NCL30082BDMR2G [ONSEMI]

Dimmable Quasi-Resonant Primary Side Current-ModeController for LED Lighting with Thermal Fold-back; 可调光准谐振初级侧电流ModeController LED照明与折返热
NCL30082BDMR2G
型号: NCL30082BDMR2G
厂家: ONSEMI    ONSEMI
描述:

Dimmable Quasi-Resonant Primary Side Current-ModeController for LED Lighting with Thermal Fold-back
可调光准谐振初级侧电流ModeController LED照明与折返热

文件: 总33页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCL30082  
Dimmable Quasi-Resonant  
Primary Side Current-Mode  
Controller for LED Lighting  
with Thermal Fold-back  
http://onsemi.com  
The NCL30082 is a PWM current mode controller targeting isolated  
flyback and nonisolated constant current topologies. The controller  
operates in a quasiresonant mode to provide high efficiency. Thanks  
to a novel control method, the device is able to precisely regulate a  
constant LED current from the primary side. This removes the need  
for secondary side feedback circuitry, biasing and an optocoupler.  
The device is highly integrated with a minimum number of external  
components. A robust suite of safety protection is built in to simplify  
the design. This device supports analog/digital dimming as well as  
thermal current foldback. While the NCL30082 has integrated fixed  
overvoltage protection, the designer has the flexibility to program a  
lower OVP level.  
Micro8  
DM SUFFIX  
CASE 846A  
MARKING DIAGRAM  
8
AAx  
AYWG  
G
Features  
1
Quasiresonant Peak Currentmode Control Operation  
Primary Side Sensing (no optocoupler needed)  
AAx  
x
A
= Specific Device Code  
= C or D  
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
Wide V Range  
CC  
Source 300 mA / Sink 500 mA Totem Pole Driver with 12 V Gate  
Clamp  
Y
W
G
Precise LED Constant Current Regulation 1% Typical  
Line Feedforward for Enhanced Regulation Accuracy  
Low LED Current Ripple  
(Note: Microdot may be in either location)  
250 mV 2% Guaranteed Voltage Reference for Current Regulation  
~ 0.9 Power Factor with Valley Fill Input Stage  
Low Startup Current (13 mA typ.)  
Analog or Digital Dimming  
PIN CONNECTIONS  
1
SD  
ZCD  
CS  
DIM  
VIN  
VCC  
DRV  
GND  
Thermal Foldback  
Wide Temperature Range of 40 to +125°C  
Pbfree, Halidefree MSL1 Product  
Robust Protection Features  
(Top View)  
Typical Applications  
Integral LED Bulbs  
Over Voltage / LED Open Circuit Protection  
Over Temperature Protection  
Secondary Diode Short Protection  
Output Short Circuit Protection  
Shorted Current Sense Pin Fault Detection  
Latched and Autorecoverable Versions  
Brownout  
LED Power Driver Supplies  
LED Light Engines  
V Under Voltage Lockout  
CC  
Thermal Shutdown  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 32 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
April, 2013 Rev. 0  
NCL30082/D  
NCL30082  
.
.
Aux  
.
V
8
7
6
5
DIM  
1
2
3
4
Figure 1. Typical Application Schematic for NCL30082  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No  
Pin Name  
Function  
Pin Description  
1
SD  
Thermal Foldback  
and shutdown  
Connecting an NTC to this pin allows reducing the output current down to 50%  
of its fixed value before stopping the controller. A Zener diode can also be  
used to pullup the pin and stop the controller for adjustable OVP protection  
2
3
4
5
ZCD  
CS  
Zero Crossing Detection  
Current sense  
Connected to the auxiliary winding, this pin detects the core reset event.  
This pin monitors the primary peak current  
The controller ground  
GND  
DRV  
Driver output  
The current capability of the totem pole gate drive (+0.3/0.5 A) makes it suit-  
able to effectively drive a broad range of power MOSFETs.  
6
7
VCC  
VIN  
Supplies the controller  
This pin is connected to an external auxiliary voltage.  
Input voltage sensing  
This pin observes the HV rail and is used in valley selection. This pin also  
monitors and protects for low mains conditions.  
BrownOut  
8
DIM  
Analog / PWM dimming  
This pin is used for analog or PWM dimming control. An analog signal than  
can be varied between V  
and V  
can be used to vary the current,  
DIM(EN)  
DIM100  
or a PWM signal with an amplitude greater than V  
.
DIM100  
http://onsemi.com  
2
NCL30082  
CS_shorted  
Enable  
V
REF  
V
DD  
STOP  
Over Voltage  
Protection  
Aux_SCP  
OFF  
VCC  
UVLO  
Latch  
Fault  
Management  
VCC Management  
Over Temperature  
Protection  
Internal  
VCC_max  
Thermal  
VCC Over Voltage  
Protection  
SD  
Ipkmax  
Thermal  
Foldback  
Shutdown  
V
TF  
WOD_SCP  
BO_NOK  
Qdrv  
V
VIN  
V
REF  
V
CC  
Clamp  
Circuit  
Zero Crossing Detection  
offset_OK  
ZCD  
Valley Selection  
Aux. Winding  
Short Circuit Prot.  
DRV  
S
R
Qdrv  
Aux_SCP  
Q
V
offset_OK  
VIN  
V
VLY  
Line  
Feedforward  
V
STOP  
V
TF  
REF  
DIM  
Dimming  
Type  
Detection  
CS  
Leading  
Edge  
Blanking  
CS_reset  
V
DIMA  
ConstantCurrent  
Control  
Ipkmax  
STOP  
Enable  
Enable  
V
DIMA  
Max. Peak  
Current  
Limit  
V
VIN  
Ipkmax  
VIN  
BrownOut  
BO_NOK  
CS Short  
Protection  
CS_shorted  
V
VIN  
Winding and  
Output diode  
Short Circuit  
Protection  
WOD_SCP  
Note: CS Short Protection is disabled  
Note: for NCL30082B1  
GND  
Figure 2. Internal Circuit Architecture  
http://onsemi.com  
3
NCL30082  
Table 2. MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, VCC pin, continuous voltage  
Maximum current for VCC pin  
0.3, +35  
Internally limited  
V
mA  
CC(MAX)  
I
CC(MAX)  
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
0.3, V  
(Note 1)  
V
mA  
DRV(MAX)  
DRV  
I
500, +800  
DRV(MAX)  
V
Maximum voltage on low power pins (except pins ZCD, DIM, DRV and VCC)  
Current range for low power pins (except pins ZCD, DRV and VCC)  
0.3, +5.5  
2, +5  
V
mA  
MAX  
I
MAX  
V
Maximum voltage for ZCD pin  
Maximum current for ZCD pin  
0.3, +10  
2, +5  
V
mA  
ZCD(MAX)  
I
ZCD(MAX)  
V
Maximum voltage for DIM pin  
Thermal Resistance, JunctiontoAir  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
0.3, +10  
289  
V
°C/W  
°C  
DIM(MAX)  
R
θ
JA  
T
150  
J(MAX)  
40 to +125  
60 to +150  
4
°C  
°C  
ESD Capability, HBM model (Note 2)  
ESD Capability, MM model (Note 2)  
kV  
200  
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V unless otherwise noted.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MilStd883, Method 3015.  
3. This device contains latchup protection and exceeds 100 mA per JEDEC Standard JESD78 except for VIN pin which passes 60 mA.  
http://onsemi.com  
4
 
