NCL38046PADR2G [ONSEMI]

Precise CC/CV/CP Secondary-side Controller Compatible with Analog and PWM Dimming Signal;
NCL38046PADR2G
型号: NCL38046PADR2G
厂家: ONSEMI    ONSEMI
描述:

Precise CC/CV/CP Secondary-side Controller Compatible with Analog and PWM Dimming Signal

文件: 总14页 (文件大小:488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Precise CC/CV/CP  
8
Secondary-side Controller  
Compatible with Analog  
and PWM Dimming Signal  
1
SOIC8  
D SUFFIX  
CASE 75107  
MARKING DIAGRAM  
NCL38046  
Features  
NCL38046  
XY  
AWLYYWW  
Precise CC Regulation with +/0.5 mV Tolerance  
Compatible with Multiple Dimming Input Signals  
ADIM Pin Receives Analog Voltage Dimming Input  
PWM Pin Receives PWM Duty Dimming Input  
NCL38046 = Specific Device Code  
Constant Power Regulation  
XY  
A
WL  
YY  
WW  
= Dimming Option  
Dimming Curve Modulation  
= Assembly Location  
= Wafer Lot Number  
= Year of Production  
= Work Week Number  
Maximum and Minimum Dimming Input Limit  
Minimum Dimming Output Level Limit  
Linear or Logarithmic Dimming Curve – Externally Selectable  
Standby Mode  
3.3 V Reference Voltage Output  
This is a PbFree Device  
PIN CONNECTIONS  
1
2
8
7
FB  
VS  
VDD  
SET/REF  
ADIM  
CS  
Typical Applications  
Power Conversion  
Lighting Ballast  
3
4
6
5
GND  
PDIM  
(Top View)  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCL38046PADR2G  
SOIC8  
2500 /  
Tape & Reel  
2500 /  
Tape & Reel  
SOIC8  
NCL38046AADR2G  
Letter Coding  
L1 : P (PDIM modulation), A (ADIM modulation)  
L2 : Sequentially assigned from A to Z  
†For information on tape and reel specifications, in-  
cluding part orientation and tape sizes, please refer  
to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2023  
1
Publication Order Number:  
July, 2023 Rev. 0  
NCL38046/D  
NCL38046  
Figure 1. Application Schematic  
Sink only  
CV OTA  
VDD  
FB  
UVLO  
V
V
/
DD(ON)  
D(OFF)  
VS  
CS  
V
VS(REF)  
Sink only  
CC OTA  
V
CS(REF)  
REF Generator  
(3.3 V LDO Output)  
SET/REF  
GND  
True CP  
Calculator  
C
, R  
SET SET  
Detector  
Digital  
DIM Modulator  
& STBY Control  
ADIM  
Detector  
PDIM  
Detector  
ADIM  
PDIM  
pdim [%]  
adim [%]  
Figure 2. Simplified Block Diagram  
www.onsemi.com  
2
NCL38046  
PIN DESCRIPTION  
Pin N5  
1
2
3
Pin Name  
Pin Description  
FB  
Output of the feedback OTA.  
IC operating current is supplied to this pin  
VDD  
SET/REF  
At startup, external SET resistor and capacitor are detected to adjust the internal DIM modulator  
parameters. Then, 3.3 V output is provided for an external use such as setting ADIM voltage.  
4
5
6
7
8
ADIM  
PDIM  
GND  
CS  
ADIM detects an analog voltage signal.  
PDIM detects a PWM duty current signal.  
The controller ground.  
This pin is connected to sense the output current.  
This pin is connected to sense the output voltage.  
VS  
MAXIMUM RATINGS TABLE  
Rating  
Symbol  
Value  
0.3 to 30  
0.3 to VDD  
0.3 to 6  
150  
Unit  
V
VDD Pin Voltage Range  
FB Pin Voltage Range  
V
MV(MAX)  
V
V
FB(MAX)  
CS, VS, ADIM, PDIM, SET/REF Pin Voltage Range  
Maximum Junction Temperature  
V
V
LV(MAX)  
T
°C  
°C  
J(MAX)  
Storage Temperature Range  
T
60 to 150  
Lead Temperature Soldering  
T
SLD  
260  
°C  
Reflow (SMD Styles Only), Pb*Free Versions (Note1)  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
ESD  
ESD  
1.5  
1
kV  
kV  
HBM  
CDM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating: 150 mA per JEDEC standard: JESD78  
THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, SOIC8  
Thermal Resistance, JunctiontoAir  
R
153  
°C/W  
Θ
JA  
2
3. Mounted on a JEDEC standard 513 (1s0p) test board, 100 mm copper area, 1 oz copper thickness  
RECOMMENDED OPERATING RANGES  
Rating  
Operating Junction Temperature Range  
Symbol  
Min  
Max  
Unit  
T
J
40  
125  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
3
 
