NCP154MX180300TAG [ONSEMI]

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator;
NCP154MX180300TAG
型号: NCP154MX180300TAG
厂家: ONSEMI    ONSEMI
描述:

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator

光电二极管 输出元件 调节器
文件: 总18页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP154  
Dual 300 mA, Low IQ, Low  
Dropout, Dual Input Voltage  
Regulator  
The NCP154 is 300 mA, Dual Output Linear Voltage Regulator that  
offers two independent input pins and provides a very stable and  
accurate voltage with ultra low noise and very high Power Supply  
Rejection Ratio (PSRR) suitable for RF applications. The device  
doesn’t require any additional noise bypass capacitor to achieve ultra  
low noise performance. In order to optimize performance for battery  
operated portable applications, the NCP154 employs the Adaptive  
Ground Current Feature for low ground current consumption during  
light-load conditions.  
http://onsemi.com  
XDFN8, 1.2x1.6  
CASE 711AS  
PIN CONNECTIONS  
Features  
Operating Input Voltage Range: 1.9 V to 5.25 V  
Two Independent Input Voltage Pins  
EN1  
8
GND  
OUT1  
OUT2  
GND  
1
2
3
4
Two Independent Output Voltage (for detail please refer to Ordering  
IN1  
IN2  
EN2  
7
6
5
Information)  
EP  
Low IQ of typ. 55 mA per Channel  
High PSRR: 75 dB at 1 kHz  
Very Low Dropout: 140 mV Typical at 300 mA  
Thermal Shutdown and Current Limit Protections  
Stable with a 1 mF Ceramic Output Capacitor  
Available in XDFN8 1.2 × 1.6 mm Package  
Active Output Discharge for Fast Output Turn-Off  
These are Pb-free Devices  
XDFN8  
(Top View)  
MARKING DIAGRAM  
Typical Applications  
Smartphones, Tablets  
XM  
G
®
®
Wireless Handsets, Wireless LAN, Bluetooth , ZigBee Interfaces  
Other Battery Powered Applications  
X
M
= Specific Device Code  
= Date Code  
G
= Pb−Free Package  
NCP154  
V
IN1  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information in the  
package dimensions section on page 17 of this data sheet.  
V
V
IN1  
IN2  
OUT1  
V
OUT1  
OUT2  
IN2  
OUT2  
EN1  
EN2  
C
1 mF  
C
IN2  
1 mF  
C
1 mF  
C
OUT1  
1 mF  
IN1  
OUT2  
GND  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
January, 2015 − Rev. 2  
NCP154/D  
NCP154  
IN1  
ENABLE  
LOGIC  
THERMAL  
SHUTDOWN  
EN1  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
OUT1  
ACTIVE  
DISCHARGE  
EN1  
GND  
IN2  
ENABLE  
LOGIC  
THERMAL  
SHUTDOWN  
EN2  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
OUT2  
ACTIVE  
DISCHARGE  
EN2  
GND  
Figure 2. Simplified Schematic Block Diagram  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
GND  
Description  
1
2
Power supply ground. Soldered to the copper plane allows for effective heat dissipation.  
OUT1  
Regulated output voltage of the first channel. A small 1 mF ceramic capacitor is needed from this pin to  
ground to assure stability.  
3
OUT2  
Regulated output voltage of the second channel. A small 1 mF ceramic capacitor is needed from this pin to  
ground to assure stability.  
4
5
GND  
EN2  
Power supply ground. Soldered to the copper plane allows for effective heat dissipation.  
Driving EN2 over 0.9 V turns-on OUT2. Driving EN below 0.4 V turns-off the OUT2 and activates the active  
discharge.  
6
7
8
IN2  
IN1  
Inputs pin for second channel. It is recommended to connect 1 mF ceramic capacitor close to the device pin.  
Inputs pin for first channel. It is recommended to connect 1 mF ceramic capacitor close to the device pin.  
EN1  
Driving EN1 over 0.9 V turns-on OUT1. Driving EN below 0.4 V turns-off the OUT1 and activates the active  
discharge.  
EP  
Exposed pad must be tied to ground. Soldered to the copper plane allows for effective thermal dissipation.  
http://onsemi.com  
2
NCP154  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
VIN1, VIN2  
Value  
Unit  
V
Input Voltage (Note 1)  
−0.3 V to 6 V  
Output Voltage  
V
, V  
OUT2  
, V  
EN2  
−0.3 V to V + 0.3 V or 6 V  
V
OUT1  
IN  
Enable Inputs  
V
−0.3 V to V + 0.3 V or 6 V  
V
EN1  
IN  
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
Indefinite  
150  
s
SC  
T
°C  
°C  
V
J(MAX)  
T
STG  
−55 to 150  
2,000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)  
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
Table 3. THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN8 1.2 × 1.6 mm,  
Thermal Resistance, Junction-to-Air  
°C/W  
q
160  
JA  
2
3. Single component mounted on 1 oz, FR4 PCB with 645 mm Cu area.  
http://onsemi.com  
3
 
NCP154  
Table 4. ELECTRICAL CHARACTERISTICS  
(−40°C T 85°C; V = V  
+ 1 V or 2.5 V, whichever is greater; V = 0.9 V, I  
= 1 mA, C = C  
= 1 mF.  
