NCP103AMX220TCG [ONSEMI]

150 mA CMOS Low Dropout Regulator;
NCP103AMX220TCG
型号: NCP103AMX220TCG
厂家: ONSEMI    ONSEMI
描述:

150 mA CMOS Low Dropout Regulator

输出元件 调节器
文件: 总15页 (文件大小:676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP103  
150 mA CMOS Low Dropout  
Regulator  
The NCP103 is 150 mA LDO that provides the engineer with a very  
stable, accurate voltage with low noise suitable for space constrained,  
noise sensitive applications. In order to optimize performance for  
battery operated portable applications, the NCP103 employs the  
www.onsemi.com  
dynamic quiescent current adjustment for very low I consumption at  
Q
no−load.  
MARKING  
DIAGRAM  
Features  
1
Operating Input Voltage Range: 1.7 V to 5.5 V  
UDFN4  
MX SUFFIX  
CASE 517CU  
XX M  
1
Available in Fixed Voltage Options: 0.9 V to 3.5 V  
Contact Factory for Other Voltage Options  
Very Low Quiescent Current of Typ. 50 mA  
XX = Specific Device Code  
= Date Code  
Standby Current Consumption: Typ. 0.1 mA  
Low Dropout: 75 mV Typical at 150 mA  
M
1% Accuracy at Room Temperature  
PIN CONNECTION  
High Power Supply Ripple Rejection: 75 dB at 1 kHz  
Thermal Shutdown and Current Limit Protections  
Stable with a 1 mF Ceramic Output Capacitor  
Available in uDFN 1.0 x 1.0 mm Package  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
EN  
3
IN  
4
Typical Applicaitons  
PDAs, Mobile phones, GPS, Smartphones  
2
1
®
®
Wireless Handsets, Wireless LAN, Bluetooth , Zigbee  
GND  
OUT  
Portable Medical Equipment  
Other Battery Powered Applications  
(Bottom View)  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 14 of this data sheet.  
V
V
IN  
OUT  
IN  
OUT  
NCP103  
GND  
C
C
OUT  
1 mF  
Ceramic  
IN  
EN  
ON  
OFF  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
December, 2017 − Rev. 13  
NCP103/D  
NCP103  
IN  
ENABLE  
LOGIC  
THERMAL  
EN  
SHUTDOWN  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
OUT  
AUTO LOW  
POWER MODE  
ACTIVE  
DISCHARGE*  
EN  
GND  
*Active output discharge function is present only in NCP103AMXyyyTCG devices.  
yyy denotes the particular V option.  
OUT  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Description  
1
OUT  
Regulated output voltage pin. A small ceramic capacitor with minimum value of 1 mF is needed from this  
pin to ground to assure stability.  
2
3
GND  
EN  
Power supply ground.  
Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown  
mode.  
4
IN  
Input pin. A small capacitor is needed from this pin to ground to assure stability.  
EPAD  
Exposed pad should be connected directly to the GND pin. Soldered to a large ground copper plane allows  
for effective heat removal.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
VIN  
Value  
Unit  
V
Input Voltage (Note 1)  
−0.3 V to 6 V  
Output Voltage  
VOUT  
VEN  
−0.3 V to VIN + 0.3 V or 6 V  
V
Enable Input  
−0.3 V to VIN + 0.3 V or 6 V  
V
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
tSC  
150  
s
TJ(MAX)  
TSTG  
°C  
°C  
V
−55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESDHBM  
ESDMM  
200  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per EIA/JESD22−A114,  
ESD Machine Model tested per EIA/JESD22−A115,  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, uDFN4 1x1 mm  
R
170  
°C/W  
q
JA  
Thermal Resistance, Junction−to−Air  
3. Single component mounted on 1 oz, FR 4 PCB with 645 mm Cu area.  
2
www.onsemi.com  
2
 
NCP103  
ELECTRICAL CHARACTERISTICS −40°C T 85°C; V = V  
+ 1 V for V  
options greater than 1.5 V. Otherwise V  
=
J
IN  
OUT(NOM)  
OUT  
IN  
2.5 V, whichever is greater; I  
= 1 mA, C = C  
= 1 mF, unless otherwise noted. V = 0.9 V. Typical values are at T = +25°C.  
OUT  
IN  
OUT EN J  
Min./Max. are for T = −40°C and T = +85°C respectively.  
J
J
Parameter  
Test Conditions  
Symbol  
Min  
1.7  
−40  
−2  
Typ  
Max  
5.5  
+40  
+2  
Unit  
V
Operating Input Voltage  
V
IN  
V
2.0 V  
V
OUT  
mV  
%
OUT  
Output Voltage Accuracy  
−40°C T 85°C  
J
V
> 2.0 V  
OUT  
Line Regulation  
Load Regulation  
Load Transient  
VOUT + 0.5 V VIN 5.5 V (V 1.7 V)  
Reg  
0.01  
10  
0.1  
30  
%/V  
mV  
mV  
IN  
LINE  
LOAD  
LOAD  
IOUT = 1 mA to 150 mA  
Reg  
I
= 1 mA to 150 mA or 150 mA to 1 mA Tran  
−30/  
+20  
OUT  
in 1 ms, C  
= 1 mF  
OUT  
V
= 1.5 V  
= 1.85 V  
= 2.8 V  
= 3.0 V  
= 3.1 V  
= 3.3 V  
180  
120  
75  
235  
165  
125  
120  
120  
110  
OUT  
V
OUT  
V
OUT  
OUT  
OUT  
OUT  
Dropout Voltage (Note 4)  
I
= 150 mA  
V
DO  
mV  
OUT  
V
72  
V
V
70  
65  
Output Current Limit  
Ground Current  
V
= 90% V  
I
150  
0.9  
550  
50  
mA  
mA  
mA  
V
OUT  
OUT(nom)  
IOUT = 0 mA  
VEN 0.4 V, VIN = 5.5 V  
CL  
I
95  
1
Q
Shutdown Current  
I
0.01  
DIS  
EN Pin Threshold Voltage  
High Threshold  
Low Threshold  
V
Voltage increasing  
Voltage decreasing  
V
EN_HI  
EN_LO  
EN  
V
EN  
V
0.4  
1.0  
EN Pin Input Current  
VEN = 5.5 V  
I
0.3  
75  
mA  
EN  
Power Supply Rejection Ratio  
V
IN  
= 3.6 V, V  
= 3.1 V  
f = 1 kHz  
PSRR  
dB  
OUT  
I
= 150 mA  
OUT  
Output Noise Voltage  
V
IN  
= 2.5 V, V  
= 1.8 V, I  
= 150 mA  
V
N
60  
mV  
rms  
OUT  
OUT  
f = 10 Hz to 100 kHz  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Temperature increasing from TJ = +25°C  
T
160  
20  
°C  
SD  
Temperature falling from T  
T
SDH  
°C  
SD  
Active Output Discharge Resistance  
VEN < 0.4 V, Version A only  
R
100  
W
DIS  
4. Characterized when VOUT falls 100 mV below the regulated voltage at VIN = VOUT(NOM) + 1 V.  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
3
 
NCP103  
TYPICAL CHARACTERISTICS  
1.206  
1.204  
1.202  
1.200  
1.198  
1.196  
1.194  
1.192  
1.190  
1.188  
2.815  
2.810  
2.805  
2.800  
2.795  
2.790  
2.785  
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
I
= 150 mA  
OUT  
I
= 150 mA  
OUT  
V
= 3.8 V  
= 2.8 V  
= 1 mF  
V
V
C
C
= 2.5 V  
IN  
IN  
2.780  
2.775  
2.770  
V
OUT  
= 1.2 V  
= 1 mF  
OUT  
C
C
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Voltage vs. Temperature  
Figure 4. Output Voltage vs. Temperature  
V
OUT = 1.2 V  
V
OUT = 2.8 V  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
C
C
= 3.8 V  
IN  
−40°C  
85°C  
= 2.8 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
25°C  
85°C  
25°C  
−40°C  
V
C
C
= 2.8 V  
OUT  
= 1 mF  
IN  
= 1 mF  
OUT  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
0.001  
0.01  
0.1  
1
10  
100  
1000  
V
IN  
, INPUT VOLTAGE (V)  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 5. Quiescent Current vs. Input Voltage  
Figure 6. Ground Current vs. Output Current  
600  
540  
480  
420  
360  
300  
240  
180  
120  
60  
0.1  
0.08  
0.06  
0.04  
0.02  
0
I
= 150 mA  
OUT  
−0.02  
−0.04  
−0.06  
−0.08  
−1  
V
V
I
C
C
= 1.7 V to 5.5 V  
= 1.2 V  
IN  
V
V
C
C
= 3.8 V  
IN  
OUT  
I
= 1 mA  
OUT  
= 2.8 V  
= 1 mF  
= 1 mA  
OUT  
OUT  
= 1 mF  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
0
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Ground Current vs. Temperature  
Figure 8. Line Regulation vs. Output Current  
V
OUT = 1.2 V  
www.onsemi.com  
4
NCP103  
TYPICAL CHARACTERISTICS  
0.1  
0.08  
0.06  
0.04  
0.02  
0
10  
9
8
7
6
5
−0.02  
−0.04  
−0.06  
−0.08  
−0.1  
4
V
V
= 2.5 V  
IN  
V
V
= 3.8 V to 5.5 V  
IN  
3
= 1.2 V  
OUT  
= 2.8 V  
OUT  
I
= 1 mA to 150 mA  
= 1 mF  
OUT  
I
= 1 mA  
= 1 mF  
2
1
0
OUT  
C
C
IN  
C
C
IN  
= 1 mF  
OUT  
= 1 mF  
OUT  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Line Regulation vs. Temperature  
Figure 10. Load Regulation vs. Temperature  
V
OUT = 2.8 V  
V
OUT = 1.2 V  
10  
9
8
7
6
5
4
3
2
1
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T = 85°C  
J
T = −40°C  
J
V
V
= 3.8 V  
IN  
= 2.8 V  
OUT  
V
V
C
C
= 3.8 V  
IN  
I
= 1 mA to 150 mA  
= 1 mF  
OUT  
= 2.8 V  
= 1 mF  
OUT  
C
C
T = 25°C  
IN  
J
IN  
= 1 mF  
OUT  
= 1 mF  
OUT  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
0
15 30  
45 60  
75 90 105 120 135 150  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
OUT  
Figure 11. Load Regulation vs. Temperature  
Figure 12. Dropout Voltage vs. Output Current  
OUT = 2.8 V  
V
OUT = 2.8 V  
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
I
= 150 mA  
= 100 mA  
OUT  
V
V
= 2.8 V  
= 1.2 V  
OUT  
I
OUT  
OUT  
I
= 0 mA  
OUT  
V
V
= V  
+ 1 V or 2.5 V  
IN  
OUT(nom)  
V
V
C
C
= 3.8 V  
IN  
= 90% V  
OUT  
OUT(nom)  
= 2.8 V  
= 1 mF  
OUT  
C
C
= 1 mF  
= 1 mF  
IN  
IN  
OUT  
= 1 mF  
OUT  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. Dropout Voltage vs. Temperature  
Figure 14. Current Limit vs. Temperature  
www.onsemi.com  
5
NCP103  
TYPICAL CHARACTERISTICS  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
800  
750  
700  
V
= 2.8 V  
= 1.2 V  
OUT  
650  
600  
550  
500  
450  
400  
350  
300  
V
OUT  
V
V
C
C
= V  
+ 1 V or 2.5 V  
IN  
OUT(nom)  
= 0 V  
= 1 mF  
OUT  
V
C
C
= 0 V  
= 1 mF  
= 1 mF  
OUT  
IN  
OUT  
IN  
= 1 mF  
OUT  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6  
, INPUT VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
V
IN  
Figure 15. Short−Circuit Current vs.  
Temperature  
Figure 16. Short−Circuit Current vs. Input  
Voltage  
1
350  
315  
280  
245  
210  
175  
140  
105  
70  
0.9  
V
= 5.5 V  
= 0.4 V  
EN  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
OFF −> ON  
ON −> OFF  
V
EN  
V
