NCP1370ADR2G [ONSEMI]

LED 驱动器,用于电视背光的可调光准谐振初级侧电流模式控制器;
NCP1370ADR2G
型号: NCP1370ADR2G
厂家: ONSEMI    ONSEMI
描述:

LED 驱动器,用于电视背光的可调光准谐振初级侧电流模式控制器

驱动 控制器 电视 驱动器
文件: 总19页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1370  
Product Preview  
Dimmable Quasi-Resonant  
Primary Side Current-Mode  
Controller for LED TV  
Backlight  
www.onsemi.com  
The NCP1370 is a PWM current mode controller targeting isolated  
flyback and non−isolated constant current topologies. The controller  
operates in a quasi−resonant mode to provide high efficiency. Thanks  
to a novel control method, the device is able to precisely regulate a  
constant LED current from the primary side. This removes the need  
for secondary side feedback circuitry, biasing and an opto−coupler.  
The device is highly integrated with a minimum number of external  
components. A robust suite of safety protection is built in to simplify  
the design. This device supports analog/digital dimming and both  
modes can be combined to enhance dimming precision. The NCP1370  
has a programmable peak current limit to optimize design  
compatibility over a wide range of applications. The controller  
features a standby mode with reduced current consumption.  
QUASI−RESONANT PWM  
CONTROLLER FOR  
LED DRIVERS  
MARKING  
DIAGRAM  
8
SOIC−8  
D SUFFIX  
CASE 751  
NCP1370x  
ALYW  
8
1
G
1
Features  
NCP1370 = Specific Device Code  
Quasi−resonant Peak Current−mode Control Operation  
Primary Side Sensing (no opto−coupler needed)  
x
A
L
= Device Option (A or B)  
= Assembly Location  
= Wafer Lot  
Wide V Range  
CC  
Y
W
G
= Year  
= Work Week  
= Pb−Free Package  
Source 300 mA / Sink 500 mA Totem Pole Driver with 12 V Gate  
Clamp  
Precise LED Constant Current Regulation 1% Typical  
Line Feed−forward for Enhanced Regulation Accuracy  
Low LED Current Ripple  
PIN CONNECTIONS  
1
ILIM  
DIM  
VIN  
500 mV 1.2% Guaranteed Voltage Reference for Current  
ZCD  
CS  
Regulation  
VCC  
DRV  
Programmable Cycle−by−Cycle Peak Current Limit  
GND  
Low V  
Allowing to use a Standby Power Supply to Power the  
CC(on)  
(Top View)  
Device  
Analog or Digital Dimming  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 18 of this data sheet.  
Wide Temperature Range of −40 to + 125°C  
Robust Protection Features  
LED Open Circuit Protection  
V Over Voltage Protection  
CC  
Secondary Diode Short Protection  
Output Short Circuit Protection  
Shorted Current Sense Pin Fault Detection  
Brown−out  
Typical Applications  
V Under Voltage Lockout  
Thermal Shutdown  
Pb−free, Halide−free MSL1 Product  
TV Backlight  
Lighting with Auxiliary Power Supply  
CC  
This document contains information on a product under development. ON Semiconductor  
reserves the right to change or discontinue this product without notice.  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
February, 2016 − Rev. P1  
NCP1370/D  
NCP1370  
.
Aux  
.
.
VDIM  
1
2
3
4
8
7
6
5
VBIAS  
Figure 1. Typical Application Schematic for NCP1370  
Table 1. PRODUCTS TABLE  
Block or Electrical Parameter  
Brown−out blanking time t  
NCP1370B  
100 ms  
NCP1370A  
2 ms  
BO(blank)  
Blanking circuit for leakage inductance reset detection  
OVP  
ON  
ON  
V
CC  
Auto−recovery  
4 cycles  
Latched  
4 cycles  
Switching cycles count before activating the output diode short circuit  
protection: V > V  
CS  
CS(stop)  
Output Diode Short Circuit protection  
Auto−recovery  
1 second  
ON  
Latched  
4 seconds  
OFF  
Adjustable OVP Auto−recovery timer  
CS short circuit protection (impedance measurement before startup)  
High mains valley switching  
rd  
nd  
3
2
(all HL valleys incremented by 1)  
Propagation delay from ZCD to DRV high state t  
ON  
ON  
ZCD(DEM)  
Table 2. PIN FUNCTION DESCRIPTION  
Pin N5 Pin Name  
Function  
Pin Description  
nd  
1
ILIM  
Peak current limit and 2  
This pin sets the cycle−by−cycle peak current limit threshold and the threshold for  
secondary diode short detection  
over current protection  
Zero Crossing Detection  
Current sense  
2
3
4
5
6
7
ZCD  
CS  
Connected to the auxiliary winding, this pin detects the core reset event.  
This pin monitors the primary peak current.  
The controller ground  
GND  
DRV  
VCC  
VIN  
Driver output  
The driver’s output to an external MOSFET  
This pin is connected to an external power supply.  
Supplies the controller  
Brown−Out  
This pin observes the HV rail and protects the circuit in case of low main conditions.  
This pin also sense the line voltage for the valley selection and the line feed−forward  
Input voltage sensing  
Over Voltage Protection  
A Zener diode can also be used to pull−up the pin and stop the controller for  
adjustable OVP protection  
8
DIM  
Analog / PWM dimming  
This pin is used for analog or PWM dimming control. An analog signal than can  
be varied between V  
and V  
can be used to vary the current, or a  
DIM(EN)  
DIM100  
PWM signal with an amplitude greater than V  
.
DIM100  
This pin is also used for the OFF mode  
www.onsemi.com  
2
 
