NCP105AMX250TCG [ONSEMI]

LDO Regulator - High PSRR 150 mA;
NCP105AMX250TCG
型号: NCP105AMX250TCG
厂家: ONSEMI    ONSEMI
描述:

LDO Regulator - High PSRR 150 mA

文件: 总16页 (文件大小:1440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP105  
LDO Regulator - High PSRR  
150 mA  
The NCP105 is 150 mA LDO that provides the engineer with a very  
stable, accurate voltage with low noise suitable for space constrained,  
noise sensitive applications. In order to optimize performance for  
battery operated portable applications, the NCP105 employs the  
www.onsemi.com  
dynamic quiescent current adjustment for very low I consumption at  
Q
noload.  
MARKING  
DIAGRAMS  
Features  
Operating Input Voltage Range: 1.7 V to 5.5 V  
Available in Fixed Voltage Options: 0.8 V to 3.6 V  
Contact Factory for Other Voltage Options  
Very Low Quiescent Current of Typ. 50 mA  
XDFN4  
CASE 711AJ  
XX M  
1
1
XX = Specific Device Code  
M
= Date Code  
Soft Start Feature with Two V  
Slew Rate Speed  
OUT  
5
1
Standby Current Consumption: Typ. 0.1 mA  
TSOP5  
CASE 483  
XX M G  
5
Low Dropout: 125 mV Typical at 150 mA @ 2.8 V  
G
1
1% Accuracy at Room Temperature  
High Power Supply Ripple Rejection: 70 dB at 1 kHz  
Thermal Shutdown and Current Limit Protections  
Available in XDFN4 and TSOP5 Packages  
Stable with a 1 mF Ceramic Output Capacitor  
These are PbFree Devices  
XX  
M
G
= Device Code  
= Date Code*  
= PbFree Package  
(Note: Microdot may be in either location)  
*Date Code orientation and/or position may  
vary depending upon manufacturing location.  
Typical Applicaitons  
PIN CONNECTIONS  
PDAs, Mobile phones, GPS, Smartphones  
®
®
EN  
3
IN  
4
Wireless Handsets, Wireless LAN, Bluetooth , Zigbee  
Portable Medical Equipment  
Other Battery Powered Applications  
V
V
IN  
OUT  
IN  
OUT  
NCP105  
GND  
C
C
OUT  
1 mF  
Ceramic  
IN  
EN  
2
1
ON  
GND  
OUT  
(Bottom View)  
OFF  
Figure 1. Typical Application Schematic  
IN  
OUT  
N/C  
1
2
3
5
4
GND  
EN  
(Top View)  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 14 of this data sheet.  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
September, 2019 Rev. 1  
NCP105/D  
NCP105  
IN  
ENABLE  
LOGIC  
THERMAL  
EN  
SHUTDOWN  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
OUT  
AUTO LOW  
POWER MODE  
ACTIVE  
DISCHARGE*  
EN  
GND  
*Active output discharge function is present only in NCP105A and NCP105C devices.  
yyy denotes the particular V option.  
OUT  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin No.  
(XDFN4)  
(TSOP5)  
Pin Name  
Description  
1
5
OUT  
Regulated output voltage pin. A small ceramic capacitor with minimum value of 1 mF is need-  
ed from this pin to ground to assure stability.  
2
3
2
3
GND  
EN  
Power supply ground.  
Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into  
shutdown mode.  
4
1
4
IN  
Input pin. A small capacitor is needed from this pin to ground to assure stability.  
Not connected. This pin can be tied to ground to improve thermal dissipation.  
N/C  
EPAD  
Exposed pad should be connected directly to the GND pin. Soldered to a large ground cop-  
per plane allows for effective heat removal.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
VIN  
Value  
Unit  
V
Input Voltage (Note 1)  
0.3 V to 6 V  
Output Voltage  
VOUT  
VEN  
0.3 V to V + 0.3 V or 6 V  
V
IN  
Enable Input  
0.3 V to 6 V  
V
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
tSC  
s
TJ(MAX)  
TSTG  
150  
°C  
°C  
V
55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESDHBM  
ESDMM  
200  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per EIA/JESD22A114,  
ESD Machine Model tested per EIA/JESD22A115,  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN4 1x1 mm  
Thermal Resistance, JunctiontoAir  
R
208  
°C/W  
q
JA  
Thermal Characteristics, TSOP5  
Thermal Resistance, JunctiontoAir  
R
162  
°C/W  
q
JA  
2
3. Single component mounted on 1 oz, FR 4 PCB with 645 mm Cu area.  
www.onsemi.com  
2
 