NCL30082  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V;  
J
CC  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
STARTUP AND SUPPLY CIRCUITS  
Supply Voltage  
V
Startup Threshold  
Minimum Operating Voltage  
V
V
V
increasing  
decreasing  
decreasing  
V
V
16  
8.2  
8
18  
8.8  
20  
9.4  
CC  
CC  
CC  
CC(on)  
CC(off)  
Hysteresis V  
– V  
V
CC(on)  
CC(off)  
CC(HYS)  
CC(reset)  
Internal logic reset  
V
3.5  
4.5  
5.5  
Over Voltage Protection  
VCC OVP threshold  
V
26  
28  
30  
V
CC(OVP)  
V
V
noise filter  
t
5
20  
ms  
CC(off)  
VCC(off)  
noise filter−  
t
I
CC(reset)  
VCC(reset)  
Startup current  
I
13  
46  
30  
60  
mA  
mA  
CC(start)  
Startup current in fault mode  
CC(sFault)  
Supply Current  
mA  
Device Disabled/Fault  
Device Enabled/No output load on pin 5  
V
F
> V  
= 65 kHz  
= 470 pF,  
= 65 kHz  
I
I
I
0.8  
1.2  
2.3  
2.7  
1.4  
4.0  
5.0  
CC  
CC(off)  
CC1  
CC2  
CC3  
sw  
Device Switching (F = 65 kHz)  
C
sw  
DRV  
F
sw  
CURRENT SENSE  
Maximum Internal current limit  
V
0.95  
250  
1
1.05  
350  
V
ILIM  
Leading Edge Blanking Duration for V  
(T = 25°C to 125°C)  
j
t
300  
ns  
ILIM  
ILIM  
LEB  
Leading Edge Blanking Duration for V  
(T = 40°C to 125°C)  
j
t
240  
300  
350  
ns  
LEB  
Input Bias Current  
DRV high  
I
0.02  
50  
1.5  
120  
150  
1.65  
mA  
ns  
V
bias  
Propagation delay from current detection to gate offstate  
t
ILIM  
Threshold for immediate fault protection activation  
V
1.35  
CS(stop)  
Leading Edge Blanking Duration for V  
t
ns  
ms  
ms  
CS(stop)  
BCS  
Blanking time for CS to GND short detection V  
= 1 V  
t
t
6
12  
4
pinVIN  
CS(blank1)  
CS(blank2)  
Blanking time for CS to GND short detection V  
= 3.3 V  
2
pinVIN  
GATE DRIVE  
Drive Resistance  
DRV Sink  
DRV Source  
W
R
SNK  
R
SRC  
13  
30  
Drive current capability  
DRV Sink (Note 4)  
DRV Source (Note 4)  
mA  
I
500  
300  
SNK  
SRC  
I
Rise Time (10% to 90%)  
Fall Time (90% to 10%)  
DRV Low Voltage  
C
C
= 470 pF  
t
8
40  
30  
ns  
ns  
V
DRV  
r
= 470 pF  
t
f
DRV  
V
= V  
+0.2 V  
V
CC  
CC(off)  
DRV(low)  
C
= 470 pF,  
DRV  
R
= 33 kW  
DRV  
DRV High Voltage  
V
DRV  
= 30 V  
V
10  
12  
14  
V
CC  
DRV(high)  
C
= 470 pF,  
R
DRV  
= 33 kW  
4. Guaranteed by design  
5. OTP triggers when R  
= 4.7 kW  
NTC  
http://onsemi.com  
5
 