NCP1370  
Internal Circuit Architecture  
Disable  
CS_NOK  
V
DD  
V
REF  
STOP  
Internal  
Thermal  
Shutdown  
OFF  
OVP2  
VCC  
Fault  
UVLO  
VCC Management  
Management  
Standby  
Aux_SCP  
ILIM  
Peak Current Limits  
Threshold  
V
V
ILIMIT  
VCC_OVP  
VCC Over Voltage  
Protection  
Ipkmax  
Generation  
CS(stop)  
CS_STOP  
BO_NOK  
Qdrv  
V
REF  
V
VIN  
VCC  
Clamp  
Circuit  
Zero Crossing Detection  
ZCD  
Valley Selection  
Aux. Winding  
DRV  
S
R
Short Circuit Prot.  
Qdrv  
Aux_SCP  
Q
V
VIN  
V
VLY  
Line  
Feedforward  
V
STOP  
REF  
OFF Mode  
Detection  
Standby  
DIM  
CS  
Leading  
Edge  
Blanking  
Constant−Current  
Control  
CS_reset  
Dimming  
Type  
Detection  
V
DIMA  
Ipkmax  
STOP  
V
Enable  
DIMA  
Disable  
Max. Peak  
Current  
Limit  
V
VIN  
Ipkmax  
V
ILIMIT  
VIN  
Brown−Out  
BO_NOK  
CS Short  
Protection  
CS_NOK  
Over Voltage  
Protection  
Winding and  
Output diode  
Short Circuit  
Protection  
OVP2  
CS_STOP  
GND  
V
CS(stop)  
Figure 2. Internal Circuit Architecture  
www.onsemi.com  
3
NCP1370  
Table 3. MAXIMUM RATINGS TABLE  
Symbol  
Rating  
Value  
Unit  
V
Maximum Power Supply voltage, VCC pin, continuous voltage  
Maximum current for VCC pin  
−0.3, +35  
V
CC(MAX)  
I
Internally limited  
mA  
CC(MAX)  
V
Maximum driver pin voltage, DRV pin, continuous voltage  
Maximum current for DRV pin  
−0.3, V  
(Note 1)  
V
DRV(MAX)  
DRV  
I
−500, +800  
mA  
DRV(MAX)  
V
Maximum voltage on low power pins (except pins DIM, DRV and VCC)  
Current range for low power pins (except pins DRV and VCC)  
−0.3, +5.5  
−2, +5  
V
MAX  
I
mA  
MAX  
V
Maximum voltage for DIM pin  
Thermal Resistance Junction−to−Air  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
−0.3, +7  
289  
V
°C/W  
°C  
DIM(MAX)  
R
θ
J−A  
T
150  
J(MAX)  
−40 to +125  
−60 to +150  
4
°C  
°C  
ESD Capability, HBM model (Note 2)  
ESD Capability, MM model (Note 2)  
kV  
200  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. V  
is the DRV clamp voltage V  
when V is higher than V  
. V  
is V unless otherwise noted.  
DRV  
DRV(high)  
CC  
DRV(high) DRV CC  
2. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per Mil−Std−883, Method 3015.  
3. This device contains latch−up protection and exceeds 100 mA per JEDEC Standard JESD78  
Table 4. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V)  
J
CC  
For min/max values T = −40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
STARTUP AND SUPPLY CIRCUITS  
Supply Voltage  
Startup Threshold  
Minimum Operating Voltage  
V
V
V
V
increasing  
decreasing  
decreasing  
V
11  
9
1.8  
12  
9.5  
13  
10  
CC  
CC  
CC  
CC(on)  
V
CC(off)  
Hysteresis V  
– V  
V
CC(on)  
CC(off)  
CC(HYS)  
CC(reset)  
Internal logic reset equal to V  
V
9
9.5  
10  
CC(off)  
Over Voltage Protection  
VCC OVP threshold  
V
26  
28  
30  
V
CC(OVP)  
V
V
noise filter  
t
5
20  
ms  
CC(off)  
VCC(off)  
noise filter  
t
CC(reset)  
VCC(reset)  
Startup current  
I
t
100  
250  
mA  
ms  
CC(start)  
st  
Starting time from exiting OFF Mode to 1 DRV pulse  
CC(start)  
Supply Current  
Device Disabled/Fault  
Device Enabled/No output load on pin 5  
Device Switching (F = 65 kHz)  
mA  
V
F
> V  
I
I
I
0.8  
1.2  
2.3  
2.7  
1.4  
4.0  
5.0  
CC  
CC(off)  
CC1  
CC2  
CC3  
= 65 kHz  
= 470 pF,  
= 65 kHz  
sw  
C
sw  
DRV  
F
sw  
Supply Current in OFF mode  
I
50  
mA  
CC(off)  
CURRENT SENSE AND ILIM PIN  
Reference current for maximum peak current limit threshold  
I
190  
200  
0.5  
2.6  
210  
mA  
V
LIM(REF)  
Minimum value for internal V  
V
< 0.5 V  
V
ILIMIT  
pinILIM  
ILIMIT(MIN)  
ILIMIT(MAX)  
ILIMIT(offset)  
Maximum value for internal V  
Pin ILIM open  
V
2.34  
−30  
2.86  
30  
V
ILIMIT  
Difference between internal V  
and ILIM pin voltage  
V
V
= 1.5 V  
= 1.5 V  
V
mV  
V
ILIMIT  
pinILIM  
pinILIM  
V
at V  
= 1.5 V  
V
2.037  
280  
2.1  
2.163  
380  
CS(stop)  
pinILIM  
CS(stop)1  
Leading Edge Blanking Duration for V  
125°C)  
(T = −40°C to  
j
t
330  
ns  
ILIM  
LEB  
Minimum on−time (equal to t  
)
t
280  
330  
50  
380  
150  
62.5  
ns  
ns  
ms  
LEB  
on(MIN)  
Propagation delay from current detection to gate off−state  
Maximum on−time  
t
ILIM  
t
37.5  
50  
on(MAX)  
4. Guaranteed by design  
www.onsemi.com  
4
 
