VAC  
ILED  
Stage  
T
T
is longer than  
OFF.ZCD  
OFF.ZCD  
LBUCK  
.
OFF.FB  
B: Operating mode is transitioned from QR to DCM at the  
RZCD1  
QBUCK  
RZCD2  
boundary between  
A
and  
B
region which is  
VDIM − 0.2 V  
DRV  
ILED  
=
10 x RCS  
approximately half load. T  
is determined by T  
OFF  
OFF.FB  
CSZCD  
as T  
is longer than T  
. When V  
is further  
OFF.FB  
OFF.ZCD  
DIM  
RCS  
reduced, V  
is no longer controlled by V and  
FB  
CS.LIM  
clamped to minimum V  
(155 mV).  
CS.LIM  
VTO FF.ZCD  
VTO FF.FB  
C: When V  
is lower than 0.2 V, V  
is pulled down to 0.5 V clamping voltage with min.  
is set to 0 V and  
DIM  
REF  
VPWM  
VON  
S
R
Q
V
FB  
VOF F  
DRV  
VFB  
TOF F.FB  
generator  
LED current under open loop control. When V  
lower than 0.075/0.1 V, standby mode is triggered with  
LED turn−off.  
is  
DIM  
VCS.LIM  
VCS.LIM  
CSZCD  
VLED  
OTA  
Precise LED  
current calculator  
LED = ILED x RCS  
FB  
Precise CC Regulation  
V
VREF  
Current sensing amplifier and OTA applies zero input  
offset compensation technique for precise CC regulation  
and dimming curve linearity in multi−mode operation  
Table 1 shows CC tolerance measured by changing  
inductor ( 15%), temperature (−10, 25, 90 °C), output  
voltage (100, 200, 300 V) and controller 150 pcs (3 lot  
variation) in 400 V input 100 W driver. As a result, CC  
tolerance with system variables at 1% deep dimming  
condition is less than 26% and less than 3.0% at full load  
condition.  
VTO FF.ZCD  
ZCD  
detector  
Reference control  
DIM  
Standby mode control  
VSTANDBY  
Figure 10. NCL30076 Block Diagram  
www.onsemi.com  
8
 
NCL30076  
Table 1. CC TOLERANCE (150 pcs)  
Inductor : +15%  
Temp. : −10 / 25 / 90 5C  
100% Load  
50% Load  
10% Load  
4.41  
5% Load  
5.32  
2% Load  
9.22  
1% Load  
16.23  
V
OUT  
V
OUT  
V
OUT  
: 100 V  
: 200 V  
: 300 V  
1.99  
1.83  
1.86  
2.29  
3.77  
3.70  
3.06  
4.10  
4.76  
5.23  
8.64  
14.44  
*
4.33  
5.80  
10.57  
13.48  
20.54  
*
V
: 100 / 200 / 300 V  
5.45  
6.94  
25.38  
OUT  
*The main deviation factor is high temperature condition. The Total CC tolerance at 1% deep dimming condition without high temperature  
condition is less than 20%.  
Soft Start  
During soft start operation, Internal soft start counter  
T
contributes to T  
by reduced from t  
.
OFF.SS  
OFF  
OFF(max)  
When T  
reaches to the steady state level, V is  
OFF_SS  
FB  
settled to regulation level and T  
is finally decided to  
OFF  
T
or T  
by load condition. In the end of the soft  
OFF.FB  
OFF.ZCD  
start time, T  
reaches to 0 and doesn’t affect T  
OFF  
OFF.SS  
control anymore. Figure 14 shows how the soft start  
operates at full load condition where T is not engaged  
OFF.FB  
as T  
is set by T  
in QR mode.  
OFF  
OFF.ZCD  
A: T  
is determined by T  
which is reduced from  
OFF  
OFF.SS  
t
. V is pulled up and the system operates in  
OFF(MAX) FB  
DCM mode.  
B: T is controlled by T  
as T is shorter  
OFF.SS  
is closer to V , and V starts  
LED REF FB  
OFF  
OFF.ZCD  
than T  
. V  
OFF.ZCD  
falling.  
C: V is settled in regulation level and steady state starts.  
FB  
A
B
C
tOFF (MAX )  
1300 ms  
TOFF by  
TOFF .ZCD  
(VFB falls to  
steady state level)  
TOFF by  
TOFF .ZCD  
(steady  
state)  
TOFF by  
TOFF .SS  
Figure 12. NCL30076 Dimming Curve and CC  
Tolerance  
Standby Mode  
Standby mode is triggered by V  
Figure 13.  
TOFF  
TOFF .SS  
TOFF .ZCD  
as shown in  
, DRV is shut  
DIM  
A: When V  
is lower than V  
DIM(SB−ENA)  
DIM  
down. So, LED lamps turn off.  
B: After t (10 ms), standby mode is entered and  
TOFF .FB  
VFB  
SB(DELAY)  
NCL30076 current consumption drops to I  
.
DD(SB)  
C: When V  
is higher than V  
, standby  
DIM(SB−DIS)  
DIM  
mode is immediately terminated and IC starts up.  
VREF  
A
B
C
VLED  
100 mV V  
DIM(SB−DIS)  
ILBUC K  
75 mV V  
DIM(SB−ENA)  
VDRV  
tSB(DELAY)  
Standby Mode  
Time  
Figure 14. Soft Start Sequence  
(Full Load Startup in QR)  
VFB  
Time  
Figure 13. NCL30076 Standby Mode  
www.onsemi.com  
9
 