OUT  
J
IN  
OUT(NOM)  
EN  
OUT  
IN  
Typical values are at T = +25°C. Min/Max values are specified for T = −40°C and T = 85°C respectively.) (Note 4)  
J
J
J
Parameter  
Test Conditions  
Symbol  
Min  
1.9  
−2  
Typ  
Max  
5.25  
+2  
Unit  
V
Operating Input Voltage  
VIN  
V
V
> 2 V  
%
OUT  
Output Voltage Accuracy  
−40°C T 85°C  
VOUT  
J
2 V  
−60  
+60  
0.1  
mV  
%/V  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
OUT  
Line Regulation  
Load Regulation  
VOUT + 0.5 V VIN 5 V  
Reg  
0.02  
15  
LINE  
IOUT = 1 mA to 300 mA  
Reg  
40  
LOAD  
V
V
V
V
V
V
= 1.5 V  
= 1.8 V  
= 2.7 V  
= 2.8 V  
= 3.0 V  
= 3.3 V  
360  
335  
165  
160  
150  
140  
400  
55  
470  
390  
275  
270  
260  
250  
OUT(nom)  
OUT(nom)  
OUT(nom)  
OUT(nom)  
OUT(nom)  
OUT(nom)  
Dropout Voltage (Note 5)  
Output Current Limit  
I
= 300 mA  
VDO  
OUT  
V
OUT  
= 90% V  
ICL  
IQ  
OUT(nom)  
IOUT = 0 mA, EN1=V , EN2=0V or EN2=V , EN1=0V  
100  
200  
1
IN  
IN  
Quiescent Current  
IOUT1 = IOUT2 = 0 mA, V  
= V  
= V  
IN  
IQ  
110  
0.1  
mA  
EN1  
EN2  
Shutdown current (Note 6)  
VEN 0.4 V, V = 5.25 V  
IDIS  
mA  
IN  
EN Pin Threshold Voltage  
High Threshold  
VEN Voltage increasing  
VEN Voltage decreasing  
VEN_HI  
VEN_LO  
0.9  
V
Low Threshold  
0.4  
1.0  
EN Pin Input Current  
VEN = VIN = 5.25 V  
IEN  
PSRR  
VN  
0.3  
75  
mA  
VIN = VOUT+1 V for VOUT > 2 V, V = 2.5 V,  
IN  
Power Supply Rejection Ratio  
f = 1 kHz  
dB  
for VOUT 2 V, IOUT = 10 mA  
Output Noise Voltage  
f = 10 Hz to 100 kHz  
75  
50  
mV  
rms  
Active Discharge Resistance  
V
IN  
= 4 V, V < 0.4 V  
R
DIS  
W
EN  
Thermal Shutdown Temperature Temperature increasing from TJ = +25°C  
Thermal Shutdown Hysteresis Temperature falling from TSD  
TSD  
160  
20  
°C  
°C  
TSDH  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
5. Characterized when V  
falls 100 mV below the regulated voltage at V = V  
+ 1 V.  
OUT  
IN  
OUT(NOM)  
6. Shutdown Current is the current flowing into the IN pin when the device is in the disable state.  
http://onsemi.com  
4
 
NCP154  
TYPICAL CHARACTERISTICS  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
1.85  
1.84  
1.83  
1.82  
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
1.81  
1.80  
1.79  
1.78  
1.77  
I
= 300 mA  
OUT  
I
= 300 mA  
OUT  
V
V
= 2.5 V  
V
V
= 2.8 V  
IN  
IN  
= 1.0 V  
= 1.8 V  
OUT  
OUT  
0.96  
0.95  
1.76  
1.75  
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Voltage vs. Temperature –  
OUT = 1.0 V  
Figure 4. Output Voltage vs. Temperature –  
VOUT = 1.0 V  
V
2.85  
2.84  
2.83  
2.82  
2.81  
2.80  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
I
= 300 mA  
OUT  
I
= 300 mA  
OUT  
2.79  
2.78  
2.77  
3.28  
3.27  
V
V
= 3.8 V  
V
V
= 4.3 V  
IN  
IN  
= 2.8 V  
= 3.3 V  
OUT  
OUT  
2.76  
2.75  
3.26  
3.25  
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
−40 −25 −10  
5
20  
35  
50  
65  
80 95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Output Voltage vs. Temperature –  
OUT = 1.0 V  
Figure 6. Output Voltage vs. Temperature –  
VOUT = 1.0 V  
V
600  
540  
480  
420  
360  
300  
240  
180  
120  
60  
54  
48  
42  
36  
30  
24  
18  
12  
85°C  
V
V
C
= 4.3 V  
IN  
= 3.3 V  
= C = 1 mF  
OUT  
T = 85°C  
J
−40°C  
25°C  
IN  
OUT  
T = 25°C  
J
T = −40°C  
J
V
V
C
= 4.3 V  
IN  
= 3.3 V  
= C = 1 mF  
OUT  
60  
0
6
0
IN  
OUT  
0
30 60 90 120 150 180 210 240 270 300  
, OUTPUT CURRENT (mA)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
, INPUT VOLTAGE (V)  
I
V
IN  
OUT  
Figure 7. Ground Current vs. Output Current  
Figure 8. Quiescent Current vs. Input Voltage  
http://onsemi.com  
5
NCP154  
TYPICAL CHARACTERISTICS  
60  
58  
56  
54  
52  
50  
48  
46  
44  
0.10  
0.08  
0.06  
0.04  
0.02  
0
−0.02  
−0.04  
V
V
C
= 2.5 V  
V
V
C
= 4.3 V  
−0.06  
IN  
IN  
= 1.0 V  
= 3.3 V  
OUT  
OUT  
42  
40  
−0.08  
−0.10  
= C  
= 1 mF  
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
95  
95  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Quiescent Current vs. Temperature  
Figure 10. Line Regulation vs. Temperature –  
OUT = 1.0 V  
V
0.10  
0.08  
0.06  
0.04  
0.02  
0
30  
27  
24  
21  
18  
15  
12  
9
−0.02  
−0.04  
−0.06  
V
V
= 4.3 V  
V
IN  
= 2.5 V  
IN  
6
= 3.3 V  
V
OUT  
= 1.0 V  
OUT  
−0.08  
−0.10  
3
0
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
−40 −25 −10  
5
20  
35  
50  
65  
80  
−40 −25 −10  
5
20  
35  
50  
65  
80 95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Line Regulation vs. Temperature –  
OUT = 3.3 V  
Figure 12. Load Regulation vs. Temperature –  
VOUT = 1.0 V  
V
30  
27  
24  
21  
18  
15  
12  
9
200  
175  
150  
125  
100  
75  
V
V
C
= 4.3 V  
IN  
T = 85°C  
V
V
C
= 4.3 V  
J
IN  
= 3.3 V  
= C = 1 mF  
OUT  
= 3.3 V  
= C = 1 mF  
OUT  
IN  
OUT  
T = 25°C  
J
IN  
OUT  
T = −40°C  
J
50  
6
25  
0
3
0
−40 −25 −10  
5
20  
35  
50  
65  
80  
0
25 50 75 100 125 150 175 200 225 250 275 300  
, OUTPUT CURRENT (mA)  
T , JUNCTION TEMPERATURE (°C)  
J
I
OUT  
Figure 13. Load Regulation vs. Temperature –  
OUT = 3.3 V  
Figure 14. Dropout Voltage vs. Output Current  
– VOUT = 3.3 V  
V
http://onsemi.com  
6
NCP154  
TYPICAL CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
400  
V
V
C
= 4.3 V  
IN  
I
I
= 300 mA  
350  
OUT  
= 3.3 V  
= C = 1 mF  
OUT  
IN  
OUT  
300  
250  
200  
= 150 mA  
OUT  
150  
100  
60  
I
= 0 mA  
OUT  
40  
50  
0
20  
0
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5  
, OUTPUT VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
V
OUT  
J
Figure 15. Dropout Voltage vs. Temperature  
Figure 16. Dropout Voltage vs. Output Voltage  
600  
575  
550  
525  
500  
475  
450  
425  
600  
575  
550  
525  
500  
475  
V
C
= 0 V  
V
C
= 90% V  
OUT(NOM)  
OUT  
OUT  
= C  
= 1 mF  
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
V
= 3.8 V  
IN  
V
= 3.8 V  
IN  
V
IN  
= 5.25 V  
V
IN  
= 5.25 V  
450  
425  
400  
400  
375  
350  
375  
350  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. Current Limit vs. Temperature  
Figure 18. Short Circuit Current vs.  
Temperature  
530  
520  
510  
500  
490  
480  
470  
460  
450  
30  
27  
24  
21  
18  
15  
12  
9
V
V
V
= 4.3 V  
IN  
= 0 V  
OUT  
= 0 V  
EN  
C
= C  
= 1 mF  
IN  
OUT  
V
C
= 0 V  
OUT  
= C  
= 1 mF  
IN  
OUT  
6
440  
430  
3
0
2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5  
, INPUT VOLTAGE (V)  
−40 −25 −10  
5
20  
35  
50  
65  
80 95  
V
IN  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Short Circuit Current vs. Input  
Voltage  
Figure 20. Disable Current vs. Temperature  
http://onsemi.com  
7
NCP154  
TYPICAL CHARACTERISTICS  
1.0  
0.9  
450  
400  
350  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
OFF ON  
ON OFF  
300  
250  
200  
150  
100  
V
V
= 4.3 V  
IN  
V
V
C
= 4.3 V  
IN  
= 3.3 V  
OUT  
= 3.3 V  
= C = 1 mF  
OUT  
50  
0
C
= C  
= 1 mF  
0.1  
0
IN  
OUT  
IN  
OUT  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. Enable Thresholds vs. Temperature  
Figure 22. Current to Enable Pin vs.  
Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
1 mA  
10 mA  
80  
70  
60  
50  
40  
30  
20  
100 mA  
V
V
C
C
= 2.5 V + 100 mV  
PP  
IN  
300 mA  
150 mA  
= 1.0 V  
OUT  
V
V
C
= 4 V  
IN  
20  
= none  
IN  
= 1 V  
OUT  
= 1 mF, MLCC  
10  
0
10  
0
OUT  
= C  
= 1 mF  
IN  
OUT  
−40 −25 −10  
5
20  
35  
50  
65  
80  
95  
0.1  
1
10  
100  
1,000 10,000  
T , JUNCTION TEMPERATURE (°C)  
J
FREQUENCY (kHz)  
Figure 23. Discharge Resistivity vs.  
Temperature  
Figure 24. Power Supply Rejection Ratio,  
OUT = 1.0 V  
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
10  
1 mA  
10 mA  
V
= 3.3 V  
OUT  
100 mA  
V
OUT  
= 1.0 V  
1
V
V
C
C
= 4.3 V + 100 mV  
IN  
PP  
V
C
= V  
= C  
+ 1 V or 2.5 V  
= 1 mF, MLCC,  
IN  
OUT  
300 mA  
150 mA  
= 3.3 V  
OUT  
IN  
OUT  
= none  
IN  
size 1206  
10  
0
= 1 mF, MLCC  
OUT  
0.1  
0.1  
1
10  
100  
1,000  
10,000  
0
30 60 90 120 150 180 210 240 270 300  
, OUTPUT CURRENT (mA)  
FREQUENCY (kHz)  
I
OUT  
Figure 25. Power Supply Rejection Ratio,  
OUT = 3.3 V  
Figure 26. Output Capacitor ESR vs. Output  
Current  
V
http://onsemi.com  
8
NCP154  
TYPICAL CHARACTERISTICS  
10  
1
RMS Output Noise (mV)  
10 Hz – 100 kHz 100 Hz – 100 kHz  
I
150 mA  
10 mA  
OUT  
1 mA  
40.83  
36.03  
36.54  
37.05  
40.27  
35.38  
35.97  
36.48  
1 mA  
0.1  
10 mA  
150 mA  
300 mA  
0.01  
V
V
C
= 2.5 V  
IN  
= 1.0 V  
= C = 1 mF  
OUT  
300 mA  
IN  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 27. Output Voltage Noise Spectral Density for VOUT = 1.0 V, COUT = 1 mF  
10  
1
RMS Output Noise (mV)  
10 Hz – 100 kHz 100 Hz – 100 kHz  
I
300 mA  
10 mA  
OUT  
1 mA  
1 mA  
10 mA  
150 mA  
300 mA  
77.84  
71.71  
71.95  
72.71  
77.28  
70.48  
70.88  
71.67  
0.1  
0.01  
V
V
C
= 2.8 V  
IN  
= 1.8 V  
= C = 1 mF  
OUT  
150 mA  
1000  
IN  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
Figure 28. Output Voltage Noise Spectral Density for VOUT = 1.8 V, COUT = 1 mF  
10  
1
RMS Output Noise (mV)  
150 mA  
10 mA  
10 Hz – 100 kHz 100 Hz – 100 kHz  
I
1 mA  
OUT  
1 mA  
10 mA  
150 mA  
300 mA  
119.7  
113.47  
113.84  
115.95  
117.87  
111.47  
112.05  
114.03  
0.1  
0.01  
V
V
C
= 4.3 V  
IN  
300 mA  
= 3.3 V  
= C = 1 mF  
OUT  
IN  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 29. Output Voltage Noise Spectral Density for VOUT = 3.3 V, COUT = 1 mF  
http://onsemi.com  
9
NCP154  
TYPICAL CHARACTERISTICS  
V
EN  
V
EN  
I
IN  
I
IN  
V
V
= 2.5 V  
= 1.0 V  
= 10 mA  
V
V
I
OUT  
= 2.5 V  
IN  
OUT  
IN  
V
OUT  
V
OUT  
= 1.0 V  
= 10 mA  
OUT  
I
OUT  
C
= C  
= 1 mF  
C
= C  
= 4.7 mF  
IN  
OUT  
IN  
OUT  
40 ms/div  
40 ms/div  
Figure 30. Enable Turn−on Response –  
OUT = 1.0 V, COUT = 1 mF  
Figure 31. Enable Turn−on Response –  
V
VOUT = 1.0 V, COUT = 4.7 mF  
V
EN  
V
EN  
I
IN  
I
IN  
V
V
I
= 4.3 V  
V
V
I
= 4.3 V  
IN  
OUT  
IN  
OUT  
= 3.3 V  
= 10 mA  
= 3.3 V  
= 10 mA  
V
OUT  
V
OUT  
OUT  
OUT  
C
= C  
= 1 mF  
C
= C  
= 4.7 mF  
IN  
OUT  
IN  
OUT  
40 ms/div  
40 ms/div  
Figure 32. Enable Turn−on Response –  
OUT = 3.3 V, COUT = 1 mF  
Figure 33. Enable Turn−on Response –  
V
VOUT = 3.3 V, COUT = 4.7 mF  
V
= 4.8 V to 3.8 V  
= 10 mA  
= none  
IN  
V
= 3.8 V to 4.8 V  
= 10 mA  
= none  
IN  
I
OUT  
I
OUT  
C
C
IN  
V
IN  
C
C
IN  
= 1 mF  
OUT  
= 1 mF  
OUT  
t
= 1 ms  
RISE  
t
= 1 ms  
V
IN  
FALL  
V
OUT  
V
OUT  
8 ms/div  
8 ms/div  
Figure 34. Line Transient Response – Rising  
Edge, VOUT = 3.3 V, IOUT = 10 mA  
Figure 35. Line Transient Response – Falling  
Edge, VOUT = 3.3 V, IOUT = 10 mA  
http://onsemi.com  
10  
NCP154  
TYPICAL CHARACTERISTICS  
V
IN  
= 4.8 V to 3.8 V  
I
C
C
= 300 mA  
= none  
OUT  
IN  
V
IN  
= 1 mF  
OUT  
t
= 1 ms  
RISE  
t
= 1 ms  
V
= 3.8 V to 4.8 V  
= 300 mA  
= none  
FALL  
IN  
V
IN  
I
OUT  
C
C
IN  
= 1 mF  
OUT  
V
OUT  
V
OUT  
4 ms/div  
4 ms/div  
Figure 36. Line Transient Response– Rising  
Edge, VOUT = 3.3 V, IOUT = 300 mA  
Figure 37. Line Transient Response– Falling  
Edge, VOUT = 3.3 V, IOUT = 300 mA  
V
IN  
= 4.8 V to 3.8 V  
I
C
C
= 10 mA  
= none  
OUT  
IN  
V
IN  
= 4.7 mF  
OUT  
V
= 3.8 V to 4.8 V  
= 10 mA  
= none  
IN  
t
= 1 ms  
t
= 1 ms  
RISE  
FALL  
V
IN  
I
OUT  
C
C
IN  
= 4.7 mF  
OUT  
V
OUT  
V
OUT  
4 ms/div  
4 ms/div  
Figure 38. Line Transient Response– Rising Edge,  
Figure 39. Line Transient Response– Falling  
V
OUT = 3.3 V, IOUT = 10 mA, COUT = 4.7 mF  
Edge, VOUT = 3.3 V, IOUT = 10 mA, COUT = 4.7 mF  
I
OUT1  
V
V
I
= 2.8 V  
IN  
t
= 500 ns  
RISE  
= 1.0 V, V  
= 1.8 V  
OUT1  
OUT2  
t
= 500 ns  
FALL  
= 10 mA  
V
V
= 2.8 V  
OUT2  
IN  
C
= 1 mF, C  
= 1 mF  
= 1.0 V, V  
= 1.8 V  
OUT1  
OUT2  
OUT1  
OUT2  
I
OUT1  
I
= 10 mA  
OUT2  
C
= 1 mF, C  
= 1 mF  
OUT1  
OUT2  
V
OUT1  
V
V
OUT1  
V
OUT2  
OUT2  
4 ms/div  
100 ms/div  
Figure 40. Load Transient Response − 1.0 V –  
Figure 41. Load Transient Response − 1.0 V –  
Rising Edge, IOUT1 = 100 mA to 300 mA  
Falling Edge, IOUT1 = 300 mA to 100 mA  
http://onsemi.com  
11  
NCP154  
TYPICAL CHARACTERISTICS  
I
OUT1  
t
= 500 ns  
RISE  
V
V
= 2.8 V  
IN  
= 1.0 V, V  
= 1.8 V  
OUT1  
OUT2  
t
= 500 ns  
FALL  
I
= 10 mA  
OUT2  
V
V
= 2.8 V  
IN  
C
= 1 mF, C  
= 1 mF  
OUT1  
OUT2  
= 1.0 V, V  
= 1.8 V  
I
OUT1  
OUT2  
OUT1  
I
= 10 mA  
OUT2  
C
= 1 mF, C  
= 1 mF  
OUT1  
OUT2  
V
OUT1  
V
V
OUT1  
V
OUT2  
OUT2  
4 ms/div  
10 ms/div  
Figure 42. Load Transient Response − 1.0 V –  
Rising Edge, IOUT1 = 1 mA to 300 mA  
Figure 43. Load Transient Response − 1.0 V –  
Falling Edge, IOUT1 = 300 mA to 1 mA  
I
OUT1  
t
= 500 ns  
RISE  
V
V
= 2.8 V  
IN  
= 1.0 V, V  
= 1.8 V  
OUT1  
OUT2  
I
= 10 mA  
OUT2  
V
V
= 2.8 V  
C
= 1 mF, C  
OUT1  
= 1 mF  
IN  
OUT2  
I
OUT1  
= 1.0 V, V  
= 1.8 V  
t
= 500 ns  
OUT1  
OUT2  
FALL  
I
= 10 mA  
OUT2  
C
= 1 mF, C  
= 1 mF  
OUT1  
OUT2  
V
V
OUT1  
V
V
OUT1  
OUT2  
OUT2  
4 ms/div  
4 ms/div  
Figure 44. Load Transient Response − 1.0 V –  
Rising Edge, IOUT1 = 50 mA to 300 mA  
Figure 45. Load Transient Response − 1.0 V –  
Falling Edge, IOUT1 = 300 mA to 50 mA  
I
OUT1  
V
V
I
= 4.3 V  
t
= 500 ns  
IN  
RISE  
= 3.3 V, V  
= 2.8 V  
OUT1  
OUT2  
t
= 500 ns  
FALL  
= 10 mA  
V
V
= 4.3 V  
OUT2  
IN  
C
= 1 mF, C  
= 1 mF  
= 3.3 V, V  
= 2.8 V  
OUT1  
OUT2  
OUT1  
OUT2  
I
OUT1  
I
= 10 mA  
OUT2  
C
= 1 mF, C  
= 1 mF  
OUT1  
OUT2  
V
V
OUT1  
V
V
OUT1  
OUT2  
OUT2  
4 ms/div  
100 ms/div  
Figure 46. Load Transient Response − 3.3 V –  
Figure 47. Load Transient Response – 3.3 V –  
Rising Edge, IOUT1 = 100 mA to 300 mA  
Falling Edge, IOUT1 = 300 mA to 100 mA  
http://onsemi.com  
12  
NCP154  
TYPICAL CHARACTERISTICS  
I
OUT1  
t
= 500 ns  
RISE  
V
V
= 4.3 V  
IN  
= 3.3 V, V  
= 2.8 V  
OUT1  
OUT2  
t
= 500 ns  
FALL  
I
= 10 mA  
OUT2  
V
V
= 4.3 V  
IN  
C
= 1 mF, C  
= 1 mF  
OUT1  
OUT2  
= 3.3 V, V  
= 2.8 V  
I
OUT1  
OUT2  
OUT1  
I
= 10 mA  
OUT2  
C
= 1 mF, C  
= 1 mF  
OUT1  
OUT2  
V
V
OUT1  
V
V
OUT1  
OUT2  
OUT2  
4 ms/div  
10 ms/div  
Figure 48. Load Transient Response − 3.3 V –  
Rising Edge, IOUT1 = 1 mA to 300 mA  
Figure 49. Load Transient Response – 3.3 V –  
Falling Edge, IOUT1 = 300 mA to 1 mA  
I
t
= 500 ns  
OUT1  
RISE  
V
V
= 4.3 V  
IN  
= 3.3 V, V  
= 2.8 V  
OUT1  
OUT2  
I
= 10 mA  
OUT2  
V
V
= 4.3 V  
C
= 1 mF, C  
OUT1  
= 1 mF  
IN  
OUT2  
I
OUT1  
= 3.3 V, V  
= 2.8 V  
t
= 500 ns  
OUT1  
OUT2  
FALL  
I
= 10 mA  
OUT2  
C
= 1 mF, C  
= 1 mF  
OUT1  
OUT2  
V
V
OUT1  
V
V
OUT1  
OUT2  
OUT2  
4 ms/div  
4 ms/div  
Figure 50. Load Transient Response − 3.3 V –  
Rising Edge, IOUT1 = 50 mA to 300 mA  
Figure 51. Load Transient Response – 3.3 V –  
Falling Edge, IOUT1 = 300 mA to 50 mA  
V
EN  
V
EN  
t
= 500 ns  
t
= 500 ns  
RISE  
RISE  
V
V
I
= 4.3 V  
V
V
= 4.3 V  
= 3.3 V  
= 0 mA  
IN  
OUT  
IN  
OUT  
= 3.3 V  
= 0 mA  
V
OUT  
V
OUT  
I
OUT  
OUT  
C
= 4.7 mF  
C
= 4.7 mF  
OUT  
OUT  
C = 1 mF, 4.7 mF  
OUT  
C
= 1 mF, 4.7 mF  
OUT  
C
= 1 mF  
OUT  
C
= 1 mF  
OUT  
200 ms/div  
200 ms/div  
Figure 52. Enable Turn−Off – VOUT = 1.0 V  
Figure 53. Enable Turn−Off – VOUT = 3.3 V  
http://onsemi.com  
13  
NCP154  
TYPICAL CHARACTERISTICS  
Short circuit  
current  
Overheating  
V
IN  
I
OUT  
V
V
OUT1  
OUT2  
TSD cycling  
= 5.25 V  
V
OUT  
Thermal  
Shutdown  
V
V
C
IN  
V
V
= 4.3 V  
= 3.3 V, V  
OUT2  
= 10 mA, I  
OUT2  
= 3.3 V  
OUT  
IN  
OUT1  
Short circuit  
event  
= 2.8 V  
= 10 mA  
= 1 mF  
= C  
= 1 mF  
IN  
OUT  
I
OUT1  
C
= C  
= C  
IN  
OUT1 OUT2  
20 ms/div  
4 ms/div  
Figure 54. Turn−on/off − Slow Rising VIN  
Figure 55. Short Circuit and Thermal  
Shutdown  
http://onsemi.com  
14  
NCP154  
General  
If the EN pin voltage >0.9 V the device is guaranteed to  
The NCP154 is a dual output high performance 300 mA  
be enabled. The NCP154 regulates the output voltage and  
the active discharge transistor is turned−off.  