NCP1370  
Table 4. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V)  
J
CC  
For min/max values T = −40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
CURRENT SENSE AND ILIM PIN  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Minimum threshold value for immediate fault protection acti-  
vation  
V
< 0.5 V  
V
0.7  
V
V
pinILIM  
CS(stop)MIN  
Minimum threshold value for immediate fault protection acti-  
vation  
Pin ILIM open  
V
3.64  
CS(stop)MAX  
Ratio between internal V  
and internal V  
K
STOP/ILIMIT  
140  
200  
500  
17  
%
ns  
mA  
ms  
CS(stop)  
ILIMIT  
Leading Edge Blanking Duration for V  
t
CS(stop)  
BCS  
Current source for CS to GND short detection  
Timer for measuring CS to GND short  
GATE DRIVE  
I
t
400  
12  
600  
22  
CS(short)  
CS(short)  
Drive Resistance  
DRV Sink  
DRV Source  
W
R
SNK  
R
SRC  
13  
30  
Drive current capability  
DRV Sink (Note 4)  
DRV Source (Note 4)  
mA  
I
I
500  
300  
SNK  
SRC  
Rise Time (10 % to 90 %)  
Fall Time (90 % to 10 %)  
C
C
= 470 pF  
= 470 pF  
t
40  
30  
ns  
ns  
DRV  
DRV  
r
t
f
DRV Low Voltage  
V
CC  
= V +0.2 V  
CC(off)  
V
8
V
DRV(low)  
C
= 470 pF,  
DRV  
R
=33 kW  
DRV  
DRV High Voltage  
V
CC  
= 30 V  
V
10  
12  
14  
V
DRV(high)  
C
= 470 pF,  
DRV  
R
=33 kW  
DRV  
ZERO VOLTAGE DETECTION CIRCUIT  
ZCD threshold voltage  
V
increasing  
decreasing  
increasing  
V
30  
20  
8
50  
40  
70  
60  
mV  
mV  
mV  
V
ZCD  
ZCD(THI)  
ZCD threshold voltage (Note 4)  
ZCD hysteresis (Note 4)  
V
ZCD  
V
V
ZCD(THD)  
ZCD(HYS)  
ZCD(short)  
V
ZCD  
Threshold voltage for output short circuit or aux. winding  
short circuit detection  
V
0.8  
1
1.2  
Short circuit detection Timer  
Auto−recovery timer duration  
V
ZCD  
< V  
t
OVLD  
70  
3
90  
4
110  
5
ms  
s
ZCD(short)  
t
recovery  
Input clamp voltage  
High state  
Low state  
V
I
= 3.0 mA  
V
V
−0.9  
8
−0.6  
−0.3  
pin1  
ZCD(CH)  
I
V
V
= −2.0 mA  
decreasing  
decreasing  
pin1  
ZCD(CL)  
Propagation Delay from valley detection to DRV high  
Delay from valley lockout output to DRV latch set  
Blanking delay after on−time  
t
125  
1.2  
0.6  
5
480  
375  
2
ns  
ns  
ms  
ms  
ms  
ZCD  
ZCD  
ZCD(DEM)  
t
250  
1.6  
0.8  
6.5  
LEB4  
V
> 100 mV  
< 75 mV  
t
t
REF  
ZCD(BLANK1)  
ZCD(BLANK2)  
Blanking delay after on−time at light load  
Timeout after last demag transition  
V
1
REF  
t
8
TIMO  
LINE FEED−FORWARD  
V
to I  
conversion ratio  
K
LFF  
15  
17  
19  
mA/V  
mA  
VIN  
CS(offset)  
Offset current maximum value  
V
pinVIN  
= 4.5 V  
I
67.5  
76.5  
85.5  
offset(MAX)  
CONSTANT CURRENT CONTROL  
Reference Voltage (after division by 2) (T = 25°C)  
V
495  
492  
488  
500  
500  
500  
505  
508  
512  
mV  
mV  
mV  
j
REF  
Reference Voltage (after division by 2) (T = 0°C to 85°C)  
V
REF  
j
Reference Voltage (after division by 2) (T =−40°C to 125°C)  
V
REF  
j
4. Guaranteed by design  
www.onsemi.com  
5
NCP1370  
Table 4. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V)  
J
CC  
For min/max values T = −40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
CONSTANT CURRENT CONTROL  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Current sense lower threshold for detection of the leakage  
inductance reset time  
V
25  
55  
85  
mV  
CS(low)  
Blanking time for leakage inductance reset detection  
t
130  
75  
ns  
CS(low)  
V
REF  
value below which the ZCD blanking time is divided by  
V
decreases  
V increases  
REF  
V
mV  
REF  
REF(off)  
REF(on)  
2 (light load)  
V
REF  
value above which ZCD blanking time is t  
V
100  
mV  
ZCD(blank1)  
VALLEY SELECTION  
Threshold for line range detection V increasing  
V
increases  
decreases  
V
HL  
2.28  
2.18  
15  
2.4  
2.3  
25  
2.52  
2.42  
35  
V
V
in  
VIN  
st  
nd  
st  
rd  
(1 to 2 valley or 1 to 3 transition for V  
> 0.375 V)  
REF  
Threshold for line range detection V decreasing  
V
VIN  
V
LL  
in  
nd  
st  
st  
rd  
(2 to 1 valley or 1 to 3 transition for V  
> 0.375 V)  
REF  
Blanking time for line range detection  
t
ms  
HL(blank)  
Valley thresholds (V  
= 500 mV)  
mV  
REF  
st  
nd  
nd  
rd  
1
to 2 valley transition at LL and 2 to 3 valley HL  
V
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
V
V
V
V
V
V
350  
366  
231  
249  
373  
390  
248  
267  
150  
165  
75  
396  
414  
265  
285  
REF  
VLY1−2/2−3  
VLY2−1/3−2  
VLY2−4/3−5  
VLY4−2/5−3  
VLY4−7/5−8  
VLY7−4/8−5  
rd  
th  
(3 to 4 valley HL for version B) V  
decreases  
REF  
rd  
nd  
th  
st  
rd  
nd  
2
to 1 valley transition at LL and 3 to 2 valley HL  
V
REF  
REF  
(4 to 3 valley HL for version B), V  
incr.  
th  
REF  
rd  
nd  
th  
2
to 4 valley transition at LL and 3 to 5 valley HL  
V
th  
th  
(4 to 6 valley HL for version B), V  
decr.  
rd  
REF  
th  
th  
th  
nd  
th  
4
to 2 valley transition at LL and 5 to 3 valley HL  
V
REF  
REF  
(6 to 4 valley HL for version B), V  
incr.  
th  
REF  
th  
th  
th  
4
to 7 valley transition at LL and 5 to 8 valley HL  
V
th  
th  
(6 to 9 valley HL for version B), V  
decr.  
th  
REF  
th  
th  
th  
7
to 4 valley transition at LL and 8 to 5 valley HL  
V
REF  
REF  
th  
th  
(9 to 6 valley HL for version B), V  
incr.  
REF  
th  
th  
th  
th  
th  
th  
7
to 11 valley transition at LL and 8 to 12 valley HL  
V
V
V
VLY7−11/8−12  
VLY11−7/12−8  
(9 to 13 valley HL for version B), V  
decr.  
REF  
th  
th  
th  
th  
11 to 7 valley transition at LL and 12 to 8 valley HL  
V
100  
30  
REF  
REF  
th  
th  
(13 to 9 valley HL for version B), V  
incr.  
REF  
th  
th  
th  
th  
th  
th  
11 to 13 valley transition at LL and 12 to 15 valley HL  
V
V
V
VLY11−13/12−15  
VLY13−11/15−12  
(13 to 16 valley HL for version B), V  
decr.  
REF  
th  
th  
th  
th  
13 to 11 valley transition at LL and 15 to 12 valley HL  
V
40  
REF  
th  
th  
(16 to 13 valley HL for version B), V  
incr.  
REF  
Valley thresholds in percentage of V  
REF  
nd  
%
st  
nd  
rd  
1
to 2 valley transition at LL and 2 to 3 valley HL  
V
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
decreases  
increases  
V
V
V
V
V
V
70  
73  
46  
50  
74.5  
78  
79  
83  
53  
57  
REF  
VLY1−2/2−3  
VLY2−1/3−2  
VLY2−4/3−5  
VLY4−2/5−3  
VLY4−7/5−8  
VLY7−4/8−5  
rd  
th  
(3 to 4 valley HL for version B) V  
decreases  
REF  
rd  
nd  
th  
st  
rd  
nd  
2
to 1 valley transition at LL and 3 to 2 valley HL  
V
REF  
REF  
(4 to 3 valley HL for version B), V  
incr.  
th  
REF  
rd  
nd  
th  
2
to 4 valley transition at LL and 3 to 5 valley HL  
V
49.5  
53.5  
30  
th  
th  
(4 to 6 valley HL for version B), V  
decr.  
rd  
REF  
th  
th  
th  
nd  
th  
4
to 2 valley transition at LL and 5 to 3 valley HL  
V
REF  
REF  
(6 to 4 valley HL for version B), V  
incr.  
th  
REF  
th  
th  
th  
4
to 7 valley transition at LL and 5 to 8 valley HL  
V
th  
th  
(6 to 9 valley HL for version B), V  
decr.  
th  
REF  
th  
th  
th  
7
to 4 valley transition at LL and 8 to 5 valley HL  
V
33  
REF  
REF  
th  
th  
(9 to 6 valley HL for version B), V  
incr.  
REF  
th  
th  
th  
th  
th  
th  
7
to 11 valley transition at LL and 8 to 12 valley HL  
V
V
15  
VLY7−11/8−12  
VLY11−7/12−8  
(9 to 13 valley HL for version B), V  
decr.  
REF  
th  
th  
th  
th  
11 to 7 valley transition at LL and 12 to 8 valley HL  
V
V
20  
REF  
REF  
th  
th  
(13 to 9 valley HL for version B), V  
incr.  
REF  
th  
th  
th  
th  
th  
th  
11 to 13 valley transition at LL and 12 to 15 valley HL  
V
V
V
6
VLY11−13/12−15  
VLY13−11/15−12  
(13 to 16 valley HL for version B), V  
decr.  
REF  
th  
th  
th  
th  
13 to 11 valley transition at LL and 15 to 12 valley HL  
V
8
REF  
th  
th  
(16 to 13 valley HL for version B), V  
4. Guaranteed by design  
incr.  
REF  
www.onsemi.com  
6
NCP1370  
Table 4. ELECTRICAL CHARACTERISTICS (Unless otherwise noted: For typical values T = 25°C, V = 12 V)  
J
CC  
For min/max values T = −40°C to +125°C, Max T = 150°C, V = 12 V)  
J
J
CC  
Description  
Test Condition  
Symbol  
Min  
Typ  
Max  
Unit  
DIMMING SECTION  
DIM pin voltage for zero output current (OFF voltage)  
comparator hysteresis  
V
decreasing  
increasing  
DIM  
V
0.67  
0.7  
50  
3
0.73  
V
mV  
V
DIM  
DIM(EN)  
V
EN(HYS)  
V
V
DIM(EN)  
DIM pin voltage for maximum output current (T = −40 to  
V
2.9  
3.1  
J
DIM100  
125°C)  
DIM pin voltage for maximum output current at T = 25°C  
V
2.94  
3
2.3  
7
3.06  
V
V
J
DIM100  
Dimming range  
V
DIM(range)  
Clamping voltage for DIM pin  
Dimming pin pull−up current source  
THERMAL SHUTDOWN  
Thermal Shutdown (Note 4)  
V
V
DIM(CLP)  
I
5
mA  
DIM(pullup)  
Device switching  
around 65 kHz)  
T
130  
150  
50  
170  
°C  
°C  
SHDN  
(F  
SW  
Thermal Shutdown Hysteresis (Note 4)  
BROWN−OUT AND OVP  
T
SHDN(HYS)  
Brown−Out ON level (IC start pulsing)  
Brown−Out OFF level (IC shuts down)  
BO comparators delay  
V
increasing  
decreasing  
V
V
0.90  
0.85  
1
0.9  
30  
2
1.10  
0.95  
V
V
VIN  
BO(on)  
V
VIN  
BO(off)  
t
ms  
ms  
ms  
nA  
V
BO(delay)  
BO(blank1)  
BO(blank2)  
Brown−Out blanking time for version A  
Brown−Out blanking time for version B  
Brown−out pin bias current  
t
t
1.4  
50  
2.6  
150  
250  
4.3  
100  
I
−250  
3.9  
BO(bias)  
Clamped voltage (VIN pin left open)  
VIN pin Clamp series resistor  
VIN pin open  
V
4.1  
1
VIN(clamp)  
VIN(clamp)  
R
kW  
V
VIN pin detection level for OVP  
V
VIN  
increasing  
V
4.75  
5
5.25  
OVP  
OVP(delay)  
Delay before OVP confirmation  
t
50  
1
ms  
s
Adjustable OVP auto−recovery timer (version B)  
Adjustable OVP auto−recovery timer (version A)  
4. Guaranteed by design  
t
t
OVP(recovery1)  
OVP(recovery2)  
4
s
www.onsemi.com  
7
 