NCP105  
ELECTRICAL CHARACTERISTICS 40°C T 85°C; V = V  
+ 1 V for V  
options greater than 1.5 V. Otherwise V  
=
J
IN  
OUT(NOM)  
OUT  
IN  
2.5 V, whichever is greater; I  
= 1 mA, C = C  
= 1 mF, unless otherwise noted. V = 0.9 V. Typical values are at T = +25°C.  
OUT  
IN  
OUT  
EN  
J
Min./Max. are for T = 40°C and T = +85°C respectively (Note 4).  
J
J
Parameter  
Test Conditions  
Symbol  
Min  
1.7  
40  
2  
Typ  
Max  
5.5  
+40  
+2  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
V
IN  
40°C T 85°C  
V
V
2.0 V  
V
OUT  
mV  
%
J
OUT  
> 2.0 V  
OUT  
Line Regulation  
V
OUT  
+ 0.5 V V 5.5 V (V 1.7 V)  
Reg  
0.01  
6
0.1  
15  
%/V  
mV  
IN  
IN  
LINE  
Load Regulation XDFN4 package  
Load Regulation TSOP5 package  
I
= 1 mA to 150 mA  
Reg  
LOAD  
OUT  
14  
25  
Dropout Voltage XDFN4 package  
I
I
= 150 mA  
= 150 mA  
V
V
V
V
V
V
= 1.8 V  
= 2.8 V  
= 3.3 V  
= 1.8 V  
= 2.8 V  
= 3.3 V  
V
220  
125  
105  
225  
130  
110  
600  
50  
330  
210  
165  
380  
260  
215  
mV  
mV  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
DO  
DO  
CL  
(Note 5)  
Dropout Voltage TSOP5 package  
(Note 5)  
V
Output Current Limit  
Quiescent Current  
Shutdown Current  
V
OUT  
= 90% V  
I
200  
0.9  
mA  
mA  
mA  
V
OUT(nom)  
I
= 0 mA  
I
95  
1
OUT  
Q
V
EN  
0.4 V, V = 5.5 V  
I
DIS  
0.01  
IN  
EN Pin Threshold Voltage  
High Threshold  
Low Threshold  
V
Voltage increasing  
Voltage decreasing  
V
EN_HI  
EN_LO  
EN  
EN  
V
V
0.4  
V
OUT  
Slew Rate (Note 6)  
V
OUT  
= 3.3 V, I  
= 10 mA Normal (version  
A and B)  
V
OUT_SR  
190  
20  
mV/ms  
OUT  
Slow (version C  
and D)  
EN Pin Input Current  
V
= 5.5 V  
I
0.3  
70  
1.0  
mA  
EN  
EN  
Power Supply Rejection Ratio  
V
IN  
= 3.8 V, V  
OUT  
= 3.5 V  
f = 1 kHz  
PSRR  
dB  
OUT  
I
= 10 mA  
Output Noise Voltage  
f = 10 Hz to 100 kHz  
V
70  
160  
20  
mV  
rms  
N
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Active Output Discharge Resistance  
Temperature increasing from T = +25°C  
T
SD  
°C  
J
Temperature falling from T  
T
SDH  
°C  
SD  
V
EN  
< 0.4 V, Version A and C only  
R
100  
W
DIS  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
5. Characterized when VOUT falls 100 mV below the regulated voltage at VIN = VOUT(NOM) + 1 V.  
6. Please refer OPN to determine slew rate. NCP105A, NCP105B Normal speed. NCP105C, NCP105D slower speed  
www.onsemi.com  
3
 