Low Dropout Linear Regulator. This device delivers very  
high PSRR (75 dB at 1 kHz) and excellent dynamic  
performance as load/line transients. In connection with low  
quiescent current this device is very suitable for various  
battery powered applications such as tablets, cellular phones,  
wireless and many others. Each output is fully protected in  
case of output overload, output short circuit condition and  
overheating, assuring a very robust design. The NCP154  
device is housed in XDFN−8 1.6 mm x 1.2 mm package  
which is useful for space constrains application.  
The both EN pin has internal pull−down current source  
with typ. value of 300 nA which assures that the device is  
turned−off when the EN pin is not connected. In the case  
where the EN function isn’t required the EN should be tied  
directly to IN.  
Output Current Limit  
Output Current is internally limited within the IC to a  
typical 400 mA. The NCP154 will source this amount of  
current measured with a voltage drops on the 90% of the  
nominal V  
. If the Output Voltage is directly shorted to  
= 0 V), the short circuit protection will limit  
OUT  
Input Capacitor Selection (CIN)  
ground (V  
OUT  
It is recommended to connect at least a 1 mF Ceramic X5R  
or X7R capacitor as close as possible to the IN pin of the  
device. This capacitor will provide a low impedance path for  
unwanted AC signals or noise modulated onto constant  
input voltage. There is no requirement for the min. or max.  
ESR of the input capacitor but it is recommended to use  
ceramic capacitors for their low ESR and ESL. A good input  
capacitor will limit the influence of input trace inductance  
and source resistance during sudden load current changes.  
Larger input capacitor may be necessary if fast and large  
load transients are encountered in the application.  
the output current to 520 mA (typ). The current limit and  
short circuit protection will work properly over whole  
temperature range and also input voltage range. There is no  
limitation for the short circuit duration. This protection  
works separately for each channel. Short circuit on the one  
channel do not influence second channel which will work  
according to specification.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
threshold (T − 160°C typical), Thermal Shutdown event  
SD  
is detected and the affected channel is turn−off. Second  
channel still working. The channel which is overheated will  
remain in this state until the die temperature decreases below  
Output Decoupling (COUT  
)
The NCP154 requires an output capacitor for each output  
connected as close as possible to the output pin of the  
regulator. The recommended capacitor value is 1 mF and  
X7R or X5R dielectric due to its low capacitance variations  
over the specified temperature range. The NCP154 is  
designed to remain stable with minimum effective  
capacitance of 0.33 mF to account for changes with  
temperature, DC bias and package size. Especially for small  
package size capacitors such as 0201 the effective  
capacitance drops rapidly with the applied DC bias.  
the Thermal Shutdown Reset threshold (T  
typical). Once the device temperature falls below the 140°C  
the appropriate channel is enabled again. The thermal  
− 140°C  
SDU  
shutdown feature provides the protection from  
a
catastrophic device failure due to accidental overheating.  
This protection is not intended to be used as a substitute for  
proper heat sinking. The long duration of the short circuit  
condition to some output channel could cause turn−off other  
output when heat sinking is not enough and temperature of  
There is no requirement for the minimum value of  
the other output reach T temperature.  
SD  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
Power Dissipation  
maximum value of ESR should be less than 3 W. Larger  
output capacitors and lower ESR could improve the load  
transient response or high frequency PSRR. It is not  
recommended to use tantalum capacitors on the output due  
to their large ESR. The equivalent series resistance of  
tantalum capacitors is also strongly dependent on the  
temperature, increasing at low temperature.  
As power dissipated in the NCP154 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
The maximum power dissipation the NCP154 can handle  
is given by:  
Enable Operation  
The NCP154 uses the dedicated EN pin for each output  
channel. This feature allows driving outputs separately.  
If the EN pin voltage is <0.4 V the device is guaranteed to  
be disabled. The pass transistor is turned−off so that there is  
virtually no current flow between the IN and OUT. The active  
discharge transistor is active so that the output voltage V  
is pulled to GND through a 50 W resistor. In the disable state  
the device consumes as low as typ. 10 nA from the V .  
o
ƪ
ƫ
125 C * TA  
PD(MAX)  
+
(eq. 1)  
qJA  
The power dissipated by the NCP154 for given  
application conditions can be calculated from the following  
equations:  
OUT  
ǒ
Ǔ
ǒ
Ǔ )  
PD [ VIN1 @ IGND1 ) VIN2 @ IGND2  
(eq. 2)  
IN  
ǒ
Ǔ
ǒ
Ǔ
) IOUT1 VIN1 * VOUT1 ) IOUT2 VIN2 * VOUT2  
http://onsemi.com  
15  
 
NCP154  
240  
220  
200  
180  
160  
140  
120  
100  
1.00  
0.75  
P
, T = 25°C, 2 oz Cu  
D(MAX)  
A
P , T = 25°C, 1 oz Cu  
D(MAX) A  
q
, 1 oz Cu  
, 2 oz Cu  
JA  
q
JA  
0.50  
0.25  
80  
60  
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 56. qJA vs. Copper Area (XDFN-8)  
Reverse Current  
Turn−On Time  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
The turn−on time is defined as the time period from EN  
assertion to the point in which V will reach 98% of its  
OUT  
IN  
OUT  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
nominal value. This time is dependent on various  
application conditions such as V , C , T .  