NCL30076  
Protections  
1300 ms, t  
due to the absence of zero cross  
OFF(MAX)  
detection. Therefore, max. T  
freewheeling diode from thermal stress and the diode  
control protects the  
VDD Over Voltage Protection (OVP)  
OFF  
When VDD is higher than V  
(23 V), VDD OVP  
DD(OVP)  
current is regulated close to the LED current set by V  
.
is triggered with 1 sec AR timer. Open LED protection  
can be implemented by VDD OVP when VDD is supplied  
by auxiliary winding in the buck inductor.  
DIM  
Thermal Shut Down (TSD)  
When the junction temperature is higher than T , the  
SD  
system shuts down and the junction temperature is  
monitored at every 1 second AR delay time. When the  
Over Current Protection (OCP)  
When CSZCD voltage is higher than V  
leading edge blanking time, t  
(1 V) after  
(400 ns), IC  
CS(OCP)  
temperature is lower than T – T  
, the system  
SD(HYS)  
SD  
LEB(TON)  
restarts.  
immediately shuts down with 1 sec AR timer.  
Short LED Protection (SLP)  
When LED load is short−circuited, T  
is lengthened to  
OFF  
www.onsemi.com  
10  
NCL30076  
APPENDIX: DIMMING CURVE AND CC TOLERANCE WITH SYSTEM VARIABLES  
− System: NCL30076 100 W (V : 400 V / V  
: 100 ~ 300 V / I : 333 mA)  
OUT OUT(MAX)  
IN  
− Temperature variation: −10 / 25 / 90 °C  
− Inductance variation: 15% (1.36 mH ~ 1.84 mH)  
− Output Voltage: 100 / 200 / 300 V  
− NCL35076 Controller: 150 pcs (3 lot variation)  
Wide Output Condition (100/200/300V)  
NCL30076 150pcs (3lot) + Temp & Inductor variation  
+/− 26%  
+/− 15%  
+/− 8%  
+/− 7%  
+/− 5%  
Single Output Condition (100V)  
NCL30076 150pcs (3lot) + Temp & Inductor variation  
+/− 17%  
+/− 10%  
+/− 5%  
+/− 6%  
+/− 4%  
Single Output Condition (200V)  
NCL30076 150pcs (3lot) + Temp & Inductor variation  
+/− 15%  
+/− 10%  
+/− 5%  
+/− 4%  
+/− 6%  
Single Output Condition (300V)  
NCL30076 150pcs (3lot) + Temp & Inductor variation  
+/− 21%  
+/− 12%  
+/− 5%  
+/− 7%  
+/− 4%  
Figure 15. CC Tolerance (150 pcs)  
www.onsemi.com  
11  
NCL30076  
PCB LAYOUT GUIDANCE  
LBUCK  
Jumper  
1
2
4
3
Jumper  
*
RZCD1 should be properly selected according to rated voltage.  
Figure 16. Layout Guidance  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCL30080

Quasi-Resonant Primary Side Current-Mode Side Current-Mode
ONSEMI

NCL30080A

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30080ASNT1G

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30080B

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30080BSNT1G

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30080_13

Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081A

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081ASNT1G

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081B

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081BSNT1G

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30081_13

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI