NCP1361BABAYSNT1G [ONSEMI]

低功耗离线恒定电流 PWM 电流模式控制器;
NCP1361BABAYSNT1G
型号: NCP1361BABAYSNT1G
厂家: ONSEMI    ONSEMI
描述:

低功耗离线恒定电流 PWM 电流模式控制器

控制器
文件: 总29页 (文件大小:935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
MARKING  
DIAGRAMS  
Low Power Offline Constant  
Current PWM Current-Mode  
Controller with/without  
High Voltage Startup  
Current Source  
8
SOIC−7  
CASE 751U  
XXXXX  
ALYWX  
G
1
TSOP−6  
CASE 318G  
xxxAYWG  
G
NCP1361, NCP1366  
1
1
The NCP1361/66 offers a new solution targeting output power  
levels from a few watts up to 20 W in a universal−mains flyback  
application. Due to a novel method this new controller offers a  
primary−side constant current control, saving secondary−side  
components to perform current regulation.  
The NCP1361/66 operates in valley−lockout quasi−resonant peak  
current mode control mode at nominal load to provide high efficiency.  
When the secondary−side power starts diminishing, the switching  
frequency naturally increases until a voltage−controlled oscillator  
(VCO) takes the lead, synchronizing the MOSFET turn−on in a  
drain−source voltage valley. The frequency is thus reduced by  
stepping into successive valleys until the number 4 is reached. Beyond  
this point, the frequency is linearly decreased in valley−switching  
mode until a minimum is hit. Valley lockout during the first four  
drain−source valleys prevents erratic discrete jumps and provides  
good efficiency in lighter load situations.  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= Pb−Free Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 25 of  
this data sheet.  
Features  
10% Current Regulation  
560 V Startup Current Source  
No Frequency Clamp, 80 or 110 kHz Maximum Switching  
Frequency Options  
Quasi−Resonant Operation with Valley Switching Operation  
Fixed Peak Current & Deep Frequency Foldback @ Light Load  
Operation  
External Constant Voltage Feedback Adjustment  
Cycle by Cycle Peak Current Limit  
Built−In Soft−Start  
Over & Under Output Voltage Protection  
Wide Operation V Range (up to 28 V)  
CC  
Low Start−up Current (2.5 mA typ.) with NCP1361  
Clamped Gate−drive Output for MOSFET  
CS & Vs/ZCD pin Short and Open Protection  
Internal Temperature Shutdown  
Less than 30 mW No−Load Performance at High Line with  
NCP1366 Version  
These are Pb−Free Devices  
Typical Applications  
Low power ac−dc Adapters for Chargers  
Ac−dc USB chargers for Cell Phones, Tablets and Cameras  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
August, 2022 − Rev. 4  
NCP1361/D  
NCP1361, NCP1366  
NCP1361  
NCP1366  
V /ZCD  
1
HV  
8
S
V
V /ZCD  
1
2
CC  
6
5
S
FB  
2
3
4
FB  
CS  
GND  
DRV  
CS  
6
5
V
CC  
3
4
DRV  
GND  
(Top View)  
(Top View)  
Figure 1. Pin Connections  
2
0
Ac  
Ac  
Vout  
Prim  
3
5
0
Sec  
Aux  
4
1
NCP1366  
5
4
3
2
1
GND  
VCC  
DRV  
CS  
6
FB  
8
HV Vs/ZCD  
0
Figure 2. NCP1366 Typical Application Circuit  
2
0
Ac  
Ac  
Vout  
Prim  
3
5
0
Sec  
Aux  
NCP1361  
CS  
4
5
6
3
2
1
4
1
DRV  
GND  
FB  
Vs/ZCD VCC  
0
Figure 3. NCP1361 Typical Application Circuit  
www.onsemi.com  
2
NCP1361, NCP1366  
IHV  
NCP1366 Only  
HV  
UVLO  
Vdd  
Vcc  
POReset  
VCC and Logic  
Management of  
double hiccup  
VCC(Reset)  
VCC(OVP)  
DbleHiccup  
POReset  
EN_UVP  
Vcc(clamp)  
Rlim  
Double_Hiccup_ends  
Reset  
Soft Start  
SS  
Blanking  
Latch  
QR multi−mode  
Valley lockout &  
Valley Switching &  
VCO management  
Vs /  
ZCD  
Zero Crossing &  
Signal Sampling  
Sampled Vout  
Vcc  
SS  
Control Law  
FBint  
UVLO  
CC  
&
FB_CC  
Control  
Primary Peak  
Current Control  
Vref_CC  
FB_CV  
Clamp  
S
R
VCC(OVP)  
DRV  
GND  
OVP_Cmp  
Q
4 clk  
Counter  
OVP  
VDD  
SCP  
126% Vref_CV2  
RFB  
Latch  
FB  
S
R
UVP_Cmp  
VCC(Reset)  
Q
POReset  
VUVP  
Peak current  
Freeze  
S
UVP  
Q
VDD  
EN_UVP  
R
DbleHiccup  
ICS  
1/Kcomp  
FB Reset  
ICS_EN  
LEB1  
CS  
Note:  
Max_Ipk reset  
OCP  
OVP: Over Voltage Protection  
UVP: Under Voltage Protection  
OCP: Over Current Protection  
SCP: Short Circuit Protection  
CBC: CaBle Compensation  
tLEB1 > tLEB2  
Count  
OCP  
Timer  
VILIM  
Reset Timer  
POReset  
DbleHiccup  
R
S
Reset  
Counter  
Q
LEB2  
4 clk  
Counter  
SCP  
VCS(Stop)  
CS pin Fault  
CS pin Open (VCS > 2 V)  
& Short (VCS < 50 mV)  
detection is activated at  
each startup  
ICS_EN  
Figure 4. Functional Block Diagram: A Version  
www.onsemi.com  
3
 
NCP1361, NCP1366  
PIN FUNCTION DESCRIPTION  
Pin out  
Pin out  
NCP1366  
NCP1361  
Name  
Function  
1
6
V /ZCD  
s
Connected to the auxiliary winding; this pin senses the voltage output for the primary  
regulation and detects the core reset event for the Quasi−Resonant mode of operation.  
2
3
4
5
6
7
8
5
4
3
2
1
FB  
CS  
This pin connects to an optocoupler collector and adjusts the peak current setpoint.  
This pin monitors the primary peak current.  
DRV  
GND  
Controller switch driver.  
Ground reference.  
V
CC  
This pin is connected to an external auxiliary voltage and supplies the controller.  
Not Connected for creepage distance between high and low Voltage pins  
NC  
HV  
Connected the high−voltage rail, this pin injects a constant current into the V capaci-  
CC  
tor for starting−up the power supply.  
MAXIMUM RATINGS  
Symbol  
Rating  
Value  
−0.3 to 28  
+0.4  
Unit  
V
V
Maximum Power Supply voltage, VCC pin, continuous voltage  
CC(MAX)  
DV /Dt  
Maximum slew rate on V pin during startup phase  
V/ms  
CC  
CC  
V
I
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
−0.3, V  
(Note 1)  
V
mA  
DRV(MAX)  
DRV(MAX)  
DRV  
−300, +500  
V
I
Maximum voltage on low power pins (except pins DRV and VCC)  
Current range for low power pins (except pins DRV and VCC)  
−0.3, 5.5  
−2, +5  
V
mA  
MAX  
MAX  
V
High Voltage pin voltage  
−0.3 to 560  
V
°C/W  
°C  
°C  
°C  
kV  
V
HV  
R
Thermal Resistance Junction−to−Air  
200  
150  
q
J−A  
T
Maximum Junction Temperature  
J(MAX)  
Operating Temperature Range  
−40 to +125  
−60 to +150  
2
Storage Temperature Range  
Human Body Model ESD Capability per JEDEC JESD22−A114F  
Machine Model ESD Capability (All pins except DRV) per JEDEC JESD22−A115C  
Charged−Device Model ESD Capability per JEDEC JESD22−C101E  
200  
500  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V otherwise  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This device contains latch−up protection and exceeds 100 mA per JEDEC Standard JESD78.  
www.onsemi.com  
4
 
NCP1361, NCP1366  
ELECTRICAL CHARACTERISTICS: (V = 12 V, C  
= 1 nF, For typical values T = 25°C, for min/max values T = −40°C to  
CC  
DRV  
J
J
+125°C, Max T = 150°C, unless otherwise noted)  
J
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
HIGH VOLTAGE STARTUP SECTION (NCP1366 only)  
Startup current sourced by V  
pin  
V
= 100 V  
I
HV  
70  
100  
150  
mA  
mA  
CC  
HV  
Leakage current at HV  
V
HV  
= 400 V, all options except  
I
HV_LKG  
NCP1366AABAY and NCP1366BABAY  
All other options  
0.1  
0.1  
1.0  
1.3  
Minimum Start−up HV voltage  
I
= 95% of I @V = 100 V, V  
=
V
HV(min)  
22  
25  
V
HV  
HV  
HV  
CC  
V
CC(on)  
− 0.2 V  
SUPPLY SECTION AND V MANAGEMENT  
CC  
V
level at which driving  
V
increasing  
decreasing  
V
16  
6.0  
18  
6.5  
5.6  
20  
7.0  
V
V
V
CC  
CC  
CC  
CC(on)  
pulses are authorized  
V
CC  
level at which driving  
V
V
CC(off)  
pulses are stopped  
Internal Latch / Logic Reset  
Level  
V
CC(reset)  
V
CC  
clamp level  
V
clamp level (A & C  
Activated after Latch protection @ I  
=
V
4.2  
V
CC  
CC  
CC(Clamp)  
version)  
100 mA  
Minimal current into V pin  
CC  
that keeps the controller  
Latched (NCP1366, A & C fault  
mode version)  
I
20  
mA  
CC(Clamp)  
Minimal current into V pin  
CC  
that keeps the controller  
Latched (NCP1361, A & C fault  
mode version)  
I
7
6
mA  
kW  
CC(Clamp)  
Current−limit resistor in series  
with the latch SCR  
R
lim  
Over Voltage Protection  
Over Voltage threshold  
V
24  
26  
28  
V
CC(OVP)  
Start−up supply current,  
V
CC  
< V  
& V increasing from  
I
2.5  
5.0  
mA  
CC(on)  
CC  
CC1  
controller disabled or latched  
(Only valid with NCP1361 )  
0 V  
Internal IC consumption,  
steady state  
F
= 65 kHz, C  
= 1 nF  
I
I
I
1.7  
0.8  
2.5  
1.2  
mA  
mA  
mA  
sw  
DRV  
CC2  
CC3  
CC4  
Internal IC consumption,  
frequency foldback mode  
VCO mode, Fsw = 1 kHz, C  
= 1 nF  
DRV  
Internal IC consumption when  
STBY mode is activated  
VCO mode, Fsw = f  
,
VCO(min)  
= 1 nF  
V
Comp  
= GND, C  
DRV  
f
f
= 200 Hz  
= 600 Hz  
= 1.2 kHz  
470  
500  
530  
520  
TBD*  
TBD*  
VCO(min)  
VCO(min)  
f
VCO(min)  
CURRENT COMPARATOR  
Current Sense Voltage  
Threshold  
V
= V  
, V increasing  
V
0.76  
250  
0.80  
300  
0.84  
360  
V
Comp  
Comp(max) CS  
ILIM  
Cycle by Cycle Leading Edge  
Blanking Duration  
options NCP1366AABAY,  
t
ns  
LEB1  
NCP1366BABAY, NCP1361AABAY,  
NCP1361BABAY and NCP1361EABAY  
All other options  
240  
300  
360  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. The timer can be reset if there are 4 DRV cycles without overload or short circuit conditions  
4. Guaranteed by Design.  
* Characterization upon request  
www.onsemi.com  
5
NCP1361, NCP1366  
ELECTRICAL CHARACTERISTICS: (V = 12 V, C  
= 1 nF, For typical values T = 25°C, for min/max values T = −40°C to  
CC  
DRV  
J
J
+125°C, Max T = 150°C, unless otherwise noted)  
J
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
CURRENT COMPARATOR  
Cycle by Cycle Current Sense  
Propagation Delay  
V
CS  
> (V  
+ 100 mV) to DRV turn−off  
t
ILIM  
50  
70  
100  
90  
ns  
ILIM  
Timer Delay Before Latching in  
Overload Condition  
When CS pin ꢀ  
V
ILIM  
T
OCP  
50  
ms  
(Note 3)  
Threshold for Immediate Fault  
Protection Activation  
V
1.08  
1.2  
1.32  
V
CS(stop)  
Leading Edge Blanking  
t
120  
ns  
LEB2  
Duration for V  
CS(stop)  
Maximum peak current level at  
which VCO takes over or  
frozen peak current  
V
Comp  
< 1.9 V, V increasing  
V
CS(VCO)  
mV  
CS  
option X (~15%V  
)
)
120  
160  
200  
ILIM  
option Y (~20%V  
option Z (~25%V  
ILIM  
)
ILIM  
REGULATION BLOCK  
Internal Voltage reference for  
Constant Current regulation  
T = 25°C  
0.98  
0.97  
1.00  
1.00  
1.02  
1.03  
V
J
V
ref_CC  
−40°C < T < 125°C  
J
Pullup Resistor  
Valley Thresholds  
R
20  
kW  
FB  
V
st  
nd  
Transition from 1 to 2 valley  
V
V
V
V
V
V
V
V
decreasing  
decreasing  
decreasing  
decreasing  
increasing  
increasing  
increasing  
increasing  
V
H2D  
V
H3D  
V
H4D  
2.50  
2.30  
2.10  
1.90  
2.50  
2.70  
2.90  
3.10  
Comp  
Comp  
Comp  
Comp  
nd  
rd  
Transition from 2 to 3 valley  
rd  
th  
Transition from 3 to 4 valley  
th  
Transition from 4 valley to VCO  
V
HVCOD  
V
HVCOI  
th  
Transition from VCO to 4 valley  
Comp  
Comp  
Comp  
Comp  
th  
rd  
Transition from 4 to 3 valley  
V
H4I  
V
H3I  
V
H2I  
rd  
nd  
Transition from 3 to 2 valley  
nd  
st  
Transition from 2 to 1 valley  
Minimal difference between any  
two valleys  
V
Comp  
increasing or V  
decreasing  
DV  
H
176  
2
1
mV  
ms  
Comp  
Internal Dead Time generation  
for VCO mode  
Entering in VCO when V  
decreasing and crosses V  
is  
T
Comp  
DT(start)  
DT(ends)  
HVCOD  
Internal Dead Time generation  
for VCO mode  
Leaving VCO mode when V  
increasing and crosses V  
is  
T
ms  
Comp  
HVCOI  
Internal Dead Time generation  
for VCO mode  
When in VCO mode  
T
DT  
ms  
V
Comp  
V
Comp  
V
Comp  
= 1.8 V  
= 1.3 V  
= 0.8 V  
6
25  
220  
5000  
1667  
833  
V
V
V
< 0.4 V − 200 Hz option (Note 4)  
< 0.4 V − 600 Hz option (Note 4)  
< 0.4 V − 1.2 kHz option (Note 4)  
Comp  
Comp  
Comp  
Minimum Operating Frequency  
in VCO Mode  
V
Comp  
= GND  
f
VCO(MIN)  
150  
450  
0.9  
200  
600  
1.2  
250  
750  
1.5  
Hz  
Hz  
kHz  
Maximum Operating Frequency  
f
MAX  
No  
Clamp  
80  
N/A  
Option  
Option  
75  
103  
85  
117  
kHz  
kHz  
110  
DEMAGNETIZATION INPUT − ZERO VOLTAGE DETECTION CIRCUIT and VOLTAGE SENSE  
V
ZCD  
V
ZCD  
threshold voltage  
Hysteresis  
V
decreasing  
increasing  
V
ZCD(TH)  
25  
15  
45  
30  
65  
45  
mV  
mV  
ZCD  
V
V
ZCD(HYS)  
ZCD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. The timer can be reset if there are 4 DRV cycles without overload or short circuit conditions  
4. Guaranteed by Design.  
* Characterization upon request  
www.onsemi.com  
6
NCP1361, NCP1366  
ELECTRICAL CHARACTERISTICS: (V = 12 V, C  
= 1 nF, For typical values T = 25°C, for min/max values T = −40°C to  
CC  
DRV  
J
J
+125°C, Max T = 150°C, unless otherwise noted)  
J
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
DEMAGNETIZATION INPUT − ZERO VOLTAGE DETECTION CIRCUIT and VOLTAGE SENSE  
Threshold voltage for output  
short circuit or aux. winding  
short circuit detection  
After t  
if V  
Ù Latched  
< V  
BLANK_ZCD  
ZCD ZCD(short)  
V
30  
50  
70  
170  
mV  
ns  
ms  
ZCD(short)  
Propagation Delay from valley  
detection to DRV high  
V
ZCD  
decreasing from 4 V to 0 V  
t
DEM  
Delay after on−time that the  
(Note 4)  
t
0.7  
1.5  
short_ZCD  
V /ZCD is still pulled to ground  
s
Blanking delay after on−time  
t
1.2  
1.8  
ms  
blank_ZCD  
(V /ZCD pin is disconnected  
s
from the internal circuitry)  
Timeout after last  
demagnetization transition  
ms  
Timeout while in Soft−start  
Timeout after soft−start complete  
t
36  
4.5  
44  
5.5  
52  
6.5  
outSS  
t
out  
Input leakage current  
V
CC  
> V = 4 V, DRV is low  
V
I
ZCD  
0.1  
mA  
CC(on) ZCD  
DRIVE OUTPUT − GATE DRIVE  
Drive resistance  
DRV Sink  
W
R
SNK  
R
SRC  
7
12  
DRV Source  
Rise time  
C
= 1 nF, from 10% to 90%  
= 1 nF, from 90% to 10%  
t
45  
30  
80  
60  
ns  
ns  
V
DRV  
r
Fall time  
C
t
f
DRV  
DRV Low voltage  
V
= V  
+ 0.2 V,  
V
6.0  
CC  
CC(off)  
DRV(low)  
C
= 220 pF, R  
= 33 kW  
DRV  
DRV  
DRV High voltage  
V
= V  
−0.2 V C = 220 pF,  
DRV  
V
3
4
13.0  
5
V
CC  
CC(OVP)  
,
DRV(high)  
R
= 33 kW  
DRV  
SOFT START  
Internal Fixed Soft Start  
Duration  
Current Sense peak current rising from  
0.2 V to 0.8 V  
t
SS  
ms  
FAULT PROTECTION  
Thermal Shutdown  
Device switching (F ~ 65 kHz)  
T
150  
40  
°C  
°C  
sw  
SHTDN  
(Note 4)  
Thermal Shutdown Hysteresis  
Device switching (F ~ 65 kHz)  
T
SHTDN(HYS)  
sw  
(Note 4)  
Number of Drive cycle before  
latch confirmation  
V
= V  
> V  
,
Comp  
Comp(max)  
CS(stop)  
V
CS  
T
4
latch_count  
Or Internal sampled V > V  
out  
OVP  
Fault level detection for OVP Ù  
Latched or Double Hiccup  
autorecovery (depends on fault  
version)  
Internal sampled V increasing  
V
OVP  
2.95  
3.4  
3.15  
3.6  
3.35  
3.8  
V
out  
V
OVP  
= V  
Version E  
+26%  
ref_CV2  
Fault level detection for UVP Ù  
autorecovery (depends on fault  
version) (UVP detection is  
Internal sampled V decreasing  
Fault Mode Option A, B & C  
Fault Mode Option Version E  
V
UVP  
V
out  
Latched or Double Hiccup  
1.4  
0.70  
1.5  
0.75  
1.6  
0.80  
disabled during T  
)
EN_UVP  
Blanking time for UVP  
detection  
Starting at the beginning of the Soft  
start  
T
37  
ms  
EN_UVP  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. The timer can be reset if there are 4 DRV cycles without overload or short circuit conditions  
4. Guaranteed by Design.  
* Characterization upon request  
www.onsemi.com  
7
NCP1361, NCP1366  
ELECTRICAL CHARACTERISTICS: (V = 12 V, C  
= 1 nF, For typical values T = 25°C, for min/max values T = −40°C to  
CC  
DRV  
J
J
+125°C, Max T = 150°C, unless otherwise noted)  
J
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
FAULT PROTECTION  
Pull−up Current Source on CS  
pin for Open or Short circuit  
detection  
When V > V  
I
CS  
55  
mA  
CS  
CS_min  
CS pin Open detection  
CS pin Short detection  
CS pin Short detection timer  
CS pin open  
(Note 4)  
V
T
0.8  
50  
3
70  
V
CS(open)  
V
mV  
ms  
CS_min  
CS_short  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. The timer can be reset if there are 4 DRV cycles without overload or short circuit conditions  
4. Guaranteed by Design.  
* Characterization upon request  
www.onsemi.com  
8
 
NCP1361, NCP1366  
FAULT MODE STATES TABLE (WHATEVER THE VERSION)  
Timer  
Protection  
Event  
Next Device Status  
Release to Normal Operation Mode  
Overcurrent  
OCP timer  
Immediate  
Double Hiccup  
Resume to normal operation: if 4 pulses from FB  
Reset & then Reset timer  
V
CS  
> V  
ILIM  
Resume operation after Double Hiccup  
Winding short  
> V  
4 consecutive pulses with  
V
is decreasing to V  
and waiting for unplug  
CC  
CC(clamp)  
from line V < V  
CC CC(reset)  
V
V
> V  
before  
CS  
CS(stop)  
CS  
CS(stop)  
Latching  
CS pin Fault:  
Short & Open  
Immediate  
10 ms timer  
10 ms timer  
Immediate  
Double Hiccup  
Double Hiccup  
Double Hiccup  
Double Hiccup  
Resume operation after Double Hiccup  
Resume operation after Double Hiccup  
Resume operation after Double Hiccup & T < (T  
Low supply  
V
CC  
< V  
CC(off)  
Internal TSD  
SHTDN  
− T  
)
SHTDN(Hyst)  
ZCD short  
Resume operation after Double Hiccup (V  
< V  
CC  
CC(on)  
V
ZCD  
< V  
after  
< V  
)
ZCD(short)  
CC(reset)  
t
time  
BLANK_ZCD  
FAULT MODE STATES TABLE (ACCORDING TO THE CONTROLLER VERSIONS)  
Event  
A Version  
B Version  
C Version  
E Version  
V
_OVP  
Latched_Timer  
Auto Recovery  
Latched_Timer  
Auto Recovery  
Auto Recovery  
Auto Recovery  
CC  
V
CC  
> V  
= 26 V  
CC (OVP)  
V
Latched_4clk  
Auto Recovery  
Auto Recovery  
Latched_4clk  
OVP  
V
OUT  
> 126% · V  
= 3.15 V/3.6 V [E]  
REF_CV2  
V
Auto Recovery  
Latched_Timer  
UVP  
V
OUT  
< 60% V  
when VOUT is decreasing only  
, = 1.5 V/0.75 V [E]  
REF_CV2  
FAULT TYPE MODE DEFINITION  
Fault Mode  
Timer Protection  
Next Device Status  
Latched  
Release to Normal Operation Mode  
Latched_Timer  
10 ms timer  
V
CC  
is decreasing to V  
and waiting for un-  
CC(clamp)  
CC(reset)  
plug from line V < V  
CC  
Latched_4clk  
Autorecovery  
Immediate  
4 consecutive pulses with  
V
is decreasing to V  
and waiting for un-  
CC  
CC(clamp)  
CC(reset)  
V
CS  
> 126% V before plug from line V < V  
ref_CV2  
CC  
Latching  
Immediate  
Resume operation after  
Double Hiccup  
Resume operation after Double Hiccup (V  
<
CC(on)  
V
CC  
< V  
)
CC(reset)  
www.onsemi.com  
9
NCP1361, NCP1366  
CHARACTERIZATION CURVES  
20  
19.5  
19  
7.0  
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
18.5  
18  
17.5  
17  
16.5  
16  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 5. VCC Startup Threshold versus  
Temperature  
Figure 6. VCC Minimum Operating versus  
Temperature  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
28.0  
27.5  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 7. VCC(reset) versus Temperature  
Figure 8. VCC(OVP) versus Temperature  
160  
150  
140  
130  
120  
110  
100  
90  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
80  
70  
60  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 9. Startup Current Source versus  
Temperature  
Figure 10. HV Pin Leakage versus Temperature  
www.onsemi.com  
10  
NCP1361, NCP1366  
CHARACTERIZATION CURVES  
2.4  
2.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
24  
22  
20  
18  
16  
14  
12  
10  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 11. Minimum Voltage for HV Startup  
Current Source versus Temperature  
Figure 12. ICC2 versus Temperature  
520  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
500  
480  
460  
440  
420  
400  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 13. ICC3 versus Temperature  
Figure 14. Standby Current Consumption  
(200 Hz option) versus Temperature  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.76  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.10  
1.08  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 15. Max Peak Current Limit versus  
Temperature  
Figure 16. Second Peak Current Limit for Fault  
Protection versus Temperature  
www.onsemi.com  
11  
NCP1361, NCP1366  
CHARACTERIZATION CURVES  
1.02  
1.01  
1.00  
0.99  
0.98  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
T , TEMPERATURE (°C)  
J
Figure 17. Internal Voltage Reference for  
Constant Current Regulation versus  
Temperature  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 18. Output Over Voltage Level versus  
Temperature (Fault Mode Options A, B & C)  
Figure 19. Output Under Voltage Level versus  
Temperature (Fault Mode Options A & B)  
360  
340  
320  
300  
280  
260  
240  
180  
160  
140  
120  
100  
80  
60  
−50  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 20. Cycle−by−Cycle Leading Edge  
Blanking Duration versus Temperature  
Figure 21. Leading Edge Blanking Duration for  
VCS(stop) Level versus Temperature  
www.onsemi.com  
12  
NCP1361, NCP1366  
CHARACTERIZATION CURVES  
100  
80  
60  
40  
20  
0
52  
50  
48  
46  
44  
42  
40  
38  
36  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 22. Cycle−by−Cycle Current Sense  
Propagation Delay versus Temperature  
Figure 23. Timeout After Last Demagnetization  
Transition in Soft−Start versus Temperature  
6.5  
6.3  
6.1  
5.9  
5.7  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 24. Timeout After Last Demagnetization  
Transition versus Temperature  
Figure 25. Timer Delay Before Latching in  
Overload Condition versus Temperature  
65  
60  
55  
50  
45  
40  
35  
30  
25  
45  
40  
35  
30  
25  
20  
15  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 26. Zero Voltage Detection Threshold  
Voltage versus Temperature  
Figure 27. Zero Voltage Detection Hysteresis  
versus Temperature  
www.onsemi.com  
13  
NCP1361, NCP1366  
CHARACTERIZATION CURVES  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
6.8  
6.6  
6.4  
6.2  
6.0  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 28. Blanking Delay for ZCD Detection  
versus Temperature  
Figure 29. VDRV(low) versus Temperature  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 30. VDRV(high) versus Temperature  
Figure 31. Gate Drive Rise Time versus  
Temperature  
60  
50  
40  
30  
20  
10  
0
−50  
−25  
0
25  
50  
75  
100  
125  
150  
T , TEMPERATURE (°C)  
J
Figure 32. Gate Drive Fall Time versus  
Temperature  
www.onsemi.com  
14  
NCP1361, NCP1366  
CHARACTERIZATION CURVES  
70  
65  
60  
55  
50  
45  
40  
35  
30  
200  
180  
160  
140  
120  
100  
−50  
−25  
0
25  
50  
75  
100  
125 150  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 33. Minimum or Frozen Peak Current on  
CS Pin versus Temperature (Frozen Peak  
Current optionY)  
Figure 34. Threshold Level for Detecting  
Output or Aux. Winding Short versus  
Temperature  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 35. Startup Blanking Time for UVP  
Detection versus Temperature  
Figure 36. Pull−up Current Source for  
Detecting Open or Short on CS Pin versus  
Temperature  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
−50  
−25  
0
25  
50  
75  
100  
125  
150  
−50  
−25  
0
25  
50  
75  
100  
125 150  
T , TEMPERATURE (°C)  
J
T , TEMPERATURE (°C)  
J
Figure 37. CS Pin Short Detection Threshold  
versus Temperature  
Figure 38. CS Pin Open Detection Threshold  
versus Temperature  
www.onsemi.com  
15  
NCP1361, NCP1366  
APPLICATION INFORMATION  
The NCP1366/61 is a flyback power supply controller  
providing means to implement primary side  
Vout  
a
constant−current regulation. This technique does not need a  
secondary side feedback circuitry, associated bias current  
Optocoupler−based feedback  
Vnom  
and an opto−coupler. NCP1366/61 implements  
a
Primary−side  
CC mode  
current−mode architecture operating in quasi−resonant  
mode. The controller prevents valley−jumping instability  
and steadily locks out in a selected valley as the power  
demand goes down. As long as the controller is able to detect  
a valley, the new cycle or the following drive remains in a  
valley. Due to a dedicated valley detection circuitry  
operating at any line and load conditions, the power supply  
efficiency will always be optimized. In order to prevent any  
high switching frequency two frequency clamp options are  
available.  
Iout  
0
Inom  
Figure 39. Constant−Voltage & Constant−Current  
Mode  
Quasi−Resonance Current−mode operation:  
implementing quasi−resonance operation in peak  
current−mode control optimizes the efficiency by  
switching in the valley of the MOSFET drain−source  
voltage. Due to a proprietary circuitry, the controller  
locks−out in a selected valley and remains locked until  
the input voltage significantly changes. Only the four  
first valleys could be locked out. When the load current  
diminishes, valley switching mode of operation is kept  
but without valley lock−out. Valley−switching  
operation across the entire input/output conditions  
brings efficiency improvement and lets the designer  
build higher−density converters.  
Soft−Start: 4 ms internal fixed soft start guarantees a  
peak current starting from zero to its nominal value  
with smooth transition in order to prevent any  
overstress on the power components at each startup.  
Cycle−by−Cycle peak current limit: If the max peak  
current reaches the V  
level, the over current  
ILIM  
protection timer is enabled and starts counting. If the  
overload lasts T delay, then the fault is latched and  
OCP  
the controller stops immediately driving the power  
MOSFET. The controller enters in a double hiccup  
mode before autorecovering with a new startup cycle.  
V Over Voltage Protection: If the V voltage  
CC  
CC  
Frequency Clamp: As the frequency is not fixed and  
reaches the V  
threshold the controller enters in  
CC(OVP)  
dependent on the line, load and transformer  
latch mode. Thus it stops driving pulse on DRV pin:  
specifications, it is important to prevent switching  
frequency runaway for applications requiring maximum  
switching frequencies up to 90 kHz or 130 kHz. Two  
frequency clamp options at 80 kHz or 110 kHz are  
available for this purpose. In case frequency clamp is  
not needed, a specific version of the 1361/66 exists in  
which the clamp is deactivated.  
A & C version − (Latched V  
): V  
CC  
CC(OVP)  
capacitor is internally discharged to the V  
CC(Clamp)  
level with a very low power consumption: the  
controller is completely disabled. Resuming  
operation is possible by unplugging the line in order  
to releasing the internal V thyristor with a V  
CC  
CC  
current lower than the I  
.
CC(Clamp)  
B version − (Autorecovery): it enters in double  
hiccup mode before resuming operation.  
Primary Side Constant Current Regulation: Battery  
charging applications request constant current  
regulation. NCP1361/66 controls and regulates the  
output current at a constant level regardless of the input  
and output voltage conditions. This function offers tight  
over power protection by estimating and limiting the  
maximum output current from the primary side, without  
any particular sensor.  
Optocoupler−based feedback: the voltage feedback  
loop is classically implemented with an optocoupler  
and a NCP431 voltage reference in the secondary side.  
By pulling the feedback pin low, the controller adjusts  
Winding Short−Circuit Protection: An additional  
comparator senses the CS signal and stops the  
controller if V reaches V  
+50% (after a reduced  
CS  
ILIM  
LEB: t  
). Short circuit protection is enabled only if  
LEB2  
4 consecutive pulses reach SCP level. This small  
counter prevents any false triggering of short circuit  
protection during surge test for instance. This fault is  
latched and operations will be resumed like in a case of  
V
CC  
Over Voltage Protection.  
the peak current setpoint and regulates V  
.
out  
www.onsemi.com  
16  
NCP1361, NCP1366  
power mosfet until the junction temperature decreases  
by T , then the operation is resumed after a  
double hiccup mode.  
V Over Voltage Protection: if the internally−built  
out  
SHTDN(HYS)  
output voltage becomes higher than V  
level  
OVP  
(V  
ref_CV1  
+ 26%) a fault is detected.  
A & C version: This fault is latched and operations  
Startup Operation  
The high−voltage startup current source is connected to  
the bulk capacitor via the HV pin, it charges the V  
are resumed like in the V Over Voltage Protection  
CC  
case.  
CC  
B version: the part enters in double hiccup mode  
before resuming operations.  
capacitor. During startup phase, it delivers 100 mA to fuel the  
capacitor. When V pin reaches V level, the  
V
CC  
CC  
CC(on)  
V Under Voltage Protection: After each circuit  
out  
NCP1361/66 is enabled. Before sending the first drive pulse  
to the power MOSFET, the CS pin has been tested for an  
open or shorted situation. If CS pin is properly wired, then  
the controller sends the first drive pulse to the power  
MOSFET. After sending these first pulses, the controller  
checks the correct Vs/ZCD pin wiring. Considering the  
Vs/ZCD pin properly wired, the controller engages a  
softstart sequence. The softstart sequence controls the max  
peak current from the minimal frozen primary peak current  
power on sequence, V UVP detection is enabled only  
out  
after the startup timer T . This timer ensures that  
EN_UVP  
the power supply is able to fuel the output capacitor  
before checking the output voltage in on target. After  
this startup blanking time, UVP detection is enabled  
and monitors the Output voltage level. When the power  
supply is running in constant−current mode and when  
the output voltage falls below V  
level, the controller  
UVP  
stops sending drive pulses and enters a double hiccup  
mode before resuming operations (A & B version), or  
latches off (C version).  
(V  
= 120 mV: 15% of V  
) to the nominal pulse  
CS(VCO)  
ILIM  
width by smoothly increasing the level.  
Figure 40 illustrates a standard connection of the HV pin  
to the bulk capacitor. If the controller is in a latched fault  
V /ZCD Pin Short Protection: at the beginning of  
s
mode (ex V  
has been detected), the power supply will  
each off−time period, the V /ZCD pin is tested to check  
CC_OVP  
s
resume the operation after unplugging the converter from  
the ac line outlet. Due the extremely low controller  
consumption in latched mode, the release of the latch could  
be very long. The unplug duration for releasing the latch will  
be dependent on the bulk capacitor size.  
whether it is shorted or left open. In case a fault is  
detected, the controller enters in a double hiccup mode  
before resuming operations.  
Temperature Shutdown: if the junction temperature  
reaches the T  
level, the controller stop driving the  
SHTDN  
Vbulk  
RHV  
L
Vs/ZCD  
FB  
1
2
2
4
HV  
8
N
CS  
Vcc  
6
5
Vaux  
CVcc  
DRV  
GND  
Figure 40. HV Startup Connection to the Bulk Capacitor (NCP1366)  
Protecting the Controller Against Negative Spikes  
As with any controller built upon a CMOS technology, it  
is the designer’s duty to avoid the presence of negative  
spikes on sensitive pins. Negative injection has the bad habit  
to forward−bias the controller substrate and can induce  
erratic behaviors. Sometimes, the injection can be so strong  
that internal parasitic SCRs are triggered and latch the  
controller. The HV pin can be the problem in certain  
circumstances. During the turn−off sequence, e.g. when the  
user unplugs the power supply, the controller is still fed by  
The following calculation illustrates the time needed for  
releasing the latch state:  
C
bulkVin_ac  
IHV  
2
(eq. 1)  
tunplug  
For the following typical application with a 10 mF bulk  
capacitor and a wide mains input range, in the worst case the  
power supply needs to be unplug at least for 38 seconds @  
265 V ac and 12 seconds @ 85 Vac. It is important to note  
that the previous recommendation is no longer valid with the  
B version, as all the faults are set to autorecovery mode only.  
its V capacitor and keeps activating the MOSFET ON and  
CC  
www.onsemi.com  
17  
 
NCP1361, NCP1366  
OFF with a peak current limited by R  
the quality factor Q of the resonating network formed by L  
. Unfortunately, if  
sense  
Vin,ac_min 2 VHV(min)_max  
(eq. 2)  
RHV  
p
IHV_max  
and C  
is high (e.g. the MOSFET R  
+ R  
are  
bulk  
DS(on)  
sense  
small), conditions are met to make the circuit resonate and  
a negative ringing can potentially appear at the HV pin.  
Simple and inexpensive cures exist to prevent the internal  
parasitic SCR activation. One of them consist of inserting a  
resistor in series with the HV pin to keep the negative current  
at the lowest when the bulk swings negative (Figure 40).  
Another option (Figure 41) consists of connecting the  
HV pin directly to the line or neutral input via a high−voltage  
diode. This configuration offers the benefits to release a  
latch state immediately after unplugging the power supply  
from the mains outlet. There is no delay for resetting the  
controller as there no capacitor keeps the HV bias.  
Where:  
V  
is minimal input voltage, for example 85 V ac  
in,ac_min  
for universal input mains.  
V  
is the worst case of the minimal input  
HV(min)_max  
voltage needed for the HV startup current source  
(25 V−max).  
I  
is the maximum current delivered by the HV  
HV_max  
startup current source (150 mA−max)  
With this typical example  
85 2 25  
RHV  
633 kW,  
150 m  
R
resistor value must be sized as follow in order to  
HV  
guarantee a correct behavior of the HV startup in the worst  
case conditions:  
then any value below this one will be ok.  
Vbulk  
L
Vs/ZCD  
FB  
1
2
2
4
HV  
8
N
CS  
VCC  
GND  
6
5
Vaux  
CVcc  
DRV  
Figure 41. Recommended HV Startup Connection for Fast Release after a Latched Fault (NCP1366)  
Primary Side Regulation: Constant Current Operation  
Figure 42 portrays idealized primary and secondary  
transformer currents of a flyback converter operating in  
Discontinuous Conduction Mode (DCM).  
Ip(t)  
Ip, pk  
time  
Ip, pk  
Nps  
Is(t), IOUT  
Is, pk  
=
I
OUT = <Is(t)>  
time  
ton  
tdemag  
tsw  
Figure 42. Primary and Secondary Transformer Current Waveforms  
www.onsemi.com  
18  
 
NCP1361, NCP1366  
tsw  
When the primary power MOSFET is turned on, the  
(eq. 6)  
VFB_CC Vref_CC  
primary current is illustrated by the green curve of  
Figure 42. When the power MOSFET is turned off the  
primary side current drops to zero and the current into the  
secondary winding immediately rises to its peak value equal  
to the primary peak current divided by the primary to  
secondary turns ratio. This is an ideal situation in which the  
leakage inductance action is neglected.  
The output current delivered to the load is equal to the  
average value of the secondary winding current, thus we can  
write:  
tdemag  
As the controller monitors the primary peak current via the  
sense resistor and due to the internal current setpoint divider  
) between the CS pin and the internal feedback  
information, the output current could be written as follow:  
(K  
comp  
Vref_CC  
8NpsRsense  
(eq. 7)  
Iout  
The output current value is set by choosing the sense  
resistor value:  
Ip,pk tdemag  
(eq. 3)  
Vref_CC  
( )  
Iout ꢅ ꢃ isec t ꢁ ꢅ  
(eq. 8)  
tsw  
2Nps  
Rsense  
8NpsIout  
Where:  
t is the switching period  
When the power MOSFET is released at the end of the on  
time, because of the transformer leakage inductance and the  
drain lumped capacitance some voltage ringing appears on  
the drain node. These voltage ringings are also visible on the  
auxiliary winding and could cheat the controller detection  
circuits. To avoid false detection operations, two protecting  
sw  
t  
is the demagnetizing time of the transformer  
demag  
N is the secondary to primary turns ratio, where N  
ps  
p
and N are respectively the transformer primary and  
s
secondary turns:  
circuits have been implemented on the V /ZCD pin (see  
Figure 43):  
s
Ns  
(eq. 4)  
Nps  
Np  
1. An internal switch grounds the V /ZCD pin during  
s
t +t  
negative voltage.  
in order to protect the pin from  
I is the magnetizing peak current sensed across the  
on short_ZCD  
p,pk  
sense resistor on CS pin:  
2. In order to prevent any misdetection from the zero  
crossing block an internal switch disconnects  
VCS  
(eq. 5)  
Ip,pk  
Rsense  
V /ZCD pin until t  
time (1.5 ms typ.)  
s
blank_ZCD  
Internal constant current regulation block is building the  
constant current feedback information as follow:  
ends.  
www.onsemi.com  
19  
NCP1361, NCP1366  
Figure 43. Vs/ZCD Pin Waveforms  
Constant−Current and Constant−Voltage Overall  
Regulation:  
demagnetization end is detected by monitoring the  
transformer auxiliary winding voltage. Turning on the  
power switch once the transformer is demagnetized (or  
reset) reduces turn−on switching losses. Once the  
transformer is demagnetized, the drain voltage starts ringing  
at a frequency determined by the transformer magnetizing  
inductance and the drain lumped capacitance, eventually  
settling at the input voltage value. A QR controller takes  
advantage of the drain voltage ringing and turns on the  
power switch at the drain voltage minimum or “valley” to  
reduce turn−on switching losses and electromagnetic  
interference (EMI).  
As sketched by Figure 44, a valley is detected once the  
ZCD pin voltage falls below the QR flyback  
demagnetization threshold, VZCD(TH), typically 45 mV. The  
controller will switch once the valley is detected or  
increment the valley counter depending on FB voltage.  
As already presented in the two previous paragraphs, the  
controller integrates two different feedback loops: the first  
one deals with the constant−current regulation scheme while  
the second one builds the constant−voltage regulation with  
an opto−based voltage loop. One of the two feedback paths  
sets the primary peak current into the transformer. During  
startup phase, however, the peak current is controlled by the  
soft−start.  
Zero Current Detection  
The NCP1361/66 integrates a quasi−resonant (QR)  
flyback controller. The power switch turn−off of a QR  
converter is determined by the peak current whose value  
depends on the feedback loop. The switch restart event is  
determined by the transformer demagnetization end. The  
ZCD  
QR multi−mode  
Valley lockout &  
Valley Switching &  
VCO management  
Rs1  
Rs2  
VZCD(TH)  
S
R
DRV  
(Internal)  
Q
Blanking  
Tblank_ZCD  
Timeout  
(toutSS or tout)  
Figure 44. Valley Lockout Detection Circuitry internal Schematic  
www.onsemi.com  
20  
 