V
C
C
= 3.8 V  
V
V
C
C
= 5.5 V  
IN  
IN  
= 2.8 V  
= 1 mF  
= 2.8 V  
OUT  
OUT  
= 1 mF  
35  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
0
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. Enable Voltage Threshold vs.  
Temperature  
Figure 18. Current to Enable Pin vs.  
Temperature  
100  
80  
60  
40  
20  
0
−20  
−40  
−60  
−80  
V
V
C
C
= 5.5 V  
IN  
= 2.8 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
−100  
−40 −30 −20 −10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Disable Current vs. Temperature  
www.onsemi.com  
6
NCP103  
TYPICAL CHARACTERISTICS  
10000  
1000  
100  
10  
I
= 150 mA  
OUT  
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
60.93 59.11  
I
OUT  
1 mA  
10 mA  
150 mA  
52.73  
51.20  
50.63  
48.96  
V
V
C
C
= 2.5 V  
IN  
= 1.2 V  
= 1 mF  
I
= 10 mA  
OUT  
OUT  
IN  
= 1 mF  
OUT  
I
= 1 mA  
100  
OUT  
1
0.01  
0.1  
1
10  
1000  
FREQUENCY (kHz)  
Figure 20. Output Voltage Noise Spectral Density for VOUT = 1.2 V, COUT = 1 mF  
10000  
1000  
100  
10  
I
= 150 mA  
OUT  
RMS Output Noise (mV)  
I
OUT  
10 Hz − 100 kHz  
79.23  
100 Hz − 100 kHz  
74.66  
1 mA  
10 mA  
150 mA  
75.03  
77.28  
70.37  
72.66  
I
= 10 mA  
V
= 3.8 V  
= 2.8 V  
OUT  
IN  
V
OUT  
C
C
= 1 mF  
IN  
I
= 1 mA  
OUT  
= 1 mF  
OUT  
1
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 21. Output Voltage Noise Spectral Density for VOUT = 2.8 V, COUT = 1 mF  
10000  
1000  
100  
10  
I
= 150 mA  
OUT  
RMS Output Noise (mV)  
I
OUT  
10 Hz − 100 kHz  
80.17  
100 Hz − 100 kHz  
75.29  
1 mA  
10 mA  
150 mA  
81.28  
81.31  
76.46  
76.77  
V
V
= 3.8 V  
IN  
I
= 10 mA  
= 2.8 V  
OUT  
OUT  
C
C
= 1 mF  
IN  
= 4.7 mF  
I
= 1 mA  
100  
OUT  
OUT  
1
0.01  
0.1  
1
10  
1000  
FREQUENCY (kHz)  
Figure 22. Output Voltage Noise Spectral Density for VOUT = 2.8 V, COUT = 4.7 mF  
www.onsemi.com  
7
NCP103  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
I
I
I
= 1 mA  
= 10 mA  
= 150 mA  
OUT  
OUT  
OUT  
I
I
I
= 1 mA  
= 10 mA  
= 150 mA  
OUT  
OUT  
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
C
= 3.8 V  
IN  
V
V
C
= 3.8 V  
IN  
= 2.8 V  
= none  
OUT  
= 2.8 V  
= none  
OUT  
IN  
IN  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 23. Power Supply Rejection Ratio,  
Figure 24. Power Supply Rejection Ratio,  
OUT = 2.8 V, COUT = 4.7 mF  
V
OUT = 1.2 V, COUT = 1 mF  
V
100  
10  
1
UNSTABLE OPERATION  
STABLE OPERATION  
V
IN  
= 5.5 V  
C
C
= 1 mF  
IN  
0.1  
0.01  
= 1 mF  
OUT  
MLCC, X7R,  
1206 size  
0
15  
30 45 60  
75 90 105 120 135 150  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 25. Output Capacitor ESR vs. Output  
Current  
www.onsemi.com  
8
NCP103  
TYPICAL CHARACTERISTICS  
V
= 3.8 V  
= 2.8 V  
= 1 V  
V
V
V
= 3.8 V  
IN  
IN  
OUT  
V
V
= 2.8 V  
= 1 V  
OUT  
EN  
EN  
V
EN  
V
EN  
C
C
I
= 1 mF  
C
C
I
= 1 mF  
OUT  
= 1 mF  
OUT  
= 1 mF  
= 1 mA  
IN  
IN  
= 150 mA  
OUT  
OUT  
I
INRUSH  
I
INRUSH  
V
OUT  
V
OUT  
40 ms/div  
40 ms/div  
Figure 26. Enable Turn−on Response,  
OUT = 1 mF, IOUT = 1 mA  
Figure 27. Enable Turn−on Response,  
C
COUT = 1 mF, IOUT = 150 mA  
V
= 3.8 V  
= 2.8 V  
= 1 V  
= 1 mF  
OUT  
= 1 mF  
= 1 mA  
V
V
V
= 3.8 V  
IN  
IN  
OUT  
V
V
= 2.8 V  
= 1 V  
OUT  
EN  
EN  
V
V
EN  
C
C
I
EN  
C
C
I
= 1 mF  
OUT  
= 1 mF  
= 150 mA  
IN  
IN  
OUT  
OUT  
I
I
INRUSH  
INRUSH  
V
OUT  
V
OUT  
40 ms/div  
40 ms/div  
Figure 28. Enable Turn−on Response,  
OUT = 4.7 mF, IOUT = 1 mA  
Figure 29. Enable Turn−on Response,  
C
C
OUT = 4.7 mF, IOUT = 150 mA  
V
V
= 4.8 V to 3.8 V  
IN  
V
V
= 3.8 V to 4.8 V  
= 2.8 V  
IN  
= 2.8 V  
OUT  
V
IN  
OUT  
C
C
I
= 1 mF  
OUT  
C
C
I
= 1 mF  
OUT  
= 1 mF  
= 1 mA  
IN  
= 1 mF  
= 1 mA  
IN  
t
= 1 ms  
RISE  
V
IN  
OUT  
OUT  
t
= 1 ms  