NCP1370  
Application Information  
The NCP1370 is a LED driver for flyback and  
MOSFET is turned off for the rest of the switching  
cycle.  
non−isolated buck−boost / SEPIC converters. It implements  
a current−mode architecture quasi−resonant architecture to  
prevent valley−jumping instability. A proprietary circuitry  
ensures accurate regulation of the output current without the  
need of a secondary side feedback. The circuit features  
powerful protections to ensure a robust LED driver design  
without the need of extra external components or  
overdesign.  
Quasi−Resonance Current−Mode Operation:  
implementing quasi−resonance operation in peak  
current−mode control, the NCP1370 optimizes the  
efficiency by switching in the valley of the MOSFET  
drain−source voltage. Thanks to smart control  
algorithm, the controller locks−out in a selected valley  
and remains locked until the input voltage or the output  
current set point significantly changes.  
nd  
Winding Short−Circuit Protection (2 over current  
protection level): an additional comparator with a short  
LEB filter (t ) senses the CS signal and stops the  
BCS  
controller if V reaches 140% of V  
). For noise  
ILIMIT  
CS  
immunity reasons, this comparator is enabled only  
during the main LEB duration t  
.
LEB  
Output Short−circuit protection: If a very low  
voltage is applied on ZCD pin for 90 ms (nominal), the  
controllers assume that the output or the ZCD pin is  
shorted to ground and enters shutdown. After waiting  
for 4 seconds, the controller restarts switching.  
Linear or PWM dimming: the DIM pin allows  
implementing both analog and PWM dimming.  
OFF Mode: The IC enters in OFF mode after detecting  
a fault and whenever the DIM pin voltage stays low  
during more than 4 seconds. In this mode, the IC is off  
and has a reduced current consumption. This allows  
simplifying the PCB design around the ON/OFF  
opto−coupler.  
Primary Side Constant Current Control: thanks to a  
proprietary circuit, the controller accurately controls the  
output current without requiring a secondary side  
feedback (no optocoupler needed). An output current  
deviation below 2% is typically obtained.  
Floating or Short pin detection: The NCP1370  
protections help passing safety tests. For instance, the  
circuit stops operating when the CS pin is grounded or  
when the GND pin is open.  
V Over Voltage Protection: if the voltage on VCC  
CC  
pin exceeds an internal limit, the controller shuts down  
and waits 4 seconds before restarting pulsing (version  
B) or stays latched (A version).  
Adjustable peak current limit: the cycle−by−cycle  
maximum peak current limit and the second over  
current protection level can be adjusted externally by  
connecting a resistor between ILIM pin and ground.  
Constant Current Control  
Capitalizing on the constant current control technique  
developed in the NCL3008X product, the NCP1370  
accurately regulates the output current of a flyback  
converter from its primary side.  
By connecting the clamping capacitor of the flyback  
converter to the sense resistor as shown in the typical  
application schematic (Figure 1), we have an image of the  
drain current waveform and of the leakage inductance  
current waveform. Thus, by looking at the current sense pin  
waveform, the controller is able to detect the reset of the  
transformer leakage inductance. Indeed, the leakage  
inductance limits the output rectifier peak current as shown  
Brown−Out: the controller includes a brown−out  
circuit which safely stops the controller in case the  
input voltage is too low. The device will automatically  
restart if the line recovers.  
Adjustable Over voltage protection: By connecting a  
zener diode to the VIN pin, an adjustable over voltage  
protection can be implemented to protect against open  
LEDs. Upon detection, the controller waits 4 s  
(version A) or 1 s (version B) before attempting to  
restart switching.  
in Figure 3 where it is shown that: N * I  
< I  
.
sp  
D,pk  
L,pk  
Also, by monitoring the auxiliary winding voltage  
through the ZCD pin, we can detect the end of conduction  
of the secondary rectifier.  
Cycle−by−cycle peak current limit: when the current  
sense voltage exceeds pin ILIM voltage V  
, the  
ILIM  
www.onsemi.com  
8
NCP1370  
IL,pk  
NspID,pk  
Isec(t)  
Ipri(t)  
time  
T2  
tdemag  
t1  
ton  
V (t)  
aux  
time  
Figure 3. Flyback Currents and Auxiliary Winding Voltage in DCM  
VREF  
2NspIout  
The constant current control block picks up the leakage  
inductor current, the end of conduction of the output rectifier  
and controls the drain current to maintain the output current  
constant.  
Rsense  
+
(eq. 2)  
From (Equation 1), the first key point is that the output  
current is independent of the inductor value. Moreover, the  
leakage inductance does not influence the output current  
value as the reset time is taken into account by the controller.  
We have:  
VREF  
2NspRsense  
Iout  
+
(eq. 1)  
Soft−Start  
Where:  
At startup or after recovering from a fault, there is a small  
internal soft−start of 200 ms maximum.  
V  
is the output current internal reference  
REF  
N is the secondary to primary transformer turns ratio:  
In addition, during startup, as the output voltage is zero  
volts, the demagnetization time is long and the constant  
current control block will slowly increase the peak current  
towards its nominal value as the output voltage grows.  
Figure 5 shows a soft−start simulation example for a 9 W  
LED power supply.  
sp  
N
sp  
= N / N  
s p  
R  
is the current sense resistor  
sense  
The output current value is set by choosing the sense  
resistor:  
www.onsemi.com  
9
 