NCP1361, NCP1366  
Timeout  
Valley #1: the timeout delay must run twice so that the  
The ZCD block actually detects falling edges of the  
circuit generates a DRV pulse 10 ms (2*t typ.) after  
out  
auxiliary winding voltage applied to the ZCD pin. At  
start−up or during other transient phases, the ZCD  
comparator may be unable to detect such an event. Also, in  
the case of extremely damped oscillations, the system may  
not succeed in detecting all the valleys required by valley  
lockout operation (VLO, see next section). In this condition,  
the NCP1361/66 ensures continued operation by  
incorporating a maximum timeout period that resets itself  
when a demagnetization phase is properly detected. In case  
the ringing signal is too weak or heavily damped, the timeout  
signal supersedes the ZCD signal for the valley counter.  
Figure 44 shows the timeout period generator circuit  
valley #1 detection.  
Valley LockOut (VLO) and Frequency Foldback (FF)  
The operating frequency of a traditional Quasi−Resonant  
(QR) flyback controller is inversely proportional to the  
system load. In other words, a load reduction increases the  
operating frequency. A maximum frequency clamp can be  
useful to limit the operating frequency range. However,  
when associated with  
a
valley−switching circuit,  
instabilities can arise because of the discrete frequency  
jumps. The controller tends to hesitate between two valleys  
and audible noise can be generated  
To avoid this issue, the NCP1361/66 incorporates a  
proprietary valley lockout circuitry which prevents  
so−called valley jumping. Once a valley is selected, the  
controller stays locked in this valley until the input level or  
output power changes significantly. This technique extends  
QR operation over a wider output power range while  
maintaining good efficiency and naturally limiting the  
maximum operating frequency.  
The operating valley (from 1 to 4 valley) is determined  
by the internal feedback level (FB node on Figure 4). As FB  
voltage level decreases or increases, the valley comparators  
toggle one after another to select the proper valley.  
schematic. The timeout duration, t , is set to 5.5 ms (typ.).  
out  
During startup, the output voltage is still low, leading to  
long demagnetization phase, difficult to detect since the  
auxiliary winding voltage is small as well. In this condition,  
the t  
timeout is generally shorter than the inductor  
out  
demagnetization period and if used to restart a switching  
cycle, it can cause continuous current mode (CCM)  
operation for a few cycles until the voltage on the ZCD pin  
is high enough for proper valleys detection. A longer  
st  
th  
timeout period, t  
, (typically 44 ms) is therefore set  
outSS  
during soft−start to prevent CCM operation.  
In VLO operation, the timeout occurrences are counted  
instead of valleys when the drain−source voltage  
oscillations are too damped to be detected. For instance,  
assume the circuit must turn on at the third valley and the  
ZCD ringing only enables the detection of:  
The decimal counter increases each time a valley is  
detected. The activation of an “n” valley comparator blanks  
the “n−1” or “n+1” valley comparator output depending if  
V
FB  
decreases or increases, respectively. Figure 45 shows a  
typical frequency characteristic obtained at low line in a  
10 W charger.  
Valleys #1 to #2: the circuit generates a DRV pulse t  
out  
(steady−state timeout delay) after valley #2 detection.  
Figure 45. Typical Switching Frequency versus Output Power Relationship in a 10 W Adapter  
www.onsemi.com  
21  
 