FALL  
V
OUT  
V
OUT  
20 ms/div  
10 ms/div  
Figure 30. Line Transient Response − Rising  
Edge, VOUT = 2.8 V, IOUT = 1 mA  
Figure 31. Line Transient Response − Falling  
Edge, VOUT = 2.8 V, IOUT = 1 mA  
www.onsemi.com  
9
NCP103  
TYPICAL CHARACTERISTICS  
V
V
= 3.8 V to 4.8 V  
= 2.8 V  
V
V
= 4.8 V to 3.8 V  
= 2.8 V  
OUT  
IN  
IN  
t
= 1 ms  
FALL  
V
IN  
OUT  
C
C
I
= 10 mF  
= 1 mF  
= 150 mA  
C
C
I
= 1 mF  
OUT  
= 1 mF  
IN  
OUT  
IN  
= 150 mA  
V
IN  
OUT  
OUT  
t
= 1 ms  
RISE  
V
OUT  
V
OUT  
4 ms/div  
4 ms/div  
Figure 32. Line Transient Response − Rising  
Edge, VOUT = 2.8 V, IOUT = 150 mA  
Figure 33. Line Transient Response − Falling  
Edge, VOUT = 2.8 V, IOUT = 150 mA  
I
OUT  
V
V
= 2.5 V  
V
V
= 2.5 V  
IN  
IN  
= 1.2 V  
= 1.2 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
IN  
IN  
t
= 1 ms  
FALL  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
OUT  
OUT  
I
OUT  
t
= 1 ms  
RISE  
C
= 1 mF  
OUT  
V
OUT  
V
OUT  
C
= 4.7 mF  
OUT  
C
= 1 mF  
C
= 1 mF  
OUT  
OUT  
4 ms/div  
20 ms/div  
Figure 34. Load Transient Response − Rising  
Edge, VOUT = 1.2 V, IOUT = 1 mA to 150 mA,  
Figure 35. Load Transient Response − Falling  
Edge, VOUT = 1.2 V, IOUT = 1 mA to 150 mA,  
C
OUT = 1 mF, 4.7 mF  
COUT = 1 mF, 4.7 mF  
I
OUT  
V
V
= 3.8 V  
V
V
= 3.8 V  
IN  
IN  
= 2.8 V  
= 2.8 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
IN  
IN  
t
= 1 ms  
FALL  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
OUT  
OUT  
I
t
= 1 ms  
OUT  
RISE  
C
= 1 mF  
OUT  
C
= 4.7 mF  
OUT  
V
OUT  
C
= 4.7 mF  
OUT  
V
OUT  
C
= 1 mF  
OUT  
4 ms/div  
10 ms/div  
Figure 36. Load Transient Response − Rising  
Edge, VOUT = 2.8 V, IOUT = 1 mA to 150 mA,  
Figure 37. Load Transient Response − Falling  
Edge, VOUT = 2.8 V, IOUT = 1 mA to 150 mA,  
C
OUT = 1 mF, 4.7 mF  
COUT = 1 mF, 4.7 mF  
www.onsemi.com  
10  
NCP103  
TYPICAL CHARACTERISTICS  
I
V
V
= 3.8 V  
V
V
= 3.8 V  
OUT  
IN  
IN  
= 2.8 V  
= 2.8 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
OUT  
IN  
IN  
= 1 mF (MLCC)  
t
= 1 ms  
OUT  
FALL  
I
t
= 1 ms  
OUT  
RISE  
V
OUT  
V
IN  
= 3.8 V  
V
OUT  
V
IN  
= 5.5 V  
V
IN  
= 3.8 V  
V
IN  
= 5.5 V  
2 ms/div  
10 ms/div  
Figure 38. Load Transient Response − Rising  
Edge, VOUT = 2.8 V, IOUT = 1 mA to 150 mA,  
Figure 39. Load Transient Response − Falling  
Edge, VOUT = 2.8 V, IOUT = 1 mA to 150 mA,  
V
IN = 3.8 V, 5.5 V  
V
IN = 3.8 V, 5.5 V  
V
V
= 5.5 V  
V
V
C
C
= 5.5 V  
IN  
IN  
Overheating  
= 2.8 V  
= 1.2 V  
OUT  
OUT  
Full Load  
I
= 10 mA  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
OUT  
OUT  
IN  
V
IN  
C
C
IN  
= 1 mF (MLCC)  
OUT  
I
OUT  
V
OUT  
Thermal Shutdown  
V
OUT  
TSD Cycling  
4 ms/div  
10 ms/div  
Figure 40. Turn−on/off − Slow Rising VIN  
Figure 41. Short−Circuit and Thermal  
Shutdown  
www.onsemi.com  
11  
NCP103  
APPLICATIONS INFORMATION  
General  
disable state the device consumes as low as typ. 10 nA from  
the V .  
The NCP103 is a high performance 150 mA Low Dropout  
IN  
Linear Regulator. This device delivers very high PSRR  
(over 75 dB at 1 kHz) and excellent dynamic performance  
as load/line transients. In connection with very low  
quiescent current this device is very suitable for various  
battery powered applications such as tablets, cellular  
phones, wireless and many others. The device is fully  
protected in case of output overload, output short circuit  
condition and overheating, assuring a very robust design.  
If the EN pin voltage >0.9 V the device is guaranteed to  
be enabled. The NCP103 regulates the output voltage and  
the active discharge transistor is turned−off.  
The EN pin has internal pull−down current source with  
typ. value of 300 nA which assures that the device is  