NCL38046  
ELECTRICAL CHARACTERISTICS (V = 12 V and T = 40°C to 125°C, unless otherwise noted)  
DD  
J
Parameter  
VDD SECTION  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
IC TurnOn Threshold Voltage  
IC TurnOff Threshold Voltage  
Startup Current  
V
8.0  
7.0  
8.5  
7.5  
9.0  
8.0  
210  
1.0  
1.5  
600  
V
DD(ON)  
V
V
DD(OFF)  
V
= 7 V  
I
A  
mA  
mA  
A  
DD  
DD(ST)  
Operating Current  
I
0.8  
1.3  
I
I
= 0 A, R  
= 9.09 kΩ (Note 4)  
PDIM  
PDIM  
SET  
DD(OPL)  
DD(OPH)  
= 500 A, R  
= 9.09 (Note 4)  
I
SET  
Standby Current  
SET/REF SECTION  
SET Current  
PDIM = 2% in1 kHz, No R  
I
400  
SET  
DD(SB)  
I
47.5  
281  
50.0  
300  
52.5  
319  
A  
SET  
SET Reference Voltage  
V
mV  
When R  
= 9.1 k,  
SET SET(1)  
SET  
< V  
SET(0)  
V
SET(0)  
< V  
When R  
When R  
When R  
When R  
When R  
When R  
When R  
= 13 k, V  
= 18 k, V  
= 24 k, V  
= 33 k, V  
= 43 k, V  
= 56 k, V  
< V  
< V  
< V  
< V  
< V  
< V  
< V  
< V  
< V  
< V  
< V  
< V  
V
V
V
V
V
V
V
519  
732  
999  
545  
765  
571  
798  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
s  
SET  
SET  
SET  
SET  
SET  
SET  
SET  
SET(1)  
SET(2)  
SET(3)  
SET(4)  
SET(5)  
SET(6)  
SET  
SET  
SET  
SET  
SET  
SET  
SET(2)  
SET(3)  
SET(4)  
SET(5)  
SET(6)  
SET(7)  
SET(1)  
SET(2)  
SET(3)  
SET(4)  
SET(5)  
SET(6)  
SET(7)  
1040 1081  
1348 1400 1452  
1814 1880 1946  
2367 2450 2534  
3288 3400 3512  
= open, V  
< V  
SET  
SET(7)  
SET Capacitor Detection Delay  
Time  
Design guaranteed  
t
t
4.76  
5
5.26  
SET(CAP)  
SET Resistor Detection Delay Time Design guaranteed  
REF Regulation Voltage  
487  
512  
538  
s
SET(RES)  
V
3.26  
3.30  
3.34  
V
REF  
PDIM and ADIM SECTION  
PDIM High Threshold Current  
PDIM Low Threshold Current  
PDIM Maximum Current Limit  
PDIM Regulation Voltage  
PDIM Minimum Frequency Limit  
ADIM Maximum Voltage  
Increasing I  
I
125  
55  
153  
70  
170  
80  
A  
A  
mA  
V
PDIM  
PDIM(THH)  
Decreasing I  
I
PDIM(THL)  
PDIM  
V
PDIM  
= 0 V  
I
0.8  
2.9  
65  
1
1.2  
3.1  
PDIM(MAX)  
I
= 250 A  
V
PDIM  
3.0  
PDIM  
Design Guaranteed  
f
Hz  
V
PDIM(MIN)  
V
2.47  
2.50  
2.53  
ADIM(MAX)  
VS SECTION  
VS OTA Input Offset  
V
25  
0
+25  
mV  
V
VS(OTAIO)  
VS Maximum Regulation Voltage  
VS Standby Regulation Voltage  
V
2.425 2.500 2.575  
0.475 0.500 0.525  
VS(REGMAX)  
D
ADIM  
< D  
in PA version  
in AA version  
V
VS(REGSB)  
V
PDIM  
PDIM(SBEN)  
< V  
ADIM(SBEN)  
V
CS SECTION  
CS OTA Input Offset  
V
0.5  
0.3  
0
0
0.5  
0.3  
mV  
mV  
Temp range: 40°C 125°C  
Temp range: 25°C 85°C  
Only 25°C  
CS(OTAIO)  
0.175  
98  
0
0.175 mV  
CS Maximum Regulation Voltage  
I
FB  
= 0.5 mA in a closed loop regulation  
V
100  
102  
mV  
CS(REGMAX)  
Temp range: 40°C 125°C  
I
= 0.5 mA in a closed loop regulation  
99  
100  
101  
mV  
FB  
Temp range: 25°C 85°C  
www.onsemi.com  
4
NCL38046  
ELECTRICAL CHARACTERISTICS (V = 12 V and T = 40°C to 125°C, unless otherwise noted) (continued)  
DD  
J
Parameter  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
CS Half Regulation Voltage  
I
= 0.5 mA in a closed loop regulation  
V
49.5  
50.5  
51.5  
mV  
FB  
CS(REGHALF)  
Temp range: 40°C 125°C (Note 5)  
I
= 0.5 mA in a closed loop regulation  
50  
0.3  
0.6  
28  
50.5  
1
51  
1.7  
1.4  
19  
mV  
mV  
mV  
A  
FB  
Temp range: 25°C 85°C (Note 5)  
CS Minimum Regulation Voltage  
I
FB  
= 0.5 mA in a closed loop regulation  
V
CS(REGMIN)  
Temp range: 40°C 125°C  
I
FB  
= 0.5 mA in a closed loop regulation  
1
Temp range: 25°C 85°C  
CS Fault Current  
I
24  
CS(FAULT)  
FB SECTION  
FB Maximum Sink Current of  
CS OTA  
V
V
= 1 V  
= 3 V  
I
2.5  
2.5  
mA  
mA  
CS  
FB(SINKCSMAX)  
FB Maximum Sink Current of  
VS OTA  
I
FB(SINKVSMAX)  
VS  
Transconductance of CS OTA  
Transconductance of VS OTA  
g
g
7
3
mho  
mho  
M(CS)  
M(VS)  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
1
1
RSET  
* 3.3ꢀV @ ǒ  
Ǔ
4. I is affected to R  
value. If you want to know I with other R , I  
SET  
+ I  
)
DD  
SET  
DD  
DD(RSET changed)  
DD  
9.09k  
5. The value has an offset due to MOD  
to modulate a dimming curve. V  
is calculated as shown below.  
OUT(MIN)  
CS(REG)  
MOD  
* MOD  
OUT(MAX)  
MOD  
OUT(MIN)  
V
+ Dim[%] @ slope ) offset , where slope +  
, offset + MOD  
* slope @ MOD  
OUT(MAX) IN(MAX)  
CS(REG)  
* MOD  
IN(MAX)  
IN(MIN)  
www.onsemi.com  
5
 