NCP1361, NCP1366  
When an “n” valley is asserted by the valley selection  
peak current to deliver the necessary output power at the  
valley operating point. Each valley selection comparator  
features a 600 mV hysteresis that helps stabilize operation  
despite the FB voltage swing produced by the regulation  
loop.  
circuitry, the controller locks in this valley until the FB  
voltage decreases to the lower threshold (“n+1” valley  
activates) or increases to the “n valley threshold” + 600 mV  
(“n−1” valley activates). The regulation loop adjusts the  
Table 1. VALLEY FB THRESHOLD ON CONSTANT VOLTAGE REGULATION  
FB Falling  
FB Rising  
st  
nd  
th  
1
2
3
4
to 2 valley  
2.5 V  
2.3 V  
2.1 V  
1.9 V  
FF mode to 4  
2.5 V  
2.7 V  
2.9 V  
3.1 V  
nd  
rd  
th  
rd  
th  
rd  
to 3 valley  
4
3
2
to 3 valley  
th  
rd  
nd  
nd  
to 4 valley  
to 2 valley  
st  
to FF mode  
to 1 valley  
Frequency Foldback (FF)  
efficiency benefit inherent to the QR operation, the  
controller turns on again with the next valley after the dead  
time has ended. As a result, the controller will still run in  
valley switching mode even when the FF is enabled. This  
dead−time increases when the FB voltage decays. There is  
no discontinuity when the system transitions from VLO to  
FF and the frequency smoothly reduces as FB goes below  
1.9 V.  
As the output current decreases (FB voltage decreases),  
the valleys are incremented from 1 to 4. In case the fourth  
valley is reached, the FB voltage further decreases below  
1.9 V and the controller enters the frequency foldback mode  
(FF). The current setpoint being internally forced to remain  
above 0.12 V (setpoint corresponding to V  
= 1.9 V), the  
Comp  
controller regulates the power delivery by modulating the  
switching frequency. When an output current increase  
causes FB to exceed the 2.5 V FF upper threshold (600−mV  
hysteresis), the circuit recovers VLO operation.  
In frequency foldback mode, the system reduces the  
switching frequency by adding some dead−time after the 4  
The dead−time is selected to generate a 2 ms dead−time  
when V  
is decreasing and crossing V  
(1.9 V  
Comp  
HVCOD  
typ.). At this moment, it can linearly go down to the minimal  
frequency limit (f = 200, 600 or 1200 Hz version are  
VCO(min)  
th  
available). The generated dead−time is 1ms when V  
is  
Comp  
valley is detected. However, in order to keep the high  
increasing and crossing V  
(2.5 V typ.).  
HVCOI  
Figure 46. Valley Lockout Threshold  
Current Setpoint  
starting from the frozen peak current (V  
= 120 mV  
CS(VCO)  
As explained in this operating description, the current  
setpoint is affected by several functions. Figure 47  
summarizes these interactions. As shown by this figure, the  
current setpoint is the output of the control law divided by  
typ.) to V  
(0.8 V typ.) within 4 ms (t ).  
ILIM  
ss  
However, this internal FB value is also limited by the  
following functions:  
A minimum setpoint is forced that equals V  
CS(VCO)  
K
comp  
(4 typ.). This current setpoint is clamped by the  
(0.12 V, typ.)  
soft−start slope as long as the peak current requested by the  
FB_CV or FB_CC level are higher. The softstart clamp is  
In addition, a second OCP comparator ensures that  
in any case the current setpoint is limited to V  
.
ILIM  
www.onsemi.com  
22  
NCP1361, NCP1366  
This ensures the MOSFET current setpoint remains  
limited to V  
in a fault condition.  
ILIM  
Peak current  
Freeze  
SoftStart  
FB_CV  
FB_CC  
Control Law  
PWM Comp  
For  
1/Kcomp  
Primary Peak  
Current Control  
FB Reset  
PWM  
Latch  
Reset  
CS  
OCP  
Comp  
LEB1  
Max_Ipk reset  
Count  
RCS  
CCS  
OCP  
OCP  
Rsense  
Timer  
VILIM  
Reset Timer  
POReset  
DbleHiccup  
Reset  
Counter  
Short Circuit  
Comp  
LEB2  
4 clk  
SCP  
Counter  
VCS(Stop)  
Figure 47. Current Setpoint  
A 2nd Over−Current Comparator for Abnormal  
Overcurrent Fault Detection  
Fault mode and Protection  
CS pin: at each startup, a 55 mA (I ) current source  
CS  
A severe fault like a winding short−circuit can cause the  
switch current to increase very rapidly during the on−time.  
pulls up the CS pin to disable the controller if the pin  
is left open or grounded. Then the controller enters  
in a double hiccup mode.  
The current sense signal significantly exceeds V  
. But,  
ILIM  
because the current sense signal is blanked by the LEB  
circuit during the switch turn on, the power switch current  
can abnormally increase, possibly causing system damages.  
The NCP1361/66 protects against this dangerous mode by  
adding an additional comparator for abnormal overcurrent  
fault detection or short−circuit condition. The current sense  
Vs/ZCD pin: after sending the first drive pulse the  
controller checks the correct wiring of Vs/ZCD pin:  
after the ZCD blanking time, if there is an open or  
short conditions, the controller enters in double  
hiccup mode.  
Thermal Shutdown: An internal thermal shutdown circuit  
monitors the junction temperature of the IC. The controller  
is disabled if the junction temperature exceeds the thermal  
signal is blanked with a shorter LEB duration, t  
,
LEB2  
typically 120 ns, before applying it to the short−circuit  
comparator. The voltage threshold of this extra comparator,  
shutdown threshold (T  
), typically 150°C. A continuous  
SHDN  
V
, is typically 1.2 V, set 50% higher than V  
. This  
CS(stop)  
ILIM  
V
hiccup is initiated after a thermal shutdown fault is  
CC  
is to avoid interference with normal operation. Four  
consecutive abnormal overcurrent faults cause the  
controller to enter in auto−recovery mode. The count to 4  
provides noise immunity during surge testing. The counter  
is reset each time a DRV pulse occurs without activating the  
fault overcurrent comparator or after double hiccup  
sequence or if the power supply is unplugged with a new  
startup sequence after the initial power on reset.  
detected. The controller restarts at the next V  
once the  
CC(on)  
IC temperature drops below T  
shutdown hysteresis (T  
thermal shutdown is also cleared if V  
reduced by the thermal  
), typically 40°C. The  
SHDN  
SHDN(HYS)  
drops below  
CC  
V
. A new power up sequences commences at the  
CC(reset)  
next V  
once all the faults are removed.  
CC(on)  
Driver  
The NCP1361/66 maximum supply voltage, V  
, is  
CC(max)  
Standby Power Optimization  
28 V. Typical high−voltage MOSFETs have a maximum  
gate voltage rating of 20 V. The DRV pin incorporates an  
active voltage clamp which limits the gate voltage on the  
Assuming the no−load standby power is a critical  
parameter, the NCP1361/66 is optimized to reach an ultra  
low standby power. When the controller enters standby  
mode, a part of the internal circuitry has been disabled in  
order to minimize its supply current. When the STBY mode  
external mosfet. The DRV voltage clamp, V  
is set to  
DRV(high)  
13 V maximum.  
is enabled, the consumption is only 200 mA (I ) with the  
CC4  
200 Hz minimal frequency option.  
www.onsemi.com  
23  
NCP1361, NCP1366  
TABLE OF AVAILABLE OPTIONS  
Function  
Options  
Fault Mode  
V
Latched / Full Autorecovery /  
latched  
CC_OVP  
V
out_UVP  
Minimum operating frequency in VCO  
200 Hz / 600 Hz / 1.2 kHz / 23 kHz  
No Clamp / 80 kHz / 110 kHz  
Frequency Clamp or Maximum operating  
frequency  
ORDERING TABLE OPTION  
HV  
Frozen Peak Current  
Startup  
V
Fault Mode  
Min Operating F  
(STBY)  
D
Frequency Clamp  
CS(VCO)  
SW  
6
1
A
B
C
E
A
B
C
E
A
B
C
X
Y
Z
Yes No  
V
_OVP  
_OVP Autorecovery  
Full  
Full Latched  
Full  
Autorecovery  
200 Hz 600 Hz 1.2 kHz 23 kHz No No 80 kHz 110 kHz 120 mV 160 mV 200 mV  
Min.  
CC  
V
OUT  
OPN #  
NCP136_ _ _ _ _  
Latched  
V
= 3.6 V  
= 0.75 V  
OVP  
V
UVP  
NCP1366AABAY  
NCP1366BABAY  
NCP1366CABAY  
NCP1366EABAY  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NCP1361AABAY  
NCP1361BABAY  
NCP1361CABAY  
NCP1361EABAY  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
www.onsemi.com  
24  
NCP1361, NCP1366  
ORDERING INFORMATION  
Device  
Marking  
Package  
Shipping  
NCP1366AABAYDR2G  
1366A1  
SOIC−7  
(Pb−Free)  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
NCP1366BABAYDR2G  
NCP1366EABAYDR2G  
NCP1361AABAYSNT1G  
NCP1361BABAYSNT1G  
NCP1361EABAYSNT1G  
1366B1  
1366E1  
ADE  
SOIC−7  
(Pb−Free)  
SOIC−7  
(Pb−Free)  
TSOP−6  
(Pb−Free)  
ADF  
TSOP−6  
(Pb−Free)  
ACU  
TSOP−6  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
25  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSOP6  
CASE 318G02  
ISSUE V  
1
DATE 12 JUN 2012  
SCALE 2:1  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
H
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM  
LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR  
GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D  
AND E1 ARE DETERMINED AT DATUM H.  
6
1
5
4
L2  
GAUGE  
PLANE  
E1  
E
5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.  
2
3
L
MILLIMETERS  
SEATING  
M
C
NOTE 5  
DIM  
A
A1  
b
c
D
E
E1  
e
MIN  
0.90  
0.01  
0.25  
0.10  
2.90  
2.50  
1.30  
0.85  
0.20  
NOM  
1.00  
MAX  
1.10  
0.10  
0.50  
0.26  
3.10  
3.00  
1.70  
1.05  
0.60  
PLANE  
b
DETAIL Z  
e
0.06  
0.38  
0.18  
3.00  
c
2.75  
A
0.05  
1.50  
0.95  
L
0.40  
A1  
L2  
M
0.25 BSC  
DETAIL Z  
0°  
10°  
STYLE 1:  
STYLE 2:  
PIN 1. EMITTER 2  
2. BASE 1  
STYLE 3:  
PIN 1. ENABLE  
2. N/C  
STYLE 4:  
PIN 1. N/C  
2. V in  
STYLE 5:  
PIN 1. EMITTER 2  
2. BASE 2  
STYLE 6:  
PIN 1. DRAIN  
2. DRAIN  
3. GATE  
PIN 1. COLLECTOR  
2. COLLECTOR  
3. BASE  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 2  
3. R BOOST  
4. Vz  
5. V in  
6. V out  
3. NOT USED  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 1  
4. SOURCE  
5. DRAIN  
6. DRAIN  
4. GROUND  
5. ENABLE  
6. LOAD  
4. EMITTER  
5. COLLECTOR  
6. COLLECTOR  
6. COLLECTOR 2  
6. COLLECTOR 2  
STYLE 7:  
STYLE 8:  
PIN 1. Vbus  
2. D(in)  
STYLE 9:  
STYLE 10:  
PIN 1. D(OUT)+  
2. GND  
STYLE 11:  
STYLE 12:  
PIN 1. I/O  
2. GROUND  
3. I/O  
PIN 1. COLLECTOR  
2. COLLECTOR  
3. BASE  
PIN 1. LOW VOLTAGE GATE  
2. DRAIN  
PIN 1. SOURCE 1  
2. DRAIN 2  
3. D(in)+  
4. D(out)+  
5. D(out)  
6. GND  
3. SOURCE  
3. D(OUT)  
4. D(IN)−  
5. VBUS  
6. D(IN)+  
3. DRAIN 2  
4. N/C  
5. COLLECTOR  
6. EMITTER  
4. DRAIN  
4. SOURCE 2  
5. GATE 1  
4. I/O  
5. DRAIN  
5. VCC  
6. I/O  
6. HIGH VOLTAGE GATE  
6. DRAIN 1/GATE 2  
STYLE 13:  
STYLE 14:  
STYLE 15:  
PIN 1. ANODE  
2. SOURCE  
3. GATE  
STYLE 16:  
STYLE 17:  
PIN 1. EMITTER  
2. BASE  
PIN 1. GATE 1  
2. SOURCE 2  
3. GATE 2  
PIN 1. ANODE  
2. SOURCE  
PIN 1. ANODE/CATHODE  
2. BASE  
3. GATE  
3. EMITTER  
3. ANODE/CATHODE  
4. ANODE  
5. CATHODE  
6. COLLECTOR  
4. DRAIN 2  
5. SOURCE 1  
6. DRAIN 1  
4. CATHODE/DRAIN  
5. CATHODE/DRAIN  
6. CATHODE/DRAIN  
4. DRAIN  
4. COLLECTOR  
5. ANODE  
5. N/C  
6. CATHODE  
6. CATHODE  
GENERIC  
MARKING DIAGRAM*  
RECOMMENDED  
SOLDERING FOOTPRINT*  
6X  
0.60  
XXXAYWG  
XXX MG  
G
G
1
1
6X  
0.95  
3.20  
IC  
STANDARD  
XXX = Specific Device Code  
XXX = Specific Device Code  
A
Y
W
G
=Assembly Location  
= Year  
= Work Week  
M
G
= Date Code  
= PbFree Package  
0.95  
= PbFree Package  
PITCH  
DIMENSIONS: MILLIMETERS  
*This information is generic. Please refer to device data  
sheet for actual part marking. PbFree indicator, “G”  
or microdot “G”, may or may not be present. Some  
products may not follow the Generic Marking.  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB14888C  
TSOP6  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC7  
CASE 751U01  
ISSUE E  
DATE 20 OCT 2009  
SCALE 1:1  
A−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B ARE DATUMS AND T  
IS A DATUM SURFACE.  
4. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
5. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
S
M
M
B
B−  
0.25 (0.010)  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
G
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189 0.197  
4.00 0.150 0.157  
1.75 0.053 0.069  
0.51 0.013 0.020  
0.050 BSC  
0.25 0.004 0.010  
0.25 0.007 0.010  
1.27 0.016 0.050  
C
R X 45  
_
1.27 BSC  
J
0.10  
0.19  
0.40  
0
T−  
SEATING  
PLANE  
K
8
0
8
_
_
_
_
M
H
D 7 PL  
0.25  
5.80  
0.50 0.010 0.020  
6.20 0.228 0.244  
M
S
S
0.25 (0.010)  
T
B
A
GENERIC  
MARKING DIAGRAM  
SOLDERING FOOTPRINT*  
8
XXXXX  
ALYWX  
1.52  
0.060  
G
1
XXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
7.0  
0.275  
4.0  
0.155  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON12199D  
7LEAD SOIC  
PAGE 1 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC7  
CASE 751U01  
ISSUE E  
DATE 20 OCT 2009  
STYLE 1:  
STYLE 2:  
STYLE 3:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6.  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
6. EMITTER, #2  
7. NOT USED  
8. EMITTER, #1  
6. SOURCE, #2  
7. NOT USED  
8. SOURCE, #1  
7. NOT USED  
8. EMITTER  
STYLE 4:  
STYLE 5:  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5.  
STYLE 6:  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. NOT USED  
PIN 1. SOURCE  
2. DRAIN  
3. DRAIN  
4. SOURCE  
5. SOURCE  
6.  
6.  
7. NOT USED  
8. SOURCE  
7. NOT USED  
8. SOURCE  
8. COMMON CATHODE  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR (DIE 1)  
2. BASE (DIE 1)  
STYLE 9:  
PIN 1. INPUT  
PIN 1. EMITTER (COMMON)  
2. COLLECTOR (DIE 1)  
3. COLLECTOR (DIE 2)  
4. EMITTER (COMMON)  
5. EMITTER (COMMON)  
6. BASE (DIE 2)  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
3. BASE (DIE 2)  
4. COLLECTOR (DIE 2)  
5. COLLECTOR (DIE 2)  
6. EMITTER (DIE 2)  
7. NOT USED  
7. NOT USED  
7. NOT USED  
8. FIRST STAGE Vd  
8. COLLECTOR (DIE 1)  
8. EMITTER (COMMON)  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE (DIE 1)  
2. GATE (DIE 1)  
3. SOURCE (DIE 2)  
4. GATE (DIE 2)  
5. DRAIN (DIE 2)  
6. DRAIN (DIE 2)  
7. NOT USED  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. NOT USED  
8. GROUND  
8. DRAIN (DIE 1)  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON12199D  
7LEAD SOIC  
PAGE 2 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCP1361EABAYSNT1G