turned−off when the EN pin is not connected. In the case  
where the EN function isn’t required the EN should be tied  
directly to IN.  
Input Capacitor Selection (CIN)  
Output Current Limit  
It is recommended to connect at least a 1mF Ceramic X5R  
or X7R capacitor as close as possible to the IN pin of the  
device. This capacitor will provide a low impedance path for  
unwanted AC signals or noise modulated onto constant  
input voltage. There is no requirement for the min. /max.  
ESR of the input capacitor but it is recommended to use  
ceramic capacitors for their low ESR and ESL. A good input  
capacitor will limit the influence of input trace inductance  
and source resistance during sudden load current changes.  
Larger input capacitor may be necessary if fast and large  
load transients are encountered in the application.  
Output Current is internally limited within the IC to a  
typical 550 mA. The NCP103 will source this amount of  
current measured with a voltage drops on the 90% of the  
nominal V  
. If the Output Voltage is directly shorted to  
= 0 V), the short circuit protection will limit  
OUT  
ground (V  
OUT  
the output current to 580 mA (typ). The current limit and  
short circuit protection will work properly over whole  
temperature range and also input voltage range. There is no  
limitation for the short circuit duration.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
Output Decoupling (COUT  
)
threshold (T − 160°C typical), Thermal Shutdown event  
SD  
The NCP103 requires an output capacitor connected as  
close as possible to the output pin of the regulator. The  
recommended capacitor value is 1 mF and X7R or X5R  
dielectric due to its low capacitance variations over the  
specified temperature range. The NCP103 is designed to  
remain stable with minimum effective capacitance of  
0.22 mF to account for changes with temperature, DC bias  
and package size. Especially for small package size  
capacitors such as 0402 the effective capacitance drops  
rapidly with the applied DC bias.  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
Thermal Shutdown Reset threshold (T  
* 140°C  
SDU  
typical). Once the IC temperature falls below the 140°C the  
LDO is enabled again. The thermal shutdown feature  
provides the protection from a catastrophic device failure  
due to accidental overheating. This protection is not  
intended to be used as a substitute for proper heat sinking.  
Power Dissipation  
As power dissipated in the NCP103 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
There is no requirement for the minimum value of  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 3 W. Larger  
output capacitors and lower ESR could improve the load  
transient response or high frequency PSRR. It is not  
recommended to use tantalum capacitors on the output due  
to their large ESR. The equivalent series resistance of  
tantalum capacitors is also strongly dependent on the  
temperature, increasing at low temperature.  
The maximum power dissipation the NCP103 can handle  
is given by:  
ƪ
ƫ
125° C * TA  
Enable Operation  
(eq. 1)  
PD(MAX)  
+
qJA  
The NCP103 uses the EN pin to enable/disable its device  
and to deactivate/activate the active discharge function.  
If the EN pin voltage is <0.4 V the device is guaranteed to  
be disabled. The pass transistor is turned−off so that there is  
virtually no current flow between the IN and OUT. The  
active discharge transistor is active so that the output voltage  
The power dissipated by the NCP103 for given  
application conditions can be calculated from the following  
equations:  
ǒ
Ǔ
ǒ
Ǔ
(eq. 2)  
PD [ VIN IGND@IOUT ) IOUT VIN * VOUT  
V
OUT  
is pulled to GND through a 100 W resistor. In the  
www.onsemi.com  
12  
 