NCP105  
TYPICAL CHARACTERISTICS  
1.820  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
V
V
C
C
= 2.8 V  
IN  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
= 1.8 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
I
= 10 mA  
OUT  
I
= 10 mA  
OUT  
I
= 150 mA  
OUT  
I
= 150 mA  
OUT  
V
V
C
C
= 2.5 V  
IN  
= 1.2 V  
= 1 mF  
1.180  
1.175  
1.170  
OUT  
IN  
1.775  
1.770  
= 1 mF  
OUT  
403020 10  
0
10 20 30 40 50 60 70 80 90  
403020 10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Voltage vs. Temperature  
Figure 4. Output Voltage vs. Temperature −  
V
OUT = 1.2 V XDFN4  
VOUT = 1.8 V XDFN4  
2.820  
2.815  
2.810  
2.805  
2.800  
2.795  
2.790  
2.785  
2.780  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
V
V
C
C
= 4.3 V  
V
V
C
C
= 3.8 V  
IN  
IN  
= 3.3 V  
= 1 mF  
= 2.8 V  
= 1 mF  
OUT  
OUT  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
I
= 10 mA  
OUT  
I
= 10 mA  
OUT  
I
= 150 mA  
OUT  
I
= 150 mA  
OUT  
2.775  
2.770  
3.265  
3.260  
403020 10  
0
10 20 30 40 50 60 70 80 90  
403020 10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C))  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Output Voltage vs. Temperature −  
Figure 6. Output Voltage vs. Temperature −  
VOUT = 3.3 V XDFN4  
V
OUT = 2.8 V XDFN4  
0.005  
0.004  
0.003  
10  
9
V
= 3.3 V  
OUT  
V
= 2.8 V  
V
V
V
= 1.2 V  
OUT  
OUT  
OUT  
OUT  
8
= 1.8 V  
= 2.8 V  
0.002  
0.001  
0
7
V
OUT  
= 1.2 V  
6
V
OUT  
= 3.3 V  
5
V
OUT  
= 1.8 V  
0.001  
0.002  
0.003  
4
3
V
I
C
C
= V  
+ 0.5 to 5.5 V  
IN  
OUT_NOM  
V
I
C
C
= V  
+ 1 V  
IN  
OUT_NOM  
= 1 mA to 150 mA  
= 10 mA  
OUT  
2
1
0
OUT  
= 1 mF  
IN  
OUT  
= 1 mF  
IN  
OUT  
0.004  
0.005  
= 1 mF  
= 1 mF  
403020 10  
0
10 20 30 40 50 60 70 80 90  
403020 10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Line Regulation vs. Temperature  
Figure 8. Load Regulation vs. Temperature −  
XDFN4  
www.onsemi.com  
4
NCP105  
TYPICAL CHARACTERISTICS  
400  
350  
300  
250  
200  
150  
100  
70  
V
C
C
= V  
+ 1 V  
T = 25°C  
IN  
OUT_NOM  
J
63  
56  
49  
42  
35  
28  
21  
14  
T = 85°C  
J
T = 40°C  
J
= 1 mF  
IN  
OUT  
= 1 mF  
T = 25°C  
J
T = 85°C  
J
T = 40°C  
J
V
V
I
C
C
= 2.8 V  
IN  
= 1.8 V  
OUT  
= 0 mA  
OUT  
= 1 mF  
IN  
50  
0
= 1 mF  
OUT  
7
0
0.001 0.01  
0.1  
1
10  
100  
1000  
0
1
2
3
4
5
6
I , OUTPUT CURRENT (mA)  
OUT  
V , INPUT VOLTAGE (V)  
IN  
Figure 9. Ground Current vs. Load Current  
Figure 10. Quiescent Current vs. Input Voltage  
OUT = 1.8 V  
V
250  
225  
200  
175  
150  
125  
100  
75  
200  
180  
160  
140  
120  
100  
80  
T = 85°C  
J
V
C
C
= 2.8 V  
= 1 mF  
= 1 mF  
V
C
C
= 1.8 V  
= 1 mF  
= 1 mF  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
meas for V  
100 mV  
meas for V  
100 mV  
T = 85°C  
J
OUT_NOM  
OUT_NOM  
T = 40°C  
J
T = 40°C  
J
60  
T = 25°C  
J
50  
40  
T = 25°C  
J
25  
0
20  
0
0
15 30 45 60 75 90 105 120 135 150  
, OUTPUT CURRENT (mA)  
0
15 30 45 60 75 90 105 120 135 150  
, OUTPUT CURRENT (mA)  
I
I
OUT  
OUT  
Figure 11. Dropout Voltage vs. Load Current −  
OUT = 1.8 V  
Figure 12. Dropout Voltage vs. Load Current −  
V
VOUT = 2.8 V  
150  
135  
120  
105  
90  
720  
700  
680  
660  
640  
620  
600  
580  
560  
V
C
C
= 3.3 V  
= 1 mF  
= 1 mF  
OUT  
IN  
T = 85°C  
J
OUT  
meas for V  
100 mV  
OUT_NOM  
75  
T = 40°C  
J
60  
45  
V
V
C
C
= 4.3 V  
IN  
= 90% V  
OUT  