NCL30082  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V;  
J
CC  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
ZERO VOLTAGE DETECTION CIRCUIT  
ZCD threshold voltage  
V
increasing  
decreasing  
increasing  
V
25  
5
45  
25  
65  
45  
mV  
mV  
mV  
V
ZCD  
ZCD(THI)  
ZCD(THD)  
ZCD(HYS)  
ZCD(short)  
ZCD threshold voltage (Note 4)  
ZCD hysteresis (Note 4)  
V
ZCD  
V
V
V
ZCD  
10  
0.8  
Threshold voltage for output short circuit or aux. winding  
short circuit detection  
V
1
1.2  
Short circuit detection Timer  
V
ZCD  
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD(short)  
Autorecovery timer duration  
t
recovery  
Input clamp voltage  
High state  
Low state  
V
I
= 3.0 mA  
= 2.0 mA  
V
0.9  
9.5  
0.6  
0.3  
pin1  
CH  
CL  
I
V
pin1  
Propagation Delay from valley detection to DRV high  
Equivalent time constant for ZCD input (Note 4)  
Blanking delay after ontime  
V
ZCD  
decreasing  
t
20  
3
150  
ns  
ns  
ms  
ms  
DEM  
t
PAR  
t
2.25  
5
3.75  
8
BLANK  
Timeout after last demag transition  
t
6.5  
TIMO  
CONSTANT CURRENT CONTROL  
Reference Voltage at T = 25°C  
V
V
245  
242.5  
250  
250  
125  
55  
255  
257.5  
mV  
mV  
mV  
mV  
j
REF  
Reference Voltage T = 40°C to 125°C  
j
REF  
50% reference voltage (for thermal foldback)  
V
REF50  
Current sense lower threshold for detection of the  
leakage inductance reset time  
V
30  
80  
CS(low)  
LINE FEEDFORWARD  
V
to I  
conversion ratio  
K
15  
67.5  
17  
76.5  
37.5  
50  
19  
85.5  
mA/V  
mA  
VIN  
CS(offset)  
LFF  
I
offset(MAX)  
Offset current maximum value  
V
= 4.5 V  
pinVIN  
V
REF  
V
REF  
value below which the offset current source is turned off  
value above which the offset current source is turned on  
V
REF  
decreases  
increases  
V
V
mV  
mV  
REF(off)  
REF(on)  
V
REF  
VALLEY SELECTION  
Threshold for line range detection V increasing  
V
increases  
decreases  
V
HL  
2.28  
2.18  
15  
2.4  
2.3  
25  
2.52  
2.42  
35  
V
V
in  
VIN  
st  
nd  
(1 to 2 valley transition for V  
> 0.75 V)  
REF  
Threshold for line range detection V decreasing  
V
VIN  
V
LL  
in  
nd  
st  
(2 to 1 valley transition for V  
> 0.75 V)  
REF  
Blanking time for line range detection  
Valley thresholds  
t
ms  
HL(blank)  
mV  
st  
nd  
nd  
rd  
1
2
2
4
4
7
7
to 2 valley transition at LL and 2 to 3 valley HL  
V
REF  
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
V
V
V
V
V
V
177.5 187.5 197.5  
185.0 195.0 205.0  
117.5 125.0 132.5  
125.0 132.5 140.0  
VLY12/23  
VLY21/32  
VLY24/35  
VLY42/53  
VLY47/58  
VLY74/85  
nd  
nd  
th  
th  
th  
th  
st  
rd  
nd  
to 1 valley transition at LL and 3 to 2 valley HL  
V
REF  
REF  
th  
rd  
th  
to 4 valley transition at LL and 3 to 5 valley HL  
V
nd  
th  
rd  
to 2 valley transition at LL and 5 to 3 valley HL  
V
REF  
REF  
th  
th  
th  
to 7 valley transition at LL and 5 to 8 valley HL  
V
75.0  
82.5  
37.5  
50.0  
15.0  
20.0  
th  
th  
th  
to 4 valley transition at LL and 8 to 5 valley HL  
V
REF  
REF  
th  
th  
th  
to 11 valley transition at LL and 8 to 12 valley HL  
V
V
V
V
V
VLY711/812  
VLY117/128  
th  
th  
th  
th  
11 to 7 valley transition at LL and 12 to 8 valley HL  
11 to 13 valley transition at LL and 12 to 15 valley HL  
V
REF  
th  
th  
th  
th  
V
REF  
VLY1113/1215  
VLY1311/1512  
th  
th  
th  
th  
13 to 11 valley transition at LL and 15 to 12 valley HL  
V
REF  
4. Guaranteed by design  
5. OTP triggers when R  
= 4.7 kW  
NTC  
http://onsemi.com  
6
NCL30082  
Table 3. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V;  
J
CC  
For min/max values T = 40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
DIMMING SECTION  
DIM pin voltage for zero output current (OFF voltage)  
DIM pin voltage for maximum output current  
Dimming range  
V
0.66  
2.25  
0.7  
2.45  
1.75  
7.8  
0.74  
2.65  
V
V
DIM(EN)  
V
DIM100  
V
V
DIM(range)  
Clamping voltage for DIM pin  
V
V
DIM(CLP)  
Dimming pin pullup current source  
THERMAL FOLDBACK AND OVP  
SD pin voltage at which thermal foldback starts  
SD pin voltage at which thermal foldback stops  
I
280  
nA  
DIM(pullup)  
V
0.9  
1
1.2  
V
V
TF(start)  
V
0.64  
0.68  
0.72  
TF(stop)  
(I = 50% I  
)
out  
out(nom)  
Reference current for direct connection of an NTC (Note 5)  
Fault detection level for OTP (Note 5)  
I
80  
85  
0.5  
90  
mA  
V
OTP(REF)  
V
decreasing  
increasing  
V
0.47  
0.64  
0.53  
0.72  
SD  
OTP(off)  
OTP(on)  
SD pin level at which controller restart switching after OTP  
detection  
V
V
0.68  
V
SD  
Timer duration after which the controller is allowed to start  
pulsing (Note 5)  
t
180  
300  
ms  
OTP(start)  
Clamped voltage (SD pin left open)  
Clamp series resistor  
SD pin open  
V
1.13  
1.35  
1.6  
2.5  
30  
1.57  
V
kW  
V
SD(clamp)  
R
SD(clamp)  
SD pin detection level for OVP  
Delay before OVP or OTP confirmation (OVP and OTP)  
THERMAL SHUTDOWN  
V
SD  
increasing  
V
2.35  
15  
2.65  
45  
OVP  
SD(delay)  
T
ms  
Thermal Shutdown (Note 4)  
Device switching  
around 65 kHz)  
T
130  
150  
50  
170  
°C  
°C  
SHDN  
(F  
SW  
Thermal Shutdown Hysteresis (Note 4)  
BROWNOUT  
T
SHDN(HYS)  
BrownOut ON level (IC start pulsing)  
BrownOut OFF level (IC shuts down)  
BO comparators delay  
V
increasing  
decreasing  
V
V
0.90  
0.85  
1
0.9  
30  
50  
1.10  
0.95  
V
V
SD  
BO(on)  
V
SD  
BO(off)  
t
ms  
ms  
nA  
BO(delay)  
BO(blank)  
BrownOut blanking time  
t
35  
65  
Brownout pin bias current  
I
250  
250  
BO(bias)  
4. Guaranteed by design  
5. OTP triggers when R  
= 4.7 kW  
NTC  
http://onsemi.com  
7
 