NCP103  
1
260  
240  
P
, T = 25°C, 2 oz Cu  
D(MAX)  
A
0.9  
220  
200  
180  
160  
140  
120  
100  
P
, T = 25°C, 1 oz Cu 0.8  
D(MAX)  
A
0.7  
q
, 1 oz Cu  
JA  
0.6  
0.5  
0.4  
q
, 2 oz Cu  
JA  
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 42. qJA vs. Copper Area (uDFN4)  
Reverse Current  
nominal value. This time is dependent on various  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
application conditions such as V  
For example typical value for V  
, C  
= 1.2 V, C  
and T .  
OUT(NOM)  
OUT  
A
= 1 mF,  
OUT  
IN  
OUT  
OUT  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
I
= 1 mA and T = 25°C is 90 ms.  
A
OUT  
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
characteristics place C and C capacitors close to the  
Power Supply Rejection Ratio  
IN  
OUT  
The NCP103 features very good Power Supply Rejection  
ratio. If desired the PSRR at higher frequencies in the range  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 capacitors. Larger  
copper area connected to the pins will also improve the  
device thermal resistance. The actual power dissipation can  
be calculated from the equation above (Equation 2). Expose  
pad should be tied the shortest path to the GND pin.  
100 kHz − 10 MHz can be tuned by the selection of C  
OUT  
capacitor and proper PCB layout.  
Turn−On Time  
The turn−on time is defined as the time period from EN  
assertion to the point in which V  
will reach 98% of its  
OUT  
www.onsemi.com  
13  
NCP103  
ORDERING INFORMATION  
Device  
Voltage  
Option  
Marking  
Rotation  
Marking  
Option  
Package  
Shipping  
NCP103AMX090TCG  
NCP103AMX100TCG  
NCP103AMX105TCG  
NCP103AMX110TCG  
NCP103AMX120TCG  
NCP103AMX125TCG  
NCP103AMX130TCG  
NCP103AMX150TCG  
NCP103AMX160TCG  
NCP103AMX180TCG  
NCP103AMX185TCG  
NCP103AMX210TCG  
NCP103AMX220TCG  
NCP103AMX240TCG  
NCP103AMX250TCG  
NCP103AMX260TCG  
NCP103AMX270TCG  
NCP103AMX280TCG  
NCP103AMX285TCG  
NCP103AMX300TCG  
NCP103AMX310TCG  
NCP103AMX320TCG  
NCP103AMX330TCG  
NCP103AMX345TCG  
NCP103AMX350TCG  
NCP103AMX360TCG  
NCP103BMX100TCG  
NCP103BMX105TCG  
NCP103BMX110TCG  
NCP103BMX120TCG  
NCP103BMX125TCG  
NCP103BMX130TCG  
NCP103BMX150TCG  
NCP103BMX160TCG  
NCP103BMX180TCG  
NCP103BMX185TBG  
NCP103BMX185TCG  
NCP103BMX210TCG  
NCP103BMX220TCG  
NCP103BMX250TCG  
NCP103BMX260TCG  
NCP103BMX280TCG  
NCP103BMX285TCG  
NCP103BMX300TCG  
NCP103BMX310TCG  
NCP103BMX330TCG  
NCP103BMX345TCG  
NCP103BMX350TCG  
0.9 V  
1.0 V  
1.05 V  
1.1 V  
1.2 V  
1.25 V  
1.3 V  
1.5 V  
1.6 V  
1.8 V  
1.85 V  
2.1 V  
2.2 V  
2.4 V  
2.5 V  
2.6 V  
2.7 V  
2.8 V  
2.85 V  
3.0 V  
3.1 V  
3.2 V  
3.3 V  
3.45 V  
3.5 V  