OUT(nom)  
30  
T = 25°C  
J
= 1 mF  
IN  
540  
520  
15  
0
= 1 mF  
OUT  
0
15 30 45 60 75 90 105 120 135 150  
, OUTPUT CURRENT (mA)  
40 3020 10  
0
10 20 30 40 50 60 70 80 90  
I
T , JUNCTION TEMPERATURE (°C)  
OUT  
J
Figure 13. Dropout Voltage vs. Load Current −  
OUT = 3.3 V  
Figure 14. Current Limit vs. Temperature  
V
www.onsemi.com  
5
NCP105  
TYPICAL CHARACTERISTICS  
700  
680  
660  
640  
620  
600  
580  
560  
540  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
OFF > ON  
ON > OFF  
V
V
C
C
= 4.3 V  
0.3  
V
V
C
C
= 3.8 V  
IN  
IN  
= 0 V (short)  
= 1 mF  
= 1 mF  
= 2.8 V  
= 1 mF  
OUT  
OUT  
0.2  
IN  
IN  
520  
500  
0.1  
0
= 1 mF  
OUT  
OUT  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
40 3020 10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. Short Circuit Current vs.  
Temperature  
Figure 16. Enable Thresholds Voltage  
250  
225  
200  
175  
150  
125  
100  
75  
30  
27  
24  
21  
18  
15  
12  
9
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
OUT  
= 1 mF  
IN  
= 1 mF  
OUT  
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
OUT  
50  
25  
0
6
= 1 mF  
IN  
3
0
= 1 mF  
OUT  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
40 3020 10  
0
10 20 30 40 50 60 70 80 90  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. Current to Enable Pin vs.  
Temperature  
Figure 18. Disable Current vs. Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
10  
Unstable Operation  
1
Stable Operation  
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
OUT  
= 1 mF  
IN  
10  
0
= 1 mF  
OUT  
0.1  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
0
15 30 45 60 75 90 105 120 135 150  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
OUT  
Figure 19. Discharge Resistance vs.  
Temperature  
Figure 20. Maximum COUT ESR Value vs. Load  
Current  
www.onsemi.com  
6
NCP105  
TYPICAL CHARACTERISTICS  
10  
1
I
I
I
= 1 mA  
= 10 mA  
= 150 mA  
OUT  
OUT  
OUT  
RMS Output Noise (mV  
10 Hz 100 kHz 100 Hz 100 kHz  
)
RMS  
I
OUT  
1 mA  
10 mA  
150 mA  
65.6  
63.1  
60.8  
61.9  
59.5  
58.3  
0.1  
V
V
= 2.5 V  
IN  
0.01  
= 1.2 V  
OUT  
C
C
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
OUT  
0.001  
10  
10  
10  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
Figure 21. Output Voltage Noise Spectral Density – VOUT = 1.2 V  
10  
1
I
I
I
= 1 mA  
= 10 mA  
= 150 mA  
OUT  
OUT  
OUT  
RMS Output Noise (mV  
10 Hz 100 kHz 100 Hz 100 kHz  
)
RMS  
I
OUT  
1 mA  
10 mA  
150 mA  
93.4  
92.1  
87.9  
86.6  
0.1  
114.4  
107.5  
V
V
C
C
= 3.8 V  
IN  
0.01  
= 2.8 V  
OUT  
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
OUT  
0.001  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
Figure 22. Output Voltage Noise Spectral Density – VOUT = 2.8 V  
10  
1
I
I
I
= 1 mA  
= 10 mA  
= 150 mA  
OUT  
OUT  
OUT  
RMS Output Noise (mV  
)
RMS  
I
OUT  
10 Hz 100 kHz 100 Hz 100 kHz  
1 mA  
10 mA  
150 mA  
104.0  
102.9  
115.8  
98.0  
96.7  
0.1  
110.8  
V
IN  
V
= 4.3 V  
0.01  
= 3.3 V  
OUT  
C
C
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
OUT  
0.001  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
Figure 23. Output Voltage Noise Spectral Density – VOUT = 3.3 V  
www.onsemi.com  
7
NCP105  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
I
I
I
= 1 mA  
= 10 mA  
= 150 mA  
I
I
I
= 1 mA  
= 10 mA  
= 150 mA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