NCP1370  
16.0  
12.0  
8.00  
4.00  
0
V
out  
1
800m  
600m  
400m  
200m  
0
I
2
out  
800m  
600m  
400m  
200m  
0
V
V
4
3
Control  
CS  
604u  
1.47m  
2.34m  
3.21m  
4.07m  
time in seconds  
Figure 4. Startup Simulation showing the Natural Soft−start  
Adjustable Cycle−by−Cycle Current Limit  
VILIMIT + VILIM + ILIM(REF)RILIM  
(eq. 3)  
The pin ILIM allows adjusting the threshold for maximum  
The threshold for immediate short circuit protection  
is given by:  
nd  
peak current limit V  
and also the 2 over current  
ILIMIT  
V
CS(stop)  
protection (OCP2) threshold  
V
CS(stop)  
which helps  
VCS(stop) + 1.4 @ VILIMIT  
(eq. 4)  
protecting against short circuit of the secondary winding or  
of the output diode.  
More precisely, the maximum peak current threshold  
Practically, V  
can be adjusted from 0.5 V to 2.6 V,  
ILIMIT  
meaning V  
range is from 0.7 V to 3.64 V.  
CS(stop)  
V
is equal to the ILIM pin voltage and V  
value  
ILIMIT  
CS(stop)  
When the current sense voltage exceeds the internal  
threshold V , the MOSFET is turned off for the rest of  
is derived from V . By connecting a resistor between  
ILIMIT  
ILIMIT  
ILIM and GND pins, the value of internal cycle−by−cycle  
current limit V is:  
the switching cycle. Figure 5 shows the schematic of ILIM  
pin.  
ILIMIT  
www.onsemi.com  
10  
NCP1370  
Vdd  
VILIM(MAX)  
ILIM(REF)  
Clamp  
Clamp  
ILIM  
VILIM  
Buffer  
VCS(stop)  
Gain  
RILIM  
VILIM(MIN)  
VILIM  
Figure 5. Block Diagram of ILIM Pin  
Winding and Output diode Short−Circuit Protection  
(OCP2)  
In parallel with the cycle−by−cycle sensing of the CS pin,  
The cycle−by−cycle peak current limit threshold V  
also set the maximum duty cycle for a given application.  
The maximum duty cycle is given by:  
ILIMIT  
another comparator with a reduced LEB (t ) and a higher  
BCS  
VREF  
VILIMIT Tsw  
tv  
DMAX + 1 *  
*
threshold (V ) is able to sense winding short−circuit  
CS(stop)  
(eq. 5)  
and stop the controller. In version B, the controller stops the  
DRV pulses after counting 4 cycles of V > V . The  
Where:  
CS  
CS(stop)  
controller attempts to re−start after waiting 4 seconds. In  
t is the valley duration  
v
version A, after counting 4 cycles of V > V  
, the  
CS(stop)  
CS  
T is the switching period  
sw  
controller stays latched.  
For switching frequencies below 100 kHz, the term t /T  
can be neglected:  
v
sw  
The controller is unlatched by one of the 3 following events:  
V < V  
CC  
CC(off)  
VREF  
VILIMIT  
DMAX [ 1 *  
(eq. 6)  
Standby by V  
< V  
during 4 seconds  
DIM  
DIM(EN)  
BO_NOK becomes high  
After being unlatched, the controller goes into OFF Mode.  
S
aux  
DRV  
Q
Q
Vdd  
UVLO  
VCC  
Vcc  
management  
CS  
R
LEB1  
+
PWMreset  
Ipkmax  
Vcontrol  
4−s timer  
VCCreset  
+
VILIMIT  
STOP  
LEB2  
+
1 pulse  
or  
4 pulses  
CS_STOP  
S
OFF  
Q
Q
VCS(stop)  
R
4−s timer  
from Fault Management Block  
Figure 6. Winding Short Circuit Protection, Max. Peak Current Limit Circuits  
www.onsemi.com  
11  
NCP1370  
PWM or Linear Dimming Detection  
Practically, when V  
< V  
, the controller  
DIM  
DIM(EN)  
The pin DIM allows dimming the LED light. Analog  
dimming or digital (PWM) dimming can be used.  
decreases the peak current from its current state to nearly  
zero before stopping the DRV pulses.  
If the power supply designer apply an analog signal  
This allows having a very good correlation between the  
dimming duty−cycle and the output current value when  
dimming at low duty−cycle.  
Also, it is important to note that for good correlation  
between the dimming duty−cycle (which represent the  
expected output current value relative to the nominal value)  
and the actual measured output current, the high state  
duration of the dimming signal should not be below 200 ms.  
Figure 8 shows the drain source waveform during  
soft−stop.  
varying from V  
to V  
to the DIM pin, the  
DIM(EN)  
DIM100  
output current will increase or decrease proportionally to the  
voltage applied. For V = V , the power supply  
DIM  
DIM100  
delivers the maximum output current.  
If a voltage lower than V is applied to the DIM pin,  
DIM(EN)  
the DRV pulses are disabled. Thus, for digital dimming, a  
PWM signal with a low state value lower than V and  
DIM(EN)  
a high state value higher than V  
should be applied.  
DIM100  
The DIM pin is pulled up internally by a small current  
source or resistor. Thus, if the pin is left open, the controller  
is able to start.  
OFF Mode with DIM Pin  
The OFF Mode is entered when V  
stays below  
DIM  
Soft Stop during PWM Dimming  
V
for 4 seconds. In this mode, IC consumption is  
DIM(EN)  
The NCP1370 features an internal soft−stop of 200 ms  
maximum in order to compensate the output current  
decrease caused by the soft−start during PWM dimming.  
reduced to I  
only when V  
(below 50 mA). The OFF mode is exited  
CC(off)  
becomes higher than V  
+V  
.
DIM  
DIM(EN)  
EN(HYS)  
V
DIM  
Deep PWM dimming  
Analog dimming  
PWM dimming  
VDIM100  
100% Iout  
3 V  
VDIM(EN)  
0% Iout  
0.7 V  
Figure 7. Pin DIM Chronograms  
VDIM  
Vdrain  
Figure 8. Soft−stop  
www.onsemi.com  
12  
 