3.6 V  
1.0 V  
1.05 V  
1.1 V  
1.2 V  
1.25 V  
1.3 V  
1.5 V  
1.6 V  
1.8 V  
1.85 V  
1.85 V  
2.1 V  
2.2 V  
2.5 V  
2.6 V  
2.8 V  
2.85 V  
3.0 V  
3.1 V  
3.3 V  
3.45 V  
3.5 V  
AQ  
5
0°  
180°  
0°  
A
E
180°  
0°  
D
D
180°  
0°  
AD  
E
0°  
Y
180°  
180°  
0°  
K
F
P
180°  
180°  
0°  
R
With active output  
discharge function  
uDFN4  
(Pb-Free)  
3000 / Tape & Reel  
AL  
AX  
V
0°  
180°  
0°  
AK  
J
0°  
K
0°  
L
0°  
P
0°  
AY  
Q
AE  
3
0°  
0°  
0°  
180°  
0°  
AV  
5
270°  
90°  
270°  
90°  
270°  
0°  
A
E
D
D
CD  
E
90°  
270°  
270°  
0°  
Y
K
CJ  
CJ  
P
0°  
Without active output  
discharge function  
uDFN4  
(Pb-Free)  
3000 / Tape & Reel  
270°  
270°  
0°  
R
CH  
V
270°  
90°  
90°  
90°  
90°  
90°  
0°  
J
K
L
P
Q
CE  
3
270°  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
14  
NCP103  
PACKAGE DIMENSIONS  
UDFN4 1.0x1.0, 0.65P  
CASE 517CU  
ISSUE A  
NOTES:  
3X C0.18  
X 45 5  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
C0.27 x 0.25  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.03 AND 0.07  
FROM THE TERMINAL TIPS.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
E
A
L2  
2X  
2X  
0.05  
0.05  
C
C
DETAIL A  
MILLIMETERS  
DIM MIN  
−−−  
A1 0.00  
MAX  
0.60  
0.05  
A
TOP VIEW  
SIDE VIEW  
A3  
b
0.15 REF  
0.20  
0.30  
0.10  
C
D
1.00 BSC  
0.58  
1.00 BSC  
0.65 BSC  
(A3)  
A1  
D2 0.38  
E
e
L
0.20  
0.30  
0.37  
0.05  
C
L2 0.27  
SEATING  
PLANE  
NOTE 4  
C
RECOMMENDED  
MOUNTING FOOTPRINT*  
e
e/2  
2X  
0.58  
3X  
0.65  
DETAIL A  
3X L  
D2  
PITCH  
1
4
2
0.43  
DETAIL B  
4X  
0.23  
PACKAGE  
OUTLINE  
D2  
1.30  
455  
3
4X b  
1
0.53  
3X  
0.10  
4X  
0.30  
M
M
0.10  
C A  
B
DETAIL B  
0.05  
C
NOTE 3  
DIMENSIONS: MILLIMETERS  
BOTTOM VIEW  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Bluetooth is a registered trademark of Bluetooth SIG.  
ZigBee is a registered trademark of ZigBee Alliance.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP103/D  

相关型号:

NCP103AMX240TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX250TCG

CMOS Low Dropout Regulator
ONSEMI

NCP103AMX260TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX270TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX280TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX285TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX300TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX310TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX320TCG

CMOS Low Dropout Regulator
ONSEMI

NCP103AMX330TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX345TCG

150 mA CMOS Low Dropout Regulator
ONSEMI

NCP103AMX350TCG

150 mA CMOS Low Dropout Regulator
ONSEMI