NCP160AMX500TBG [ONSEMI]

LDO 稳压器,250 mA, 超高 PSRR,超低噪音;
NCP160AMX500TBG
型号: NCP160AMX500TBG
厂家: ONSEMI    ONSEMI
描述:

LDO 稳压器,250 mA, 超高 PSRR,超低噪音

稳压器
文件: 总20页 (文件大小:800K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP160  
250 mA, Ultra-Low Noise  
and High PSRR LDO  
Regulator for RF and  
Analog Circuits  
www.onsemi.com  
The NCP160 is a linear regulator capable of supplying 250 mA  
output current. Designed to meet the requirements of RF and analog  
circuits, the NCP160 device provides low noise, high PSRR, low  
quiescent current, and very good load/line transients. The device is  
designed to work with a 1 mF input and a 1 mF output ceramic  
capacitor. It is available in two thickness ultra−small 0.35P, 0.65 mm x  
0.65 mm Chip Scale Package (CSP) and XDFN−4 0.65P, 1 mm x  
1 mm.  
MARKING  
DIAGRAMS  
X
A1  
WLCSP4  
CASE 567KA  
Features  
X
A1  
Operating Input Voltage Range: 1.9 V to 5.5 V  
Available in Fixed Voltage Option: 1.8 V to 5.14 V  
WLCSP4  
CASE 567JZ  
2% Accuracy Over Load/Temperature  
Ultra Low Quiescent Current Typ. 18 mA  
Standby Current: Typ. 0.1 mA  
1
XX M  
XDFN4  
CASE 711AJ  
Very Low Dropout: 80 mV at 250 mA  
Ultra High PSRR: Typ. 98 dB at 20 mA, f = 1 kHz  
1
X or XX = Specific Device Code  
Ultra Low Noise: 10 mV  
RMS  
M
= Date Code  
Stable with a 1 mF Small Case Size Ceramic Capacitors  
Available in −WLCSP4 0.65 mm x 0.65 mm x 0.4 mm CASE 567KA  
−WLCSP4 0.65 mm x 0.65 mm x 0.33 mm CASE 567JZ  
−XDFN4 1 mm x 1 mm x 0.4 mm  
PIN CONNECTIONS  
IN  
OUT  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
A2  
A1  
Typical Applications  
B1  
B2  
Battery−powered Equipment  
Wireless LAN Devices  
EN  
GND  
Smartphones, Tablets  
(Top View)  
Cameras, DVRs, STB and Camcorders  
V
V
OUT  
IN  
IN  
OUT  
NCP160  
GND  
C
1 mF  
Ceramic  
EN  
IN  
C
OUT  
1 mF  
Ceramic  
ON  
OFF  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 16 of  
this data sheet.  
Figure 1. Typical Application Schematics  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
May, 2015 − Rev. 6  
NCP160/D  
NCP160  
IN  
ENABLE  
LOGIC  
THERMAL  
EN  
SHUTDOWN  
BANDGAP  
MOSFET  
REFERENCE  
INTEGRATED  
SOFT−START  
DRIVER WITH  
CURRENT LIMIT  
OUT  
* ACTIVE DISCHARGE  
Version A only  
EN  
GND  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
CSP4  
Pin No.  
XDFN4  
Pin  
Name  
Description  
A1  
A2  
B1  
B2  
4
IN  
Input voltage supply pin  
1
3
OUT  
EN  
Regulated output voltage. The output should be bypassed with small 1 mF ceramic capacitor.  
Chip enable: Applying V < 0.4 V disables the regulator, Pulling V > 1.2 V enables the LDO.  
EN  
EN  
2
GND  
EPAD  
Common ground connection  
EPAD  
Expose pad can be tied to ground plane for better power dissipation  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
V
IN  
−0.3 V to 6  
Output Voltage  
V
OUT  
−0.3 to V + 0.3, max. 6 V  
V
IN  
Chip Enable Input  
V
−0.3 to V + 0.3, max. 6 V  
V
CE  
SC  
IN  
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
unlimited  
150  
s
T
°C  
°C  
V
J
T
STG  
−55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per EIA/JESD22−A114  
ESD Machine Model tested per EIA/JESD22−A115  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, CSP4 (Note 3)  
108  
Thermal Resistance, Junction−to−Air  
R
°C/W  
q
JA  
Thermal Characteristics, XDFN4 (Note 3)  
Thermal Resistance, Junction−to−Air  
198.1  
3. Measured according to JEDEC board specification. Detailed description of the board can be found in JESD51−7  
www.onsemi.com  
2
 