NCL38046  
APPLICATION INFORMATION  
ADIM signal is detected by the ADIM voltage detector  
and ADIM voltage input range is 0 2.5 V. The detected  
ADIM voltage is converted to adim signal (0% ~ 100%).  
At startup, ADIM pin is buffered by SET/REF pin voltage  
NCL38046 performs precise CC regulation in the wide  
dimming range controlled by both PWM duty and analog  
voltage signal. Dimming curve is internally modulated by an  
effective dimming input range (e.g., 10% 90%) and the  
minimum dimming output level (e.g., 1%). Also, either  
linear or logarithmic dimming curve is externally selected  
by a SET capacitor. Constant power regulation is  
implemented by CV regulation reference defined inversely  
proportional to the dimming level where the CP level is  
flexibly set by an external SET resistor.  
as described in Section. REF Function. So, 10 kR  
in  
ADIM  
Figure 4 is recommended when V  
is set by the external  
ADIM  
voltage source not to conflict with an internal buffer  
(SET/ref to ADIM) output.  
CC/ CV Regulation  
For high CC accuracy, an input voltage offset of the CC  
regulation OTA is significantly reduced by a novel amplifier  
design with high resolution trimming so that the input  
voltage at room temperature is less than +/0.1 mV. When  
a LED load is connected, CS pin voltage (V ) is regulated  
CS  
to V  
, an internally generated CS reference voltage  
CS(REF)  
controlled by PDIM and ADIM inputs. When the LED load  
is open, V drops to 0 V and CC OTA does not sink FB  
CS  
current and V is regulated to V  
.
VS  
VS(REF)  
Figure 4. CC Reference Generation Block  
Dimming Signal Modulation  
In general, an external dimming signal generator such as  
0 10 V dimmer doesn’t provide the full range of the  
dimming signal. In such case, NCL38046 can scale either  
pdim or adim signal by the internal modulator. As shown in  
Figure 5, the modulator input signal, mod , has an effective  
IN  
input range between 10% and 90%. In other words, when  
mod is 10%, mod  
becomes the min value and mod  
IN  
OUT  
OUT  
doesn’t decrease although mod goes below 10% because  
IN  
mod  
is clamped to 1% by mod . When mod  
OUT(MIN) IN  
OUT  
is lower than 3%, NCL38046 enters STBY. In order to exist  
STBY, mod should be higher than 5% because of STBY  
threshold hysteresis.  
IN  
Figure 3. CC/CV Regulation Block  
CC/ CV Regulation  
mod  
(= pdim  
or adim  
)
OUT  
MOD  
MOD  
PDIM and ADIM Detection  
As shown in Figure 4, PDIM pin voltage is regulated to  
100%  
3 V by the pullup buffer. PDIM current, I , is compared  
PDIM  
with I  
hysteretic current thresholds and the  
PDIM(THH/L)  
comparison output signal is converted to pdim signal  
(0%ꢃ ꢂ ꢃ100%) by the duty extractor. When I is higher  
Linear  
PDIM  
than the current threshold, it is considered as the on state in  
the PWM duty. The recommended I onstate level is  
PDIM  
300 600 A and PDIM pin is pulled down to 0 V when  
is higher than 1 mA in order to limit the VDD  
operating current. 200 Hz PWM frequency is recommended  
to perform high resolution dimming.  
I
PDIM  
Logarithmic  
mod  
1%  
3%  
IN  
(= pdim or admin)  
10%  
5%  
Figure 5. Dimming Signal Modulation  
www.onsemi.com  
6
 