V
V
C
C
= 2.5 V + 100 mVpp  
IN  
V
V
C
C
= 2.8 V + 100 mVpp  
IN  
= 1.2 V  
OUT  
= 1.8 V  
OUT  
= none  
IN  
= none  
IN  
10  
0
10  
0
= 1 mF (MLCC)  
OUT  
= 1 mF (MLCC)  
OUT  
100  
1K  
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. Power Supply Rejection Ratio,  
Figure 25. Power Supply Rejection Ratio,  
VOUT = 1.8 V  
V
OUT = 1.2 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
I
= 1 mA  
= 10 mA  
= 150 mA  
I
I
I
= 1 mA  
= 10 mA  
= 150 mA  
OUT  
OUT  
OUT  
OUT  
I
OUT  
I
OUT  
V
V
C
C
= 4.3 V + 100 mVpp  
= 3.3 V  
= none  
V
V
C
C
= 3.8 V + 100 mVpp  
= 2.8 V  
IN  
IN  
OUT  
OUT  
20  
10  
0
= none  
IN  
IN  
OUT  
10  
0
= 1 mF (MLCC)  
= 1 mF (MLCC)  
OUT  
100  
1K  
10K  
100K  
1M  
10M  
100  
1K  
10K  
100K  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. Power Supply Rejection Ratio,  
OUT = 2.8 V  
Figure 27. Power Supply Rejection Ratio,  
VOUT = 3.3 V  
V
www.onsemi.com  
8
NCP105  
TYPICAL CHARACTERISTICS  
V
EN  
V
EN  
I
I
INPUT  
INPUT  
V
V
C
= 2.8 V  
IN  
V
V
C
= 2.8 V  
IN  
= 1.8 V  
OUT  
V
OUT  
V
OUT  
= 1.8 V  
OUT  
= 1 mF (MLCC)  
OUT  
= 1 mF (MLCC)  
OUT  
200 ms/div  
200 ms/div  
Figure 28. Enable Turnon Response −  
OUT = 0 mA, Slow Option C  
Figure 29. Enable Turnon Response −  
IOUT = 150 mA, Slow Option C  
I
V
EN  
V
EN  
I
I
INPUT  
INPUT  
A option  
C option  
A option  
C option  
V
V
C
= 2.8 V  
IN  
V
V
C
= 2.8 V  
IN  
= 1.8 V  
V
OUT  
V
OUT  
OUT  
= 1.8 V  
OUT  
= 1 mF (MLCC)  
OUT  
= 1 mF (MLCC)  
OUT  
50 ms/div  
100 ms/div  
Figure 30. VOUT SlewRate Comparison A and  
C option IOUT = 10 mA  
Figure 31. VOUT SlewRate Comparison A and  
C option IOUT = 150 mA  
3.0 V  
3.0 V  
t
= 1 ms  
t
= 1 ms  
RISE,FALL  
V
V
RISE,FALL  
V
2.0 V  
IN  
2.0 V  
IN  
V
OUT  
= 1.2 V  
V
OUT  
= 1.2 V  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
IN  
OUT  
OUT  
V
OUT  
OUT  
10 ms/div  
10 ms/div  
Figure 32. Line Transient Response −  
OUT = 10 mA  
Figure 33. Line Transient Response −  
I
IOUT = 150 mA  
www.onsemi.com  
9
NCP105  
TYPICAL CHARACTERISTICS  
4.8 V  
4.8 V  
t
= 1 ms  
V
RISE,FALL  
t
= 1 ms  
IN  
3.8 V  
V
V
RISE,FALL  
3.8 V  
IN  
V
C
C
= 2.8 V  
OUT  
V
OUT  
= 2.8 V  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
OUT  
OUT  
V
OUT  
OUT  
10 ms/div  
10 ms/div  
Figure 34. Line Transient Response −  
Figure 35. Line Transient Response −  
IOUT = 10 mA  
IOUT = 150 mA  
t
= 1 ms  
V
V
= 2.5 V  
RISE  
IN  
I
OUT  
= 1.2 V  
V
V
C
= 2.5 V  
OUT  
IN  
C
I
= 1 mF (MLCC)  
= 1 mA to 150 mA  
= 1.2 V  
IN  
OUT  
= 1 mF (MLCC)  
= 1 mA to 150 mA  
OUT  
IN  
I
OUT  
I
OUT  
t
= 1 ms  
FALL  
C
C
= 1 mF  
OUT  
C
C
= 1 mF  
OUT  
V
OUT  
= 4.7 mF  
OUT  
V
OUT  
= 4.7 mF  
OUT  
5 ms/div  
10 ms/div  
Figure 36. Load Transient Response −  
Figure 37. Load Transient Response −  
V
OUT = 1.2 V  
VOUT = 1.2 V  
V
IN  
= 3.8 V, V  
= 2.8 V  
OUT  
C
= 1 mF (MLCC)  
= 1 mA to 150 mA  
IN  
I
OUT  
I
OUT  
t
= 1 ms  
RISE  
V
C
C
= 3.8 V, V  
= 1 mF (MLCC)  
= 2.8 V  
t
= 1 ms  
IN  
OUT  
FALL  
I
OUT  
IN  
= 1 mA to 150 mA  
OUT  
C
C
= 1 mF  
OUT  
C
C
= 1 mF  
OUT  
V
OUT  
= 4.7 mF  
OUT  
V
OUT  
= 4.7 mF  
OUT  
5 ms/div  
10 ms/div  
Figure 38. Load Transient Response −  
OUT = 2.8 V  
Figure 39. Load Transient Response −  
V
VOUT = 2.8 V  
www.onsemi.com  
10  
NCP105  
TYPICAL CHARACTERISTICS  
V
IN  
= 4.3 V, V  