NCL30082  
TYPICAL CHARACTERISTICS  
18.20  
18.15  
18.10  
18.05  
18.00  
8.90  
8.85  
8.80  
8.75  
8.70  
17.95  
17.90  
8.65  
8.60  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. VCC(on) vs. Junction Temperature  
Figure 4. VCC(off) vs. Junction Temperature  
27.80  
27.75  
18  
17  
16  
15  
14  
13  
12  
27.70  
27.65  
27.60  
27.55  
27.50  
11  
10  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. VCC(OVP) vs. Junction Temperature  
Figure 6. ICC(start) vs. Junction Temperature  
52  
50  
48  
46  
44  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
42  
40  
1.14  
1.12  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. ICC(sFault) vs. Junction Temperature  
Figure 8. ICC1 vs. Junction Temperature  
http://onsemi.com  
8
NCL30082  
TYPICAL CHARACTERISTICS  
2.40  
2.35  
2.30  
2.25  
2.20  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.15  
2.10  
2.50  
2.45  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. ICC2 vs. Junction Temperature  
Figure 10. ICC3 vs. Junction Temperature  
1.000  
0.995  
1.495  
1.490  
1.485  
0.990  
0.985  
0.980  
1.480  
1.475  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. VILIM vs. Junction Temperature  
Figure 12. VCS(stop) vs. Junction Temperature  
305  
303  
1.010  
1.005  
1.000  
0.995  
0.990  
301  
299  
297  
295  
293  
291  
289  
0.985  
0.980  
287  
285  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. tLEB vs. Junction Temperature  
Figure 14. VZCD(short) vs. Junction  
Temperature  
http://onsemi.com  
9
NCL30082  
TYPICAL CHARACTERISTICS  
3.20  
3.15  
3.10  
7.1  
7.0  
6.9  
6.8  
6.7  
3.05  
3.00  
6.6  
6.5  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. tBLANK vs. Junction Temperature  
Figure 16. tTIMO vs. Junction Temperature  
255  
254  
253  
55.0  
54.5  
54.0  
252  
251  
53.5  
53.0  
250  
249  
52.5  
52.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. VREF vs. Junction Temperature  
Figure 18. VCS(low) vs. Junction Temperature  
16.60  
16.55  
16.50  
16.45  
16.40  
37.6  
37.5  
37.4  
37.3  
37.2  
16.35  
16.30  
37.1  
37.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. KLFF vs. Junction Temperature  
Figure 20. VREF(off) vs. Junction Temperature  
http://onsemi.com  
10  
NCL30082  
TYPICAL CHARACTERISTICS  
49.0  
48.5  
48.0  
47.5  
47.0  
46.5  
46.0  
45.5  
45.0  
2.400  
2.395  
2.390  
2.385  
2.380  
2.375  
2.370  
44.5  
44.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. VREF(on) vs. Junction Temperature  
Figure 22. VHL vs. Junction Temperature  
2.300  
2.295  
2.290  
2.285  
28.0  
27.5  
27.0  
2.280  
26.5  
26.0  
2.275  
2.270  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. VLL vs. Junction Temperature  
Figure 24. tHL(BLANK) vs. Junction Temperature  
187.0  
186.5  
186.0  
185.5  
185.0  
198  
197  
196  
195  
194  
193  
184.5  
184.0  
192  
191  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 25. VVLY12/23 vs. Junction  
Temperature  
Figure 26. VVLY21/32 vs. Junction  
Temperature  
http://onsemi.com  
11  
NCL30082  
TYPICAL CHARACTERISTICS  
125.0  
124.5  
124.0  
123.5  
123.0  
136  
135  
134  
133  
132  
122.5  
122.0  
131  
130  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 27. VVLY24/35 vs. Junction  
Temperature  
Figure 28. VVLY42/53 vs. Junction  
Temperature  
76.0  
75.5  
75.0  
87  
86  
85  
84  
83  
82  
74.5  
74.0  
73.5  
73.0  
81  
80  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 29. VVLY47/58 vs. Junction  
Temperature  
Figure 30. VVLY74/85 vs. Junction  
Temperature  
37.7  
37.6  
37.5  
50  
49  
48  
47  
46  
45  
37.4  
37.3  
37.2  
37.1  
37.0  
44  
43  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 31. VVLY711/812 vs. Junction  
Temperature  
Figure 32. VVLY117/128 vs. Junction  
Temperature  
http://onsemi.com  
12  
NCL30082  
TYPICAL CHARACTERISTICS  
15.10  
15.05  
15.00  
14.95  
14.90  
14.85  
14.80  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
14.75  
14.70  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 33. VVLY1113/1215 vs. Junction  
Temperature  
Figure 34. VVLY1311/1512 vs. Junction  
Temperature  
0.710  
0.705  
2.46  
2.45  
0.700  
2.44  
0.695  
0.690  
2.43  
2.42  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 35. VDIM(EN) vs. Junction Temperature  
Figure 36. VDIM(100) vs. Junction Temperature  
88.0  
87.5  
87.0  
86.5  
86.0  
85.5  
85.0  
4.55  
4.50  
4.45  
4.40  
4.35  
4.30  
84.5  
84.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 37. tOVLD vs. Junction Temperature  
Figure 38. trecovery vs. Junction Temperature  
http://onsemi.com  
13  
NCL30082  
TYPICAL CHARACTERISTICS  
2.500  
2.495  
2.490  
2.485  
2.480  
86.5  
86.0  
85.5  
85.0  
84.5  
84.0  
2.475  
2.470  
83.5  
83.0  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 39. VOVP vs. Junction Temperature  
Figure 40. IOTP(ref) vs. Junction Temperature  
0.690  
0.688  
0.686  
0.684  
0.997  
0.995  
0.993  
0.991  
0.989  
0.682  
0.680  
0.987  
0.985  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 41. VOTP(on), VTF(stop) vs. Junction  
Temperature  
Figure 42. VTF(start) vs. Junction Temperature  
0.994  
0.992  
0.990  
0.988  
0.986  
0.906  
0.904  
0.902  
0.900  
0.898  
0.896  
0.984  
0.982  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 43. VBO(on) vs. Junction Temperature  
Figure 44. VBO(off) vs. Junction Temperature  
http://onsemi.com  
14  
NCL30082  
TYPICAL CHARACTERISTICS  
56.0  
55.5  
55.0  
54.5  
54.0  
53.5  
53.0  
52.5  
40 20  
0
20  
40  
60  
80  