NCP1370  
VCC Over Voltage Protection  
In order to protect itself against too high supply voltage,  
the controller features an over voltage protection for the V  
goes through a complete sequence OFF Mode FAULT  
Mode (see Fault Management section for more information)  
In the latched mode, the controller stops pulsing and waits  
that one of the 3 following events occurs to reset the latch:  
CC  
threshold,  
pin. When the V voltage reaches the V  
CC  
CC(OVP)  
the controller stops the DRV pulses and shutdown.  
Depending on the version, the controller goes in  
auto−recovery mode (version B) or in latched mode  
(version A).  
In the auto−recovery mode, the controller waits 4 s and  
tries to re−start. In order to restart pulsing, the controller  
V < V  
CC  
CC(off)  
Standby by V  
< V  
during 4 seconds  
DIM  
DIM(EN)  
BO_NOK becomes high  
When the OVP Latch is reset, the controller goes into OFF  
Mode.  
VCC  
VCC(OVP)  
OVP  
VCC(on)  
VCC(off)  
VDIM  
VDIM(100)  
VDIM(EN)  
RUN  
4s Timer  
RESET  
STATE  
OFF  
RUN  
FAULT  
CS impedance check  
FAULT  
CS impedance check  
OFF  
VDRV  
Figure 9. VCC Over Voltage Protection Chronograms  
Valley Selection  
The input voltage is sensed by the VIN pin. The internal  
logic selects the operating valley according to VIN pin  
voltage and DIM pin voltage.  
Quasi−Square wave resonant systems have a wide  
switching frequency excursion. The switching frequency  
increases when the output load decreases or when the input  
voltage increases. The switching frequency of such systems  
must be limited.  
The NCP1370 changes valley as the input voltage  
increases and as the output current set−point is varied during  
dimming. This limits the switching frequency excursion.  
Once a valley is selected, the controller stays locked in the  
valley until the input voltage or the output current set−point  
varies significantly.  
By default, when the output current is not dimmed, the  
controller operates in the first valley at low line and in the  
second valley at high line for version A. For version B, the  
rd  
controller operates in the 3 valley at high line. Table 5  
summarizes the valley selected by the controller as a  
function of the output current and the input voltage. The  
numbers in blue are the selected valleys for version B.  
www.onsemi.com  
13  
NCP1370  
Table 5. VALLEY SELECTION  
VIN pin voltage for valley change  
I
value at which the  
I
value at which the  
out  
out  
V
VIN  
decreases  
controller changes valley  
controller changes valley  
(I decreasing)  
out  
(I increasing)  
out  
0
−− LL −−  
2.3 V  
−− HL −− 5 V  
100%  
75%  
50%  
30%  
15%  
100%  
78%  
53%  
33%  
20%  
st  
nd  
rd  
1
2
(3 )  
nd  
th  
rd  
th  
2
3
5
8
(4 )  
th  
th  
th  
th  
4
7
(6 )  
th  
th  
(9 )  
th  
th  
11  
12 (13 )  
6%  
0%  
8%  
0%  
th  
th  
th  
13  
15 (16 )  
0
−− LL −−  
2.4 V −− HL −− 5 V  
increases  
V
VIN  
VIN pin voltage for valley change  
Zero Crossing Detection Block  
At startup or in case of extremely damped free  
oscillations, the ZCD comparator may not be able to detect  
the valleys. To avoid such a situation, the NCP1370 features  
a Time−Out circuit that generates pulses if the voltage on  
ZCD pin stays below the 55−mV threshold for 6.5 ms.  
The Time−out also acts as a substitute clock for the valley  
detection and simulates a missing valley in case of too  
damped free oscillations (Figure 11).  
The ZCD pin allows detecting when the drain−source  
voltage of the power MOSFET reaches a valley.  
A valley is detected when the voltage on pin 1 crosses  
down the 55−mV internal threshold.  
In order to decrease the capacitor value needed on ZCD  
pin to turn−on the MOSFET right in the valley or in some  
case remove it, a small delay (250 ns) is added internally  
before turning−on the MOSFET.  
Tblank  
Time−Out  
ZCD  
+
Clock  
VZCD(TH)  
.
Tblank  
+
VZCD(short)  
90−ms  
Timer  
Enable_b  
S
Aux_SCP  
Q
Q
R
4−s Timer  
Figure 10. ZCD Block Schematic  
www.onsemi.com  
14  
 