= 3.3 V  
OUT  
C
= 1 mF (MLCC)  
= 1 mA to 150 mA  
IN  
I
OUT  
I
OUT  
t
= 1 ms  
RISE  
V
C
= 4.3 V, V  
= 1 mF (MLCC)  
= 3.3 V  
t
= 1 ms  
IN  
OUT  
FALL  
I
OUT  
IN  
I
= 1 mA to 150 mA  
OUT  
C
C
= 1 mF  
OUT  
C
C
= 1 mF  
OUT  
V
OUT  
= 4.7 mF  
OUT  
V
OUT  
= 4.7 mF  
OUT  
5 ms/div  
10 ms/div  
Figure 40. Load Transient Response −  
Figure 41. Load Transient Response −  
V
OUT = 3.3 V  
VOUT = 3.3 V  
V
IN  
V
IN  
V
OUT  
V
OUT  
V
V
C
C
= 3.8 V  
IN  
V
V
C
C
= 3.8 V  
IN  
= 3.3 V  
OUT  
= 2.8 V  
OUT  
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
OUT  
= 1 mF (MLCC)  
OUT  
10 ms/div  
10 ms/div  
Figure 42. Turnon/off Slow Rising  
IN IOUT = 10 mA  
Figure 43. Turnon/off Slow Rising  
VIN IOUT = 150 mA  
V
I
OUT  
V
OUT  
TSD On  
TSD Off  
= 5.5 V, V  
V
IN  
= 1.8 V  
OUT  
C
= 1 mF (MLCC), C  
= 1 mF (MLCC)  
IN  
OUT  
5 ms/div  
Figure 44. Overheating Protection TSD  
www.onsemi.com  
11  
NCP105  
APPLICATIONS INFORMATION  
General  
disable state the device consumes as low as typ. 10 nA from  
the V .  
The NCP105 is a high performance 150 mA Low Dropout  
IN  
Linear Regulator. This device delivers very high PSRR  
(over 70 dB at 1 kHz) and excellent dynamic performance  
as load/line transients. In connection with very low  
quiescent current this device is very suitable for various  
battery powered applications such as tablets, cellular  
phones, wireless and many others. The device is fully  
protected in case of output overload, output short circuit  
condition and overheating, assuring a very robust design.  
If the EN pin voltage >0.9 V the device is guaranteed to  
be enabled. The NCP105 regulates the output voltage and  
the active discharge transistor is turnedoff.  
The EN pin has internal pulldown current source with  
typ. value of 300 nA which assures that the device is  
turnedoff when the EN pin is not connected. In the case  
where the EN function isn’t required the EN should be tied  
directly to IN.  
Input Capacitor Selection (CIN)  
Output Current Limit  
It is recommended to connect at least a 1 mF Ceramic X5R  
or X7R capacitor as close as possible to the IN pin of the  
device. This capacitor will provide a low impedance path for  
unwanted AC signals or noise modulated onto constant  
input voltage. There is no requirement for the min. /max.  
ESR of the input capacitor but it is recommended to use  
ceramic capacitors for their low ESR and ESL. A good input  
capacitor will limit the influence of input trace inductance  
and source resistance during sudden load current changes.  
Larger input capacitor may be necessary if fast and large  
load transients are encountered in the application.  
Output Current is internally limited within the IC to a  
typical 600 mA. The NCP105 will source this amount of  
current measured with a voltage drops on the 90% of the  
nominal V  
. If the Output Voltage is directly shorted to  
= 0 V), the short circuit protection will limit  
OUT  
ground (V  
OUT  
the output current to 630 mA (typ). The current limit and  
short circuit protection will work properly over whole  
temperature range and also input voltage range. There is no  
limitation for the short circuit duration.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
Output Decoupling (COUT  
)
threshold (T 160°C typical), Thermal Shutdown event  
SD  
The NCP105 requires an output capacitor connected as  