低功耗离线恒定电流 PWM 电流模式控制器
ONSEMI

NCP1361FABAYSNT1G

低功耗离线恒定电流 PWM 电流模式控制器
ONSEMI

NCP1362

Primary Side PWM Controller for Low Power Offline SMPS
ONSEMI

NCP1362AADR2G

Primary Side PWM Controller for Low Power Offline SMPS
ONSEMI

NCP1362ABDR2G

Primary Side PWM Controller for Low Power Offline SMPS
ONSEMI

NCP1365

Low Power Offline Constant Current & Constant Voltage Primary Side PWM Current-Mode Controller
ONSEMI

NCP1365AABCYDR2G

Low Power Offline Constant Current & Constant Voltage Primary Side PWM Current-Mode Controller
ONSEMI

NCP1365ACBAXDR2G

低功耗离线固定电流和恒定电压初级侧 PWM 电流模式控制器,带高电压启动电流源
ONSEMI

NCP1365BABCYDR2G

Low Power Offline Constant Current & Constant Voltage Primary Side PWM Current-Mode Controller
ONSEMI

NCP1366AABAYDR2G

低功耗离线恒定电流 PWM 电流模式控制器,带高电压启动电流源
ONSEMI

NCP1366BABAYDR2G

低功耗离线恒定电流 PWM 电流模式控制器,带高电压启动电流源
ONSEMI

NCP1366BABCYDR2G

低功耗离线恒定电流 PWM 电流模式控制器,带高电压启动电流源
ONSEMI