NCP1370  
VZCD  
VZCD(th)  
3
4
The 3rd valley is  
validated  
high  
low  
14  
12  
2nd , 3rd  
nd valley is detected  
The 3rd valley is not detected by  
The 2  
By the ZCD comparator  
the ZCD comp  
high  
low  
high  
15  
16  
ZCD  
comp  
low  
TimeOut adds a pulse to account for the  
TimeOut  
missing 3rd  
valley  
high  
low  
17  
Clock  
Figure 11. Time−out Chronograms  
Line Feed−Forward  
Output Short Circuit Protection  
Because of the time−out function, if the ZCD pin or the  
auxiliary winding is shorted, the controller will continue  
switching leading to improper regulation of the LED  
current.  
Moreover during an output short circuit, the controller  
will strive to maintain the constant current operation.  
In order to avoid these scenarios, a secondary timer starts  
Because of the propagation delays, the MOSFET is not  
turned−off immediately when the current set−point is  
reached. As a result, the primary peak current is higher than  
expected and the output current increases. To compensate  
the peak current increase brought by the propagation delays,  
a positive voltage proportional to the line voltage is added  
on the current sense signal. The amount of offset voltage can  
counting when the ZCD voltage is below the V  
be adjusted using the R resistor as shown in Figure 12.  
ZCD(short)  
CS  
threshold (Figure 10). If this timer reaches 90 ms, the  
controller detects a fault and enters the auto−recovery fault  
mode: the controller stops pulsing and waits 4−s before  
going through a complete startup sequence.  
VCS(offset) + KLFF VpinVIN RCS  
(eq. 7)  
The offset voltage is applied only during the MOSFET  
on−time.  
This offset voltage is always applied over the load range.  
This protection is disabled when V  
< V  
.
DIM  
DIM(EN)  
www.onsemi.com  
15  
NCP1370  
noise delay  
+
S
R
Q
Q
OVP2  
Bulk rail  
VOVP  
Aux  
.
4−s Timer  
(1-s Timer version B)  
vDD  
VIN  
RCS  
CS  
ICS(offset)  
Rclamp  
Vclamp  
Rsense  
Q_drv  
+
Blanking  
time  
BO_NOK  
1 V if BONOK high  
0.9 V if BONOK low  
Figure 12. Line Feed−Forward, Adjustable OVP and Brown−out Schematic  
Adjustable Over Voltage Protection  
110 W typically, the circuit does not start pulsing and  
shutdown. The circuit attempts to restart after waiting 4  
seconds. In practice, it is recommended to place a  
minimum of 250 W in series between the CS pin and  
the current sense resistor to take into account parasitic  
component effect and electrical parameters tolerance.  
Fault of GND pin connection  
A clamping circuit on VIN pin limits the voltage  
excursion to 4.1 V (Figure 12). This level is high enough to  
allow good linearity of the line feedforward current for  
universal mains applications with an input voltage up to  
265 V rms.  
When the zener diode starts conducting, it injects current  
inside the clamping circuit and the voltage on VIN pin  
If the GND pin is properly connected, the current  
increases. When V  
exceeds V  
during t  
, the  
VIN  
OVP  
OVP(delay)  
drawn from the positive terminal of the V capacitor  
CC  
circuit detects an over voltage condition and stops the DRV  
pulses. The controller waits until the OVP timer  
flows out of the GND pin to return to the negative  
terminal of the V capacitor. If the GND pin is not  
CC  
(t  
) has elapsed (4 s for version A, 1 s for  
OVP(recovery)  
connected, the circuit ESD diodes offer another return  
path. The accidental non−connection of the GND pin is  
monitored by detecting that one of the ESD diode is  
conduction. Practically, the ESD diode of CS pin is  
monitored. If such a fault is detected for 200 ms, the  
circuit stops generating DRV pulses.  
version B) and restarts switching.  
Brown−out  
In order to protect the supply against a very low input  
voltage, the NCP1370 features a brown−out circuit with a  
fixed ON/OFF threshold (Figure 12). The controller is  
allowed to start if a voltage higher than 1 V is applied to the  
VIN pin and shuts−down if the VIN pin voltage decreases  
and stays below 0.9 V when the BO blanking timer has  
elapsed (BO_NOK high). When a brown−out condition is  
detected, the circuit stops pulsing and goes into the OFF  
mode detailed in the “Fault Management Section”.  
Fault Management and Startup Sequence  
Figure 13 and Figure 14 shows the state diagrams of the  
NCP1370.  
OFF Mode  
At startup, as long as V  
is not high enough, the  
CC  
controller is reset. Its current consumption is I  
. When  
CC(start)  
Pin Connection Faults  
V
CC  
> V , the controller goes in OFF mode and waits  
CC(on)  
CS pin Short to ground  
for the enable signal (V  
> V  
). In OFF mode, the  
DIM  
DIM(EN)  
The circuit senses the CS pin impedance every time it  
starts−up. If the measured impedance does not exceed  
IC consumption is very low (50 mA maximum).  
www.onsemi.com  
16  
 