close as possible to the output pin of the regulator. The  
recommended capacitor value is 1 mF and X7R or X5R  
dielectric due to its low capacitance variations over the  
specified temperature range. The NCP105 is designed to  
remain stable with minimum effective capacitance of  
0.47 mF to account for changes with temperature, DC bias  
and package size. Especially for small package size  
capacitors such as 0402 the effective capacitance drops  
rapidly with the applied DC bias.  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
Thermal Shutdown Reset threshold (T  
140°C typical).  
SDU  
Once the IC temperature falls below the 140°C the LDO is  
enabled again. The thermal shutdown feature provides the  
protection from a catastrophic device failure due to  
accidental overheating. This protection is not intended to be  
used as a substitute for proper heat sinking.  
Power Dissipation  
As power dissipated in the NCP105 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
There is no requirement for the minimum value of  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 1.8 W. Larger  
output capacitors and lower ESR could improve the load  
transient response or high frequency PSRR. It is not  
recommended to use tantalum capacitors on the output due  
to their large ESR. The equivalent series resistance of  
tantalum capacitors is also strongly dependent on the  
temperature, increasing at low temperature.  
The maximum power dissipation the NCP105 can handle  
is given by:  
ƪ
ƫ
85° C * TA  
Enable Operation  
(eq. 1)  
PD(MAX)  
+
qJA  
The NCP105 uses the EN pin to enable/disable its device  
and to deactivate/activate the active discharge function.  
If the EN pin voltage is <0.4 V the device is guaranteed to  
be disabled. The pass transistor is turnedoff so that there is  
virtually no current flow between the IN and OUT. The  
active discharge transistor is active so that the output voltage  
The power dissipated by the NCP105 for given  
application conditions can be calculated from the following  
equations:  
ǒ
Ǔ
ǒV  
Ǔ
(eq. 2)  
P
D [ VIN IGND@IOUT ) IOUT IN * VOUT  
V
OUT  
is pulled to GND through a 100 W resistor. In the  
www.onsemi.com  
12  
NCP105  
400  
350  
300  
250  
200  
150  
100  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
P
, T = 25°C, 2 oz Cu  
A
D(MAX)  
P
, T = 25°C, 1 oz Cu  
A
D(MAX)  
q
, 1 oz Cu  
JA  
q
, 2 oz Cu  
JA  
0.05  
0
50  
0
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 45. qJA and PD (MAX) vs. Copper Area (XDFN4)  
250  
225  
200  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
175  
150  
125  
100  
75  
q
, 1 oz Cu  
JA  
q
, 2 oz Cu  
JA  
P
, T = 25°C, 2 oz Cu  
A
D(MAX)  
P
, T = 25°C, 1 oz Cu  
A
D(MAX)  
50  
0.1  
0
25  
0
0
100  
200  
300  
400  
500  
2
600  
700  
COPPER HEAT SPREADER AREA (mm )  
Figure 46. qJA and PD (MAX) vs. Copper Area (TSOP5)  
www.onsemi.com  
13  
NCP105  
Reverse Current  
The NCP105 provides two options of V  
rampup  
OUT  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
time. The NCP105A and NCP105B have normal slew rate,  
typical 190 mV/ms and NCP105C and NCP105D provide  
slower option with typical value 20 mV/ms which is suitable  
for camera sensor and other sensitive devices.  
OUT  
IN  
PCB Layout Recommendations  
Power Supply Rejection Ratio  
To obtain good transient performance and good regulation  