NCP160  
ELECTRICAL CHARACTERISTICS −40°C T 125°C; V = V  
+ 1 V; I  
= 1 mA, C = C  
= 1 mF, unless otherwise  
J
IN  
OUT(NOM)  
OUT  
IN  
OUT  
noted. V = 1.2 V. Typical values are at T = +25°C (Note 4).  
EN  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Input Voltage  
Output Voltage Accuracy  
V
1.9  
5.5  
V
IN  
V
= V  
+ 1 V  
250 mA  
IN  
OUT(NOM)  
OUT  
V
OUT  
−2  
+2  
%
0 mA I  
Line Regulation  
Load Regulation  
V
+ 1 V V 5.5 V  
Line  
Reg  
0.02  
0.001  
180  
110  
95  
%/V  
OUT(NOM)  
IN  
I
= 1 mA to 250 mA  
Load  
%/mA  
OUT  
Reg  
V
V
V
= 1.8 V  
= 2.5 V  
= 2.8 V  
= 2.85 V  
= 3.0 V  
= 3.3 V  
= 3.5 V  
= 4.5 V  
= 5.0 V  
= 5.14 V  
250  
175  
160  
160  
155  
145  
140  
120  
105  
105  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
V
95  
OUT(NOM)  
V
90  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
Dropout Voltage (Note 5)  
I
= 250 mA  
V
DO  
mV  
OUT  
V
80  
V
V
V
75  
65  
75  
V
60  
OUT(NOM)  
Output Current Limit  
Short Circuit Current  
Quiescent Current  
V
V
= 90% V  
I
250  
1.2  
700  
690  
18  
OUT  
OUT(NOM)  
CL  
mA  
V
OUT  
= 0 V  
I
SC  
I
= 0 mA  
I
23  
1
mA  
mA  
OUT  
Q
Shutdown Current  
0.4 V, V = 4.8 V  
I
0.01  
EN  
IN  
DIS  
EN Pin Threshold Voltage  
EN Input Voltage “H”  
EN Input Voltage “L”  
V
ENH  
V
V
ENL  
0.4  
0.5  
EN Pull Down Current  
Turn−On Time  
V
EN  
= 4.8 V  
I
0.2  
mA  
ms  
EN  
C
= 1 mF, From assertion of V to  
EN  
V
OUT  
120  
= 95% V  
OUT  
OUT(NOM)  
Power Supply Rejection Ratio  
I
= 20 mA  
f = 100 Hz  
91  
98  
82  
48  
OUT  
f = 1 kHz  
f = 10 kHz  
f = 100 kHz  
PSRR  
dB  
Output Voltage Noise  
f = 10 Hz to 100 kHz  
I
= 1 mA  
= 250 mA  
14  
10  
OUT  
V
N
mV  
RMS  
I
OUT  
Thermal Shutdown Threshold  
Temperature rising  
Temperature falling  
T
160  
140  
280  
°C  
°C  
W
SDH  
T
SDL  
Active Output Discharge Resistance  
Line Transient (Note 6)  
V
< 0.4 V, Version A only  
R
DIS  
EN  
V
IN  
= (V  
+ 1 V) to (V  
+
OUT(NOM)  
OUT(NOM)  
−1  
1.6 V) in 30 ms, I  
= 1 mA  
OUT  
Tran  
mV  
mV  
LINE  
V
IN  
= (V  
+ 1.6 V) to (V  
+
OUT(NOM)  
OUT(NOM)  
+1  
1 V) in 30 ms, I  
= 1 mA  
OUT  
Load Transient (Note 6)  
−40  
I
= 1 mA to 200 mA in 10 ms  
= 200 mA to 1mA in 10 ms  
OUT  
Tran  
LOAD  
I
+40  
OUT  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = 25°C.  
A
Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.  
5. Dropout voltage is characterized when V  
6. Guaranteed by design.  
falls 100 mV below V  
.
OUT  
OUT(NOM)  
www.onsemi.com  
3
 