NCP1370  
The OFF mode is exited only if V > V  
and V  
DIM  
An Output / Auxiliary winding Short circuit is detected:  
CC  
CC(on)  
> V  
. The controller then goes in FAULT mode.  
DIM(EN)  
“Aux_SCP high”  
More generally, the OFF mode is entered upon the  
following events:  
Second OCP level triggered  
When the 4−s timer has elapsed, the controller goes in  
OFF Mode.  
V < V  
CC  
CC(off)  
Brown−out edge  
Adjustable OVP Management  
V  
< V  
after 4 seconds  
DIM  
DIM(EN)  
When the adjustable OVP on VIN pin is triggered, the  
controller stops the DRV pulses and starts the OVP2 Timer  
(4 s in version A, 1 s in version B).  
Die over temperature (TSD)  
The 4−s auto−recovery timer has elapsed  
When the OVP2 timer has elapsed, the controller goes in  
FAULT mode and restart switching if no other fault is  
detected.  
FAULT Mode  
In this mode, the controller measures CS pin impedance.  
If CS pin is not shorted the controller is allowed to start the  
DRV pulses. If CS pin is shorted, the controller starts the 4  
seconds timer. No DRV pulse is generated in this mode.  
Latched Protection (VCC OVP, Output Diode Short  
Circuit Protection in Version A)  
nd  
When V > V  
or when the 2 OCP is triggered,  
CC  
CC(OVP)  
AR Mode  
the DRV pulses stop and the controller is latched  
(Figure 14).  
In the auto−recovery mode, the 4 seconds timer is  
counting, DRV is not pulsing. The 4 seconds timer starts  
counting when:  
The Latch resets when one of the 3 following events occurs:  
V < V  
CC  
CC(off)  
V  
< V  
DIM(EN)  
DIM  
V  
< V  
during 4 seconds  
DIM  
DIM(EN)  
A short circuit on CS pin is detected  
V > V  
BO_NOK becomes high  
CC  
CC(OVP)  
OFF  
Timer ends (AR_end)  
or BO_NOK edge  
or TSD_end  
VddINT POR  
V
low  
CC too  
or VCC < VCC(off)  
BO_NOK edge  
or TSD_end  
or VCC < VCC(off)  
BO_NOK edge  
or TSD_end  
or VCC < VCC(off)  
VDIM > VDIM(EN)  
and VCC > VCC(on)  
Timer ends  
OVP2  
OVP2  
Timer  
AR  
mode  
FAULT mode  
CS_short high  
or VCC_OVP high  
or VDIM < VDIM(EN)  
CS_OK  
VDIM > VDIM(EN) and  
all other faults low  
OVP2  
RUN  
VCC_OVP high or VDIM < VDIM(EN)  
or CS_stop or Aux_SCP  
à
With states: RESET  
OFF  
Controller is dead  
Controller is in OFF Mode, ICC = ICC(off)  
No switching, ICC = ICC1  
Controller is switching  
the 4s autorecovery timer is counting, No switching  
The OVP2 Timer (4s or 1s) is counting, No DRV pulses  
(50 μA max.)  
à
à
à
à
à
FAULT Mode  
RUN  
AR Mode  
OVP2 Timer  
Figure 13. Fault State Diagram with Auto−recovery Faults  
www.onsemi.com  
17  
NCP1370  
VCC < VCC(off) or BO_NOK high  
or VDIM < VDIM(EN) during 4 s  
VddINT POR  
VCC too  
low  
Timer ends (AR_end) or BO_NOK edge  
or TSD_end or VCC < VCC(off)  
OFF  
BO_NOK edge  
or TSD_end  
or VCC < VCC(off)  
BO_NOK edge  
or TSD_end  
or VCC < VCC(off)  
VDIM > VDIM(EN)  
and VCC > VCC(on)  
CS_short high  
or VDIM < VDIM(EN)  
Timer ends  
OVP2  
OVP2  
Timer  
AR  
mode  
LATCH  
FAULT mode  
VCC_OVP high  
CS_OK  
VDIM > VDIM(EN) and  
all other faults low  
OVP2  
VDIM < VDIM(EN) or Aux_SCP  
VCC_OVP high or CS_stop  
RUN  
à
à
à
à
à
à
With states: RESET  
OFF  
Controller is dead  
Controller is in OFF Mode, ICC = ICC(off)  
No switching, ICC = ICC1  
Controller is switching  
the 4s autorecovery timer is counting, No switching  
The OVP2 Timer (4s or 1s) is counting, No DRV pulses  
(50 μA max.)  
FAULT Mode  
RUN  
AR Mode  
OVP2 Timer  
Figure 14. Fault State Diagram with Latched Faults  
ORDERING INFORMATION  
Device  
Package Type  
Shipping  
NCP1370BDR2G  
SOIC−8  
(Pb free)  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
18  
NCP1370  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
−Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP1370/D  

相关型号:

NCP1370BDR2G

Dimmable Quasi-Resonant Primary Side Current-Mode Controller
ONSEMI

NCP1377

PWM Current-Mode Controller for Free-Running Quasi-Resonant Operation
ONSEMI

NCP1377/D

PWM Current -Mode Controller
ETC

NCP1377B

PWM Current-Mode Controller for Free-Running Quasi-Resonant Operation
ONSEMI

NCP1377BD1R2G

PWM Current−Mode Controller for Free−Running Quasi−Resonant Operation
ONSEMI

NCP1377BDR2

PWM Current-Mode Controller for Free-Running Quasi-Resonant Operation
ONSEMI

NCP1377BDR2G

PWM Current−Mode Controller for Free−Running Quasi−Resonant Operation
ONSEMI

NCP1377BP

PWM Current-Mode Controller for Free-Running Quasi-Resonant Operation
ONSEMI

NCP1377BPG

PWM Current−Mode Controller for Free−Running Quasi−Resonant Operation
ONSEMI

NCP1377D1R2G

PWM Current−Mode Controller for Free−Running Quasi−Resonant Operation
ONSEMI

NCP1377DR2

PWM Current-Mode Controller for Free-Running Quasi-Resonant Operation
ONSEMI

NCP1377DR2G

PWM Current-Mode Controller for Free-Running Quasi-Resonant Operation
ONSEMI