100 120  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 45. tBO(BLANK) vs. Junction Temperature  
APPLICATION INFORMATION  
The NCL30082 implements a currentmode architecture  
temperature exceeds a prescribed level. If the  
operating in quasiresonant mode. Thanks to proprietary  
circuitry, the controller is able to accurately regulate the  
secondary side current of the flyback converter without  
using any optocoupler or measuring directly the secondary  
side current.  
temperature continues to increase, the current will be  
further reduced until the controller is stopped. The  
control will automatically restart if the temperature is  
reduced. This pin can implement a programmable OVP  
shutdown that can also autorestart the device.  
QuasiResonance CurrentMode Operation:  
implementing quasiresonance operation in peak  
currentmode control, the NCL30082 optimizes the  
efficiency by switching in the valley of the MOSFET  
drainsource voltage. Thanks to a smart control  
algorithm, the controller locksout in a selected valley  
and remains locked until the input voltage or the output  
current set point significantly changes.  
BrownOut: the controller includes a brownout  
circuit which safely stops the controller in case the  
input voltage is too low. The device will automatically  
restart if the line recovers.  
Cyclebycycle peak current limit: when the current  
sense voltage exceeds the internal threshold V  
, the  
ILIM  
MOSFET is turned off for the rest of the switching  
cycle.  
Primary Side Constant Current Control: thanks to a  
proprietary circuit, the controller is able to compensate  
for the leakage inductance of the transformer and allow  
accurate control of the secondary side current.  
Line Feedforward: compensation for possible  
variation of the output current caused by system slew  
rate variation.  
Open LED protection: if the voltage on the VCC pin  
exceeds an internal limit, the controller shuts down and  
waits 4 seconds before restarting switching.  
Thermal Foldback / Over Temperature / Over  
Voltage Protection: by combining a dual threshold on  
the SD pin, the controller allows the direct connection  
of an NTC to ground plus a Zener diode to a monitored  
voltage. The temperature is monitored and the output  
current is linearly reduced in the event that the  
Winding ShortCircuit Protection: an additional  
comparator with a short LEB filter (t ) senses the CS  
BCS  
signal and stops the controller if V reaches 1.5 x  
CS  
V . For noise immunity reasons, this comparator is  
ILIM  
enabled only during the main LEB duration t  
.
LEB  
Output Shortcircuit protection: If a very low  
voltage is applied on ZCD pin for 90 ms (nominal), the  
controllers assume that the output or the ZCD pin is  
shorted to ground and enters shutdown. The  
autorestart version (B suffix) waits 4 seconds, then the  
controller restarts switching. In the latched version (A  
suffix), the controller is latched as long as V stays  
CC  
above the V  
threshold.  
CC(reset)  
Linear or PWM dimming: the DIM pin allows  
implementing both analog and PWM dimming.  
http://onsemi.com  
15  
NCL30082  
Constant Current Control  
Figure 47 portrays the primary and secondary current of  
a flyback converter in discontinuous conduction mode  
(DCM). Figure 46 shows the basic circuit of a flyback  
converter.  
Transformer  
V
bulk  
L
leak  
N
sp  
R
clp  
V
out  
C
clp  
L
p
Clamping  
network  
DRV  
C
lump  
R
sense  
Figure 46. Basic Flyback Converter Schematic  
During the ontime of the MOSFET, the bulk voltage  
is applied to the magnetizing and leakage inductors L  
When the diode conducts, the secondary current decreases  
linearly from I to zero. When the diode current has  
V
bulk  
p
D,pk  
and L  
and the current ramps up.  
turned off, the drain voltage begins to oscillate because of  
the resonating network formed by the inductors (L +L  
leak  
When the MOSFET is turnedoff, the inductor current  
first charges C . The output diode is off until the voltage  
)
leak  
p
and the lump capacitor. This voltage is reflected on the  
auxiliary winding wired in flyback mode. Thus, by looking  
at the auxiliary winding voltage, we can detect the end of the  
conduction time of secondary diode. The constant current  
control block picks up the leakage inductor current, the end  
of conduction of the output rectifier and controls the drain  
current to maintain the output current constant.  
lump  
across L reverses and reaches:  
p
ǒV  
Ǔ
Nsp out ) Vf  
(eq. 1)  
The output diode current increase is limited by the leakage  
inductor. As a consequence, the secondary peak current is  
reduced:  
We have:  
IL,pk  
I
D,pk t  
(eq. 2)  
VREF  
2NspRsense  
Nsp  
(eq. 3)  
Iout  
+
The diode current reaches its peak when the leakage inductor  
is reset. Thus, in order to accurately regulate the output  
current, we need to take into account the leakage inductor  
current. This is accomplished by sensing the clamping  
network current. Practically, a node of the clamp capacitor  
The output current value is set by choosing the sense  
resistor:  
Vref  
2NspIout  
(eq. 4)  
Rsense  
+
is connected to R  
instead of the bulk voltage V  
.
sense  
bulk  
From Equation 3, the first key point is that the output  
current is independent of the inductor value. Moreover, the  
leakage inductance does not influence the output current  
value as the reset time is taken into account by the controller.  
Then, by reading the voltage on the CS pin, we have an  
image of the primary current (red curve in Figure 47).  
http://onsemi.com  
16  
 