NCL38046  
V
When mod is 90%, mod  
becomes the max value and  
CS(REF)  
CS(REGMAX)  
IN  
OUT  
mod  
doesnt increase even though mod rises above  
OUT  
IN  
V
pdim = 100%  
pdim = 80%  
pdim = 60%  
pdim = 40%  
pdim = 20%  
90% by mod  
.
IN(MAX)  
Therere also two types of dimming curves (Linear and  
Logarithmic).  
Multiplier  
Recently, LED drivers generally control the output  
current by the dual dimming signals to set the maximum  
output current and to implement the dimming function. In  
order to perform the multiple dimming in NCL38046, adim  
(0 100) and pdim (0 100) signals are multiplied  
V
CS(REGMIN)  
adim  
MOD  
0%  
100%  
and scaled to V  
to provide V  
as shown  
CS(REFMAX)  
CS(REF)  
in Figure 6 and Figure 7. The dimming signal input is usually  
modulated, and the maximum output current setting signal  
is not modulated just to set the coefficient in the dimming  
curve.  
Figure 7. Dimming Curve in AA Version  
When analog voltage signal at ADIM is used for the  
maximum output current setting and PWM duty signal at  
PDIM is used for dimming, PA version should be used.  
V
is determined by (eq. 1) which corresponds to  
CS(REF)  
Figure 6.  
VCS(REF)[V] + VCS(REF*MAX)[V] @ adim[%] @ pdimMOD[%]  
(eq. 1)  
When adim is used for dimming and pdim is to set the  
maximum output current, AA version should be used.  
V
is set by (eq. 2) corresponding to Figure 7.  
CS(REF)  
VCS(REF)[V] + VCS(REF*MAX)[V] @ pdim[%] @ adimMOD[%]  
(eq. 2)  
VCS(REF) dimming voltage range is limited by VCS(REF-MAX)  
and VCS(REF-MIN).  
V
CS(REF)  
V
adim = 100%  
adim = 80%  
adim = 60%  
adim = 40%  
adim = 20%  
CS(REGMAX)  
V
CS(REGMIN)  
pdim  
MOD  
0%  
100%  
Figure 6. Dimming Curve in PA Version  
www.onsemi.com  
7
 