The NCP105 features very good Power Supply Rejection  
ratio. If desired the PSRR at higher frequencies in the range  
characteristics place C and C  
capacitors close to the  
IN  
OUT  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 capacitors. Larger  
copper area connected to the pins will also improve the  
device thermal resistance. The actual power dissipation can  
be calculated from the equation above (Equation 2). Expose  
pad should be tied the shortest path to the GND pin.  
100 kHz 10 MHz can be tuned by the selection of C  
OUT  
capacitor and proper PCB layout.  
TurnOn Time  
The turnon time is defined as the time period from EN  
assertion to the point in which VOUT will reach 98% of its  
nominal value. This time is dependent on various  
application conditions such as V  
C
and T .  
OUT(NOM) OUT A  
ORDERING INFORMATION XDFN4 PACKAGE  
Voltage  
Option  
1.05 V  
1.2 V  
Device  
Marking  
TA  
Description  
Package  
Shipping  
NCP105AMX100TCG  
NCP105AMX120TCG  
NCP105AMX180TBG  
NCP105AMX180TCG  
NCP105AMX250TCG  
NCP105AMX280TCG  
NCP105AMX300TCG  
NCP105AMX330TCG  
NCP105AMX345TCG  
TC  
1.8 V  
TD  
150 mA, Active Discharge,  
XDFN4  
(PbFree)  
3000 / Tape &  
Reel  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
3.45 V  
TE  
TF  
TG  
TH  
TJ  
Normal Slewrate  
www.onsemi.com  
14  
NCP105  
PACKAGE DIMENSIONS  
TSOP5  
CASE 483  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
10  
3.00  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
_
_
SIDE VIEW  
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
15  
NCP105  
PACKAGE DIMENSIONS  
XDFN4 1.0x1.0, 0.65P  
CASE 711AJ  
ISSUE A  
4X L2  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.20 mm FROM THE TERMINAL TIPS.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
E
4X b2  
2X  
0.05  
C
MILLIMETERS  
DETAIL A  
DIM MIN  
0.33  
A1 0.00  
MAX  
0.43  
0.05  
0.05  
C
2X  
A
TOP VIEW  
A3  
b
b2 0.02  
0.10 REF  
0.15  
0.25  
0.12  
(A3)  
0.05  
0.05  
C
D
1.00 BSC  
D2 0.43  
0.53  
A
E
e
L
1.00 BSC  
0.65 BSC  
0.20  
C
0.30  
0.17  
SEATING  
PLANE  
NOTE 4  
A1  
L2 0.07  
C
SIDE VIEW  
e
RECOMMENDED  
e/2  
MOUNTING FOOTPRINT*  
DETAIL A  
4X L  
D2  
1
4
2
02.5X2  
0.65  
PITCH  
PACKAGE  
OUTLINE  
D2  
4X  
0.39  
455  
3
4X  
0.11  
1.20  
4X b  
M
0.05  
C A B  
4X  
0.24  
NOTE 3  
4X  
0.26  
BOTTOM VIEW  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Bluetooth is a registered trademark of Bluetooth SIG.  
ZigBee is a registered trademark of ZigBee Alliance.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP105/D  

相关型号:

NCP105AMX280TCG

LDO Regulator - High PSRR 150 mA
ONSEMI

NCP105AMX300TCG

LDO Regulator - High PSRR 150 mA
ONSEMI

NCP105AMX330TCG

LDO Regulator - High PSRR 150 mA
ONSEMI

NCP105AMX345TCG

LDO Regulator - High PSRR 150 mA
ONSEMI

NCP1060

High-Voltage Switcher for Low Power Offline SMPS
ONSEMI

NCP1060AD060R2G

High-Voltage Switcher for Low Power Offline SMPS
ONSEMI

NCP1060AD100R2G

High-Voltage Switcher for Low Power Offline SMPS
ONSEMI

NCP1060AP060G

High-Voltage Switcher for Low Power Offline SMPS
ONSEMI

NCP1060AP100G

High-Voltage Switcher for Low Power Offline SMPS
ONSEMI

NCP1060BD060R2G

High-Voltage Switcher for Low Power Offline SMPS
ONSEMI

NCP1060BD100R2G

High-Voltage Switcher for Low Power Offline SMPS
ONSEMI

NCP1060_16

High-Voltage Switcher for Low Power Offline SMPS
ONSEMI