NCL30082  
I
L,pk  
N
I
sp D,pk  
I (t)  
pri  
I (t)  
sec  
time  
t
1
t
2
t
on  
t
demag  
V (t)  
aux  
time  
Figure 47. Flyback Currents and Auxiliary Winding Voltage in DCM  
Internal SoftStart  
At startup or after recovering from a fault, there is a small  
internal softstart of 40 ms.  
In addition, during startup, as the output voltage is zero  
volts, the demagnetization time is long and the constant  
current control block will slowly increase the peak current  
towards its nominal value as the output voltage grows.  
Figure 48 shows a softstart simulation example for a 9 W  
LED power supply.  
http://onsemi.com  
17  
NCL30082  
16.0  
12.0  
8.00  
4.00  
0
V
out  
1
800m  
600m  
400m  
200m  
0
I
2
out  
800m  
600m  
400m  
200m  
0
V
V
4
3
Control  
CS  
604u  
1.47m  
2.34m  
3.21m  
4.07m  
time in seconds  
Figure 48. Startup Simulation Showing the Natural Softstart  
CyclebyCycle Current Limit  
When the current sense voltage exceeds the internal  
Winding and Output Diode ShortCircuit Protection  
In parallel with the cyclebycycle sensing of the CS pin,  
threshold V , the MOSFET is turned off for the rest of the  
ILIM  
another comparator with a reduced LEB (t ) and a higher  
BCS  
switching cycle (Figure 49).  
threshold (1.5 V typical) is able to sense winding  
shortcircuit and immediately stops the DRV pulses. The  
controller goes into autorecovery mode in version B.  
In version A, the controller is latched. In latch mode, the  
DRV pulses stop and VCC ramps up and down. The circuit  
unlatches when VCC pin voltage drops below V  
CC(reset)  
threshold.  
http://onsemi.com  
18  
NCL30082  
S
aux  
Q
DRV  
latch  
Vdd  
Q
VCC  
CS  
R
Vcc  
management  
LEB1  
+
PWMreset  
Ipkmax  
Rsense  
Vcontrol  
VCCstop  
UVLO  
+
grand  
reset  
8_HICC  
OVP  
V
ILIMIT  
OVP  
STOP  
LEB2  
+
WOD_SCP  
latch  
S
OFF  
WOD_SCP  
S
R
V
Q
Q
CS(stop)  
Q
Q
R
8_HICC  
grand  
reset  
from Fault Management Block  
Figure 49. Winding Short Circuit Protection, Max. Peak Current Limit Circuits  
Thermal Foldback and Over Voltage / Over  
Temperature Protection  
If V drops below V , the controller enters into the  
autorecovery fault mode for version B, meaning that the  
4s timer is activated. The controller will restart switching  
SD  
OTP  
The thermal foldback circuit reduces the current in the  
LED string when the ambient temperature exceeds a set  
point. The current is gradually reduced to 50% of its nominal  
value if the temperature continues to rise. (Figure 50). The  
thermal foldback starting temperature depends of the  
Negative Coefficient Temperature (NTC) resistor chosen by  
the power supply designer.  
after the 4s timer has elapsed and when V > V  
to  
SD  
OTP(on)  
provide some temperature hysteresis (around 10°C).  
For version A, this protection is latched: reset occurs when  
< V  
V
.
CC(reset)  
CC  
The thermal foldback and OTP thresholds correspond  
roughly to the following resistances:  
Indeed, the SD pin allows the direct connection of an NTC  
to sense the ambient temperature. When the SD pin voltage  
Thermal foldback starts when R  
11.76 kW.  
8.24 kW.  
NTC  
Thermal foldback stops when R  
NTC  
V
SD  
drops below V  
, the internal reference for the  
TF(start)  
OTP triggers when R  
5.88 kW.  
NTC  
constant current control V  
is decreased proportionally to  
REF  
OTP is removed when R  
8.24 kW.  
NTC  
V
V
. When V reaches V  
, V  
is clamped to  
SD  
SD  
TF(stop)  
REF  
, corresponding to 50% of the nominal output  
REF50  
current.  
I
out  
I
out(nom)  
50% I  
out(nom)  
V
SD  
V
TF(start)  
V
V
V
OTP(off)  
TF(stop)  
OTP(on)  
Figure 50. Output Current Reduction versus SD Pin Voltage  
http://onsemi.com  
19  
 