NCL38046  
CV Reference  
With CP function in Figure 8, V  
is set by (eq. 3)  
VS(REF)  
Constant voltage reference is determined by constant  
power regulation block to protect the LED load and limit the  
LED driver power when maximum output current is  
and the LED load is safe even though adim is wrongly set to  
100% because V , inversely proportional to adim, is  
VS(REF)  
set lower than the max load operating point. If adim is  
correctly set back to 50%, V is set higher than the  
incorrectly set. CV reference, V  
, is determined by:  
VS(REF)  
VS(REF)  
max load condition and the LED load current is regulated to  
the right max load condition by CS regulation.  
VVS(REF)[V] + 2.5 V @ KCP[%]ń dimCP[%]  
(eq. 3)  
When the LED load is open, the output voltage is regulated  
little higher than the LED load forward voltage so that there  
won’t be a large inrush current from the output capacitor to  
the LED load when the LED load is connected again. In the  
conventional LED driver with CP function, CV regulation  
level is determined by total LED current level so that the  
output voltage is regulated to the maximum output level at  
LED open condition. In such condition, the LED load can be  
damaged when the LED load is connected because the  
output regulation level is much higher than the LED load  
forward voltage.  
where K [%] is a constant power coefficient and  
CP  
dim [%] is CP dim input which is adim in PA version or  
CP  
pdim in AA version. K is set by R  
value as described  
CP  
SET  
in Section. SET/REF Function. Also, V  
is  
VS(REFMAX)  
clamped to 2.5 V.  
Figure 8 shows an example of the load operating point  
assuming that the maximum current spec of an LED load is  
at 50%  
V
by setting adim at 50%  
CS(REFMAX)  
(V = 1.25 V) and the output current dimming is  
ADIM  
controlled by pdim  
.
MOD  
Without CP function, the LED current will be twice than  
its maximum current rating with the LED damage if adim is  
mistakenly set to 100% (V  
= 2.5 V).  
ADIM  
Figure 8. Operating Point by the Maximum Output Current Set Level  
Standby Mode  
As shown in Figure 9, V  
is pulled down to 0 V for  
SET/REF  
When either adim or pdim is lower than a standby  
threshold level which is PDIM = 3% in PA version or  
64 s once V is higher than V  
. Then, SET/REF pin  
DD  
DD(ON)  
SET/REF  
is pulled up by 50 A I . If V  
is lower than V  
SET  
SET(0)  
V
ADIM  
= 75 mV in AA version, the CC OTA is disabled to  
due to C  
after 5 s t  
delay, C  
connection is  
SET  
SET(CAP)  
SET  
terminate the output current regulation and CV OTA  
reference, V , is changed to V ) to turn off  
the LED load during standby mode.  
detected. If V  
decides that C  
1.2 nF is used.  
is higher than V  
, NCL38046  
is not connected. For C detection,  
SET  
SET/REF  
SET(0)  
VS(REF)  
VS(REGSB  
SET  
After C  
detection for 512 s t  
detection, NCL38046 waits for R  
SET  
SET  
SET/REF Function  
delay until V  
level is  
SET(RES)  
SET/REF  
SET and REF Sequence  
settled to R  
x I , then V  
is compared with  
SET  
SET  
SET/REF  
NCL38046 has a multifunctional pin, VSET/REF, for  
setting internal parameters and providing 3.3 V reference  
output for the external use.  
internal references, V  
9.1 / 13 / 18 / 24 / 33 / 43 / 56 kis used as shown in Table 1.  
(n = 0 7). For R  
detection,  
SET(n)  
SET  
www.onsemi.com  
8
 
NCL38046  
If SET/REF pin is open or short circuited, V  
will  
Once C  
and R detections are completed, V  
SET SET/REF  
SET/REF  
SET  
be higher than V  
or lower than V  
high period) and I  
RST SET  
. In such case,  
enabling time  
is regulated to 3.3 V by internal LDO, and the 3.3 V  
reference voltage can be utilized for various purpose in the  
external circuit.  
SET(7)  
SET(0)  
V
reset (S  
SET/REF  
(S  
high period) in Figure 9 are repeated and FB pin  
SET  
voltage is slowly pulled down to reduce the power delivery  
to the load until R is normally detected.  
SET  
Figure 9. SET/REF Functional Block and Sequence  
REF Function  
After C and R  
regulated to 3.3 V. The reference voltage can be utilized to  
set ADIM voltage by adding R resistor between  
SET/REF and ADIM pin so that ADIM voltage, V  
determined by:  
Table 1. COMPONENTS AT SET FUNCTION  
detection, SET/REF pin voltage is  
SET  
SET  
R
K
CP  
SET  
9.1 kΩ  
13 kΩ  
18 kΩ  
24 kΩ  
33 kΩ  
43 kΩ  
56 kΩ  
40%  
50%  
REF  
, is  
ADIM  
60%  
VADIM[V] + 3.3 V @ RADIMń(RREF ) RADIM  
)
70%  
(eq. 4)  
80%  
Variable resistor can be used for R  
to externally  
ADIM  
90%  
adjust the maximum output current level by ADIM.  
During I enabling time (S high period), R  
REF  
100%  
SET  
SET  
C
Dimming curve  
Linear  
network can affect R  
detection level. In order to monitor  
SET  
SET  
only R  
impedance through SET/REF pin, ADIM pin  
SET  
0 nF  
voltage is buffered same as SET/REF pin voltage and R  
impedance from SET/REF pin becomes infinite with no  
effect on the SET/REF voltage.  
REF  
1.2 nF  
Logarithmic  
www.onsemi.com  
9
 