OUT(NOM) OUT  
A
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
characteristics place input and output capacitors close to the  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 capacitors. Larger  
copper area connected to the pins will also improve the  
device thermal resistance. The actual power dissipation can  
be calculated from the equation above (Equation 2). Expose  
pad should be tied the shortest path to the GND pin.  
Power Supply Rejection Ratio  
The NCP154 features very good Power Supply Rejection  
ratio. If desired the PSRR at higher frequencies in the range  
100 kHz – 10 MHz can be tuned by the selection of C  
capacitor and proper PCB layout.  
OUT  
http://onsemi.com  
16  
NCP154  
Table 5. ORDERING INFORMATION  
Voltage Option*  
(OUT1/OUT2)  
2.8 V / 2.8 V  
1.8 V / 2.8 V  
3.3 V / 1.8 V  
3.0 V / 1.8 V  
3.3 V / 2.8 V  
3.3 V / 3.3 V  
3.3 V / 3.0 V  
3.0 V / 3.0 V  
1.0 V / 1.8 V  
1.5 V / 2.8 V  
1.8 V / 2.9 V  
1.8 V / 3.0 V  
2.8 V / 2.7 V  
3.1 V / 3.1 V  
3.3 V / 2.85 V  
1.8 V / 2.7 V  
Device  
NCP154MX280280TAG  
NCP154MX180280TAG  
NCP154MX330180TAG  
NCP154MX300180TAG  
NCP154MX330280TAG  
NCP154MX330330TAG  
NCP154MX330300TAG  
NCP154MX300300TAG  
NCP154MX100180TAG  
NCP154MX150280TAG  
NCP154MX180290TAG  
NCP154MX180300TAG  
NCP154MX280270TAG  
NCP154MX310310TAG  
NCP154MX330285TAG  
NCP154MX180270TAG  
Marking  
DA  
Package  
Shipping  
DC  
DD  
DE  
DF  
DG  
DH  
DJ  
XDFN−8  
(Pb-Free)  
3000 / Tape & Reel  
DK  
DL  
DM  
DN  
DP  
DQ  
DR  
DT  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*Contact factory for other voltage options. Output voltage range 1.0 V to 3.3 V with step 50 mV.  
http://onsemi.com  
17  
NCP154  
PACKAGE DIMENSIONS  
XDFN8 1.6x1.2, 0.4P  
CASE 711AS  
ISSUE A  
NOTES:  
L
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
A
B
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
8X  
L1  
DETAIL A  
MILLIMETERS  
OPTIONAL  
DIM  
A
A1  
b
MIN  
0.30  
0.00  
0.13  
MAX  
0.45  
0.05  
0.23  
CONSTRUCTION  
E
PIN ONE  
IDENTIFIER  
EXPOSED Cu  
MOLD CMPD  
1.60 BSC  
D
2X  
0.10  
C
1.20  
1.20 BSC  
1.40  
D2  
E
0.20  
0.40 BSC  
0.15  
0.05 REF  
0.40  
E2  
e
L
2X  
0.10  
C
TOP VIEW  
DETAIL B  
0.25  
OPTIONAL  
L1  
A
CONSTRUCTION  
DETAIL B  
0.10  
0.08  
C
C
A1  
8X  
RECOMMENDED  
MOUNTING FOOTPRINT*  
SEATING  
PLANE  
NOTE 3  
C
SIDE VIEW  
D2  
8X  
0.35  
1.44  
PACKAGE  
OUTLINE  
DETAIL A  
1
4
1.40  
E2  
8X  
L1  
1
0.44  
0.40  
PITCH  
8X  
0.26  
8
5
DIMENSIONS: MILLIMETERS  
8X b  
8X  
L
e
0.10  
0.05  
C
C
A
B
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
e/2  
BOTTOM VIEW  
Bluetooth is a registered trademark of Bluetooth SIG.  
ZigBee is a registered trademark of ZigBee Alliance.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP154/D  

相关型号:

NCP154MX280270TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX280280TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX300180TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX300300TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX310310TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX330180TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX330280TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX330285TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX330300TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154MX330330TAG

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP154_15

Dual 300 mA, Low IQ, Low Dropout, Dual Input Voltage Regulator
ONSEMI

NCP1550

600 kHz PWM/PFM Step−Down DC−DC Controller
ONSEMI