NCL30082  
At startup, when V reaches V  
not allowed to start pulsing for at least 180 ms in order to  
, the controller is  
filtering capacitor is connected to the SD pin. This is to avoid  
flickering of the LED light in case of over temperature.  
CC  
CC(on)  
allow the SD pin voltage to reach its nominal value if a  
V
OVP  
VCC  
Vdd  
noise delay  
OVP  
Dz  
+
I
OTP(REF)  
S
Q
Q
OFF  
SD  
OTP_Timer end  
Rclamp  
Vclamp  
noise delay  
R
OTP  
NTC  
4s Timer  
+
(OTP latched for version A)  
S
0.5 V if OTP low  
0.7 V if OTP high  
V
OTP  
Latch  
Q
Q
V
TF  
R
VCCreset  
Figure 51. Thermal Foldback and OVP/OTP Circuitry  
In the case of excess voltage, the Zener diode starts to  
conduct and inject current into the internal clamp resistor  
this voltage reaches the OVP threshold (2.5 V typ.), the  
controller shutsdown and waits for at least 4 seconds before  
restarting switching.  
R
clamp  
thus causing the pin SD voltage to increase. When  
http://onsemi.com  
20  
NCL30082  
V
CC  
V
V
CC(on)  
CC(off)  
V
CC  
> V  
:
CC(on)  
DRV pulses restart  
V
CC(reset)  
V
DRV  
4s Timer  
V
> V  
:
SD  
OVP  
4s timer has elapsed:  
waiting for V > V  
to restart DRV pulses  
V
SD  
controller stops  
switching  
CC  
CC(on)  
V
OVP  
V
SD(clamp)  
V
out  
Figure 52. OVP with SD Pin Chronograms  
http://onsemi.com  
21  
NCL30082  
V
CC  
V
CC(on)  
V
CC(off)  
V
CC(reset)  
V
DRV  
V
V
> V  
> V  
and  
TF(stop)  
SD  
4s Timer  
:
CC  
CC(on)  
DRV pulses restart  
V
< V  
:
4s timer has elapsed  
SD  
OTP(off)  
V
SD  
controller stops  
switching  
but V < V  
SD  
TF(stop)  
no restart  
V
TF(start)  
V
TF(stop)  
V
OTP(off)  
I
out  
Figure 53. Thermal Foldback / OTP Chronograms  
PWM or Linear Dimming Detection  
The pin DIM allows implementing either linear dimming  
or PWM dimming of the LED light.  
If the power supply designer apply an analog signal  
If a voltage lower than V  
the DRV pulses are disabled. Thus, for PWM dimming, a  
PWM signal with a low state value < V and a high  
is applied to the DIM pin,  
DIM(EN)  
DIM(EN)  
varying from V  
to V  
to the DIM pin, the  
state value > V  
should be applied.  
DIM(EN)  
DIM100  
DIM100  
output current will increase or decrease proportionally to the  
voltage applied. For V = V , the power supply  
delivers the maximum output current.  
The DIM pin is pulled up internally by a small current  
source. Thus, if the pin is left open, the controller is able to  
start.  
DIM  
DIM100  
V
DIM  
Analog dimming  
PWM dimming  
I
V
V
100%  
0%  
out  
DIM100  
I
DIM(EN)  
out  
Figure 54. Pin DIM Chronograms  
Note:  
If a PWM voltage with a high state value < V  
is  
Thermal Foldback and dimming: if the IC is in a  
dimming state and the thermal foldback (TF) is  
activated, the output current is further reduced to a  
value equal to Dimming*TF.  
DIM100  
applied to the DIM pin, the product will still be in  
PWM dimming mode, but the reference voltage will be  
decreased according to V . This allows increased  
DIM  
dynamic range on the dimming control pin.  
http://onsemi.com  
22  
NCL30082  
VCC Over Voltage Protection (Open LED Protection)  
If no output load is connected to the LED power supply,  
the controller must be able to safely limit the output voltage  
excursion.  
In the NCL30082, when the V voltage reaches the  
CC  
V
threshold, the controller stops the DRV pulses and  
CC(OVP)  
the 4s timer starts counting. The IC restart pulsing after  
the 4s timer has elapsed and when V V  
.
CC  
CC(on)  
40.0  
V
CC(OVP)  
30.0  
20.0  
10.0  
0
V
1
CC  
V
CC(on)  
V
CC(off)  
40.0  
30.0  
20.0  
10.0  
0
V
2
out  
800m  
600m  
400m  
200m  
0
I
3
4
out  
8.00  
6.00  
4.00  
2.00  
0
OVP  
1.38  
3.96  
6.54  
9.11  
11.7  
time in seconds  
Figure 55. Open LED Protection Chronograms  
Valley Lockout  
or the output current setpoint varies significantly. This  
avoids valley jumping and the inherent noise caused by this  
phenomenon.  
The input voltage is sensed by the VIN pin (line range  
detection in Figure 56). The internal logic selects the  
operating valley according to VIN pin voltage, SD pin  
voltage and DIM pin voltage.  
By default, when the output current is not dimmed, the  
controller operates in the first valley at low line and in the  
second valley at high line.  
Quasisquare wave resonant systems have a wide  
switching frequency excursion. The switching frequency  
increases when the output load decreases or when the input  
voltage increases. The switching frequency of such systems  
must be limited.  
The NCL30082 changes the valley as the input voltage  
increases and as the output current setpoint is varied  
(dimming and thermal foldback). This limits the switching  
frequency excursion. Once a valley is selected, the  
controller stays locked in the valley until the input voltage  
http://onsemi.com  
23  
NCL30082  
Vbulk  
VIN  
+
LLine  
HLine  
25ms blanking time  
2.4 V if LLine low  
2.3 V if LLine high  
Figure 56. Line Range Detector  
VIN pin voltage for valley change  
Table 4. VALLEY SELECTION  
I
value at which the  
I
value at which the  
out  
out  
V
VIN  
decreases  
2.3 V  
controller changes valley  
controller changes valley  
(I decreasing)  
out  
(I increasing)  
out  
0
LL−  
HL−  
5 V  
100%  
75%  
100%  
st  
nd  
1
2
78%  
nd  
rd  
2
3
50%  
30%  
15%  
6%  
53%  
33%  
20%  
8%  
th  
th  
4
5
th  
th  
7
8
th  
th  
11  
12  
th  
th  
13  
15  
0%  
0%  
0
LL−  
2.4 V  
HL−  
5 V  
V
VIN  
increases  
VIN pin voltage for valley change  
http://onsemi.com  
24  
NCL30082  
Zero Crossing Detection Block  
the valleys. To avoid such a situation, the NCL30082  
The ZCD pin allows detecting when the drainsource  
voltage of the power MOSFET reaches a valley.  
A valley is detected when the voltage on pin 1 crosses  
features a TimeOut circuit that generates pulses if the  
voltage on ZCD pin stays below the V  
threshold  
ZCD(THD)  
for 6.5 ms.  
below the V  
internal threshold.  
The timeout also acts as a substitute clock for the valley  
detection and simulates a missing valley in case of too  
damped free oscillations.  
ZCD(THD)  
At startup or in case of extremely damped free  
oscillations, the ZCD comparator may not be able to detect  
V
V
ZCD  
3
4
ZCD(THD)  
The 3rd valley  
is validated  
high  
low  
14  
12  
2nd, 3rd  
The 3rd valley is not detected  
by the ZCD comp  
The 2nd valley is detected  
By the ZCD comparator  
high  
ZCD comp  
TimeOut  
low  
15  
16  
high  
low  
Timeout circuit adds a pulse to  
account for the missing 3rd valley  
high  
low  
Clk  
17  
Figure 57. Timeout Chronograms  
Normally with this type of timeout function, in the event  
the ZCD pin or the auxiliary winding is shorted, the  
controller could continue switching leading to improper  
regulation of the LED current. Moreover during an output  
short circuit, the controller will strive to maintain constant  
current operation.  
To avoid these scenarios, a protection circuit consisting of  
a comparator and secondary timer starts counting when the  
ZCD voltage is below the V  
threshold. If this timer  
ZCD(short)  
reaches 90 ms, the controller detects a fault and shutdown.  
The autorestart version (B suffix) waits 4 seconds, then the  
controller restarts switching. In the latched version  
(A suffix), the controller is latched as long as V stays  
CC  
above the V  
threshold.  
CC(reset)  
http://onsemi.com  
25  
NCL30082  
Tblank  
TimeOut  
ZCD  
+
Clock  
V
.
ZCD(TH)  
Tblank  
+
V
ZCD(short)  
90ms  
Timer  
Enable_b  
S
R
Q
Aux_SCP  
Q
4s Timer  
Figure 58. ZCD Block Schematic  
Line FeedForward  
(eq. 5)  
Because of the propagation delays, the MOSFET is not  
turnedoff immediately when the current setpoint is  
reached. As a result, the primary peak current is higher than  
expected and the output current increases. To compensate  
the peak current increase brought by the propagation delay,  
a positive voltage proportional to the line voltage is added  
on the current sense signal. The amount of offset voltage can  
V
CS(offset) + KLFFVpinVINRCS  
The offset voltage is applied only during the MOSFET  
ontime.  
This offset voltage is removed at light load during  
dimming when the output current drops below 15% of the  
programmed output current.  
be adjusted using the R resistor as shown in Figure 59.  
CS  
Bulk rail  
V
I
DD  
VIN  
CS  
R
CS(offset)  
CS  
R
sense  
Q_drv  
Offset_OK  
Figure 59. Line FeedForward Schematic  
http://onsemi.com  
26  
 