NCL38046  
Table 2. NCL38046 OPTION TABBLE  
st  
nd  
1
2
MOD  
Input  
STBY  
Trigger  
Letter  
Letter  
P/N  
V
V
V
R
func.  
K
CP  
CS(REFMAX)  
CS(REFMIN)  
VS(REFSB)  
SET  
NCL38046  
P
A
A
A
a1  
a2  
b1  
b2  
c2  
d3  
e2  
f1  
f1  
g22 (69%)  
g22 (69%)  
c2  
d3  
e2  
st  
nd  
1
2
STBY  
Letter  
Letter  
Threshold  
P/N  
CP_sel  
h1  
MOD  
MOD  
MOD  
Log. Curve Eq.  
IN(MIN)  
IN(MAX)  
OUT(MIN)  
NCL38046  
P
A
A
A
i2  
j2  
j2  
k2  
l5  
m1  
m1  
h2  
i2  
k2  
l5  
MOD Input  
CP dim input (dimCP  
)
a1  
a2  
pdim  
adim  
h1  
h2  
adim  
pdim  
STBY Trigger  
MODIN(MIN)  
b1  
b2  
pdim  
adim  
i1  
i2  
0%  
10%  
VCS(REFMAX)  
STBY threshold  
c1  
c2  
c3  
c4  
50 mV  
j1  
j2  
j3  
j4  
6% / 8%  
3% / 5%  
2% / 3%  
Disabled  
100 mV  
200 mV  
500 mV  
VCS(REFMIN)  
MODIN(MAX)  
d1  
d2  
d3  
d4  
0%  
k1  
k2  
k3  
k4  
100%  
90%  
85%  
80%  
0.4%  
1%  
2%  
VVS(REFSB)  
MODOUT(MIN)  
e1  
e2  
e3  
e4  
0 V  
I1  
I2  
I3  
I4  
I5  
10%  
7.5%  
5%  
0.5 V  
1 V  
1.5 V  
2%  
1%  
RSET Function  
Logarithmic Curve Equation  
f1  
f2  
K
set  
CP  
MOD  
set  
m1  
m2  
modout = modin^2  
modout = modin^3  
OUT(MIN)  
KCP  
g1 g32  
100% 3% (3% step)  
www.onsemi.com  
10  
NCL38046  
PCB LAYOUT GUIDANCE  
C
CMPC2  
Opto  
C
CMPC1  
R
CMPC2  
R
VS1  
C
CMPV2  
C
R
CMPV1  
R
VDD  
CMPV  
FB  
VS  
8
R
R
VS2  
FB  
1
VDD  
CS  
7
R
C
CMP1  
VDD  
2
NCL38046  
Power GND  
SET/REF  
GND  
6
R
R
CS2  
CS1  
R
SET  
3
Signal GND  
ADIM  
PDIM  
5
R
ADIM  
C
SET  
4
I
PDIM  
PWN Duty  
Current  
Analog Voltage  
C
ADIM  
V
ADIM  
I
PDIM  
Figure 10. NCL38046 Schematic  
CS  
R
CMPC1  
7
Current sensing path  
should be short.  
R
GND  
6
CS  
C
CMPC2  
We recommend that the FB  
loop of CS should be short.  
R
C
CMPC1  
CMPC2  
1
7
FB  
CS  
R
R
CMPC1  
FB  
Figure 11. NCL38046 Daughter Board  
Figure 12. NCL38046 Layout Guidance  
www.onsemi.com  
11  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCLL01-F1G8A

SAW Bandpass Filter F1G8A
ITF

NCLS06_R005TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R006TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R007TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R008TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R009TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R010TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R011TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R012TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R013TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R014TRF

Metal Foil Current Sensing Chip Resistors
NIC

NCLS06_R015TRF

Metal Foil Current Sensing Chip Resistors
NIC