NCL30082  
Brownout  
shutsdown if the VIN pin voltage decreases and stays  
below 0.9 V for 50 ms nominal. Exiting a brownout  
In order to protect the supply against a very low input  
voltage, the NCL30082 features a brownout circuit with a  
fixed ON/OFF threshold. The controller is allowed to start  
if a voltage higher than 1 V is applied to the VIN pin and  
condition overrides the hiccup on V (V does not wait  
CC  
CC  
to reach V ) and the IC immediately goes into startup  
CC(off)  
mode (I = I  
).  
CC  
CC(start)  
Vbulk  
VIN  
+
BO_NOK  
50ms blanking time  
1 V if BONOK high  
0.9 V if BONOK low  
Figure 60. Brownout Circuit  
160  
120  
80.0  
40.0  
0
V
Bulk  
1
2
18.0  
16.0  
14.0  
12.0  
10.0  
V
CC(on)  
V
CC  
V
CC(off)  
1.10  
900m  
700m  
500m  
300m  
V
V
BO(on)  
BO(off)  
V
pinVIN  
3
8.00  
6.00  
4.00  
2.00  
0
50ms Timer  
BO_NOK low  
=> Startup mode  
BO_NOK  
4
46.1m  
138m  
231m  
time in seconds  
323m  
415m  
Figure 61. BrownOut Chronograms (Valley Fill circuit is used)  
http://onsemi.com  
27  
NCL30082  
CS Pin Short Circuit Protection  
Normally, if the CS pin or the sense resistor is shorted to  
ground, the Driver will not be able to turn off, leading to  
potential damage of the power supply. To avoid this, the  
NCL30082A and the NCL30082B features a circuit to  
protect the power supply against a short circuit of the CS pin.  
When the MOSFET is on, if the CS voltage stays below  
VCS(low) after the adaptive blanking timer has elapsed, the  
controller shuts down and will attempt to restart on the next  
VCC hiccup. In the NCL30082B1, this protection is  
disabled.  
Adaptative  
Blanking Time  
V
VIN  
Q_drv  
CS  
+
S
R
V
Q
Q
CS_short  
CS(low)  
UVLO  
BO_NOK  
Figure 62. CS Pin Short Circuit Protection Schematic  
Fault Management  
In this mode, the DRV pulses are stopped. The VCC  
voltage decrease through the controller own consumption  
OFF Mode  
(I ).  
The circuit turns off whenever a major condition prevents  
it from operating:  
CC1  
For the output diode short circuit protection, the CS pin  
short circuit protection, the output / aux. winding short  
circuit protection and the OVP2, the controller waits 4  
seconds (autorecovery timer) and then initiates a startup  
Incorrect feeding of the circuit: “UVLO high”. The  
UVLO signal becomes high when V drops below  
CC  
V
CC(off)  
and remains high until V exceeds V  
.
CC  
CC(on)  
sequence (V V  
) before restarting switching.  
CC(on)  
CC  
OTP  
Latch Mode  
V OVP  
CC  
This mode is activated by the output diode shortcircuit  
protection (WOD_SCP), the OTP and the AuxSCP in  
version A only.  
OVP2 (additional OVP provided by SD pin)  
Output diode short circuit protection: “WOD_SCP  
high”  
In this mode, the DRV pulses are stopped and the  
Output / Auxiliary winding Short circuit protection:  
“Aux_SCP high”  
controller is latched. There are hiccups on V  
.
CC  
The circuit unlatches when V < V  
.
CC  
CC(reset)  
Die over temperature (TSD)  
BrownOut: “BO_NOK” high  
Pin CS short circuited to GND: “CS_short high”  
http://onsemi.com  
28  
NCL30082  
Timer has  
finished  
counting  
V
CC  
> V  
CC(on)  
V
CC  
< V  
CC(off)  
or  
BO_NOK ↓  
OVP2 or  
_OVP  
BO_NOK high  
or OTP  
or TSD  
or CS_Short  
V
CC  
Stop  
4s  
Timer  
V
CC  
Disch.  
BO_NOK high  
or OTP  
or TSD  
or CS_Short  
OVP2  
or WOD_SCP  
or Aux_SCP  
or V _OVP  
CC  
Run  
V
CC  
< V  
CC(off)  
With states: Reset  
Controller is reset, I = I  
CC CC(start)  
Controller is ON, DRV is not switching, t  
Normal switching  
Stop  
Run  
has elapsed  
OTP(start)  
V
CC  
Disch.  
No switching, I = I  
, waiting for V to decrease to V  
CC1 CC CC(off)  
CC  
4s Timer  
the autorecovery timer is counting, V is ramping up and down between V  
and V  
CC(on) CC(off)  
CC  
Note: For the NCL30082B1, the CS pin short circuit Protection is disabled  
Figure 63. State Diagram for B Version Faults  
http://onsemi.com  
29  
NCL30082  
Reset  
Timer has  
finished  
counting  
V
CC  
> V  
CC(on)  
V
CC  
< V  
CC(off)  
or  
BO_NOK ↓  
V
CC  
< V  
CC(reset)  
OVP2 or  
_OVP  
BO_NOK high  
or TSD  
or CS_Short  
V
4s  
Timer  
CC  
Stop  
V
CC  
Disch.  
OTP  
OVP2 or  
V _OVP  
CC  
BO_NOK high  
or TSD  
or CS_Short  
Latch  
Run  
V
CC  
< V  
CC(off)  
OTP or  
WOD_SCP or  
Aux_SCP  
With states: Reset  
Controller is reset, I = I  
CC CC(start)  
Controller is ON, DRV is not switching, t  
Normal switching  
Stop  
Run  
has elapsed  
OTP(start)  
V
CC  
Disch.  
No switching, I = I  
, waiting for V to decrease to V  
CC1 CC CC(off)  
CC  
4s Timer  
Latch  
the autorecovery timer is counting, V is ramping up and down between V  
and V  
CC  
CC(on) CC(off)  
Controller is latched off, V is ramping up and down between V  
and V  
,
CC  
CC(on)  
CC(off)  
only V  
can release the latch.  
CC(reset)  
Figure 64. State Diagram for A Version Faults  
http://onsemi.com  
30  
NCL30082  
PACKAGE DIMENSIONS  
Micro8t  
CASE 846A02  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
D
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
MIN  
−−  
0.05  
0.25  
0.13  
2.90  
2.90  
NOM  
−−  
MAX  
MIN  
−−  
0.002  
0.010  
0.005  
0.114  
0.114  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
e
0.08  
b 8 PL  
0.33  
M
S
S
0.08 (0.003)  
T B  
A
0.18  
3.00  
E
3.00  
0.118  
e
L
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
SEATING  
PLANE  
H
T−  
E
A
0.038 (0.0015)  
L
A1  
c
SOLDERING FOOTPRINT*  
1.04  
0.38  
8X  
8X 0.041  
0.015  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.65  
6X0.0256  
SCALE 8:1  
mm  
inches  
ǒ
Ǔ
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
31  
NCL30082  
OPTIONS  
Winding/Output  
CS Pin  
Diode SCP  
Short Protection  
Controller  
Output SCP  
Latched  
Over Temperature Protection  
Latched  
NCL30082A  
NCL30082B  
NCL30082B1  
Latched  
Yes  
Yes  
No  
Autorecovery  
Autorecovery  
Autorecovery  
Autorecovery  
Autorecovery  
Autorecovery  
ORDERING INFORMATION  
Device  
Package Marking  
Package Type  
Shipping  
NCL30082ADMR2G  
AAC  
AAD  
AAH  
Micro8  
4000 / Tape & Reel  
4000 / Tape & Reel  
4000 / Tape & Reel  
(PbFree,HalideFree)  
NCL30082BDMR2G  
NCL30082B1DMR2G  
Micro8  
(PbFree,HalideFree)  
Micro8  
(PbFree,HalideFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCL30082/D  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
ON Semiconductor:  
NCL30082ADMR2G NCL30082BDMR2G  

相关型号:

NCL30082BDR2G

Dimmable Quasi-Resonant Primary Side Current-Mode Primary Side Current-Mode
ONSEMI

NCL30082D

Dimmable Quasi-Resonant Primary Side Current-Mode Primary Side Current-Mode
ONSEMI

NCL30082DDR2G

Dimmable Quasi-Resonant Primary Side Current-Mode Primary Side Current-Mode
ONSEMI

NCL30082_13

Dimmable Quasi-Resonant Primary Side Current-ModeController for LED Lighting with Thermal Fold-back
ONSEMI

NCL30082_15

Dimmable Quasi-Resonant Primary Side Current-Mode Primary Side Current-Mode
ONSEMI

NCL30083

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting
ONSEMI

NCL30083A

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back
ONSEMI

NCL30083ADMR2G

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back
ONSEMI

NCL30083B

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back
ONSEMI

NCL30083BDMR2G

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back
ONSEMI

NCL30083BDR2G

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back
ONSEMI

NCL30083_13

Dimmable Quasi-Resonant Primary Side Current-Mode Controller for LED Lighting with Thermal Fold-back
ONSEMI