NCP160  
TYPICAL CHARACTERISTICS  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
2.520  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
I
I
= 10 mA  
OUT  
I
I
= 10 mA  
OUT  
= 250 mA  
= 250 mA  
OUT  
OUT  
V
V
C
C
= 2.8 V  
V
V
C
C
= 3.5 V  
IN  
IN  
= 1.8 V  
= 2.5 V  
= 1 mF  
OUT  
OUT  
= 1 mF  
IN  
IN  
1.785  
1.780  
2.485  
2.480  
= 1 mF  
= 1 mF  
OUT  
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Output Voltage vs. Temperature −  
OUT = 1.8 V − XDFN Package  
Figure 4. Output Voltage vs. Temperature −  
VOUT = 2.5 V − XDFN Package  
V
3.33  
3.32  
3.35  
3.34  
3.31  
3.30  
3.29  
3.28  
3.27  
3.33  
3.32  
3.31  
3.30  
3.29  
I
= 10 mA  
I
= 10 mA and 250 mA  
OUT  
OUT  
I
= 250 mA  
OUT  
V
V
C
C
= 4.3 V  
V
V
C
C
= 4.3 V  
IN  
IN  
= 3.3 V  
= 1 mF  
= 3.3 V  
= 1 mF  
OUT  
OUT  
IN  
IN  
3.26  
3.25  
3.28  
3.27  
= 1 mF  
= 1 mF  
OUT  
OUT  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Output Voltage vs. Temperature −  
OUT = 3.3 V − XDFN Package  
Figure 6. Output Voltage vs. Temperature −  
VOUT = 3.3 V − CSP Package  
V
5.19  
5.18  
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
5.17  
5.16  
5.15  
5.14  
5.13  
I
= 10 mA  
OUT  
I
= 250 mA  
OUT  
V
V
C
C
= 2.8 V  
IN  
V
V
C
C
= 5.5 V  
IN  
= 1.8 V  
= 1 mF  
OUT  
= 5.14 V  
= 1 mF  
OUT  
IN  
IN  
5.12  
5.11  
0.001  
0
= 1 mF  
OUT  
= 1 mF  
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Output Voltage vs. Temperature −  
VOUT = 5.14 V − XDFN Package  
Figure 8. Line Regulation vs. Temperature −  
VOUT = 1.8 V  
www.onsemi.com  
4
NCP160  
TYPICAL CHARACTERISTICS  
0.010  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.020  
V
V
C
C
= 4.3 V  
V
V
C
C
= 5.5 V  
0.018  
0.016  
0.014  
0.012  
0.010  
0.008  
0.006  
0.004  
IN  
IN  
= 3.3 V  
= 1 mF  
= 5.14 V  
= 1 mF  
OUT  
OUT  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
0.001  
0
0.002  
0
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Line Regulation vs. Temperature −  
OUT = 3.3 V  
Figure 10. Line Regulation vs. Temperature −  
VOUT = 5.14 V  
V
0.0020  
0.0018  
0.0016  
0.0014  
0.0012  
0.0010  
0.0008  
0.0006  
0.0020  
0.0018  
0.0016  
0.0014  
0.0012  
0.0010  
0.0008  
0.0006  
0.0004  
V
V
C
C
= 2.8 V  
V
V
C
C
= 4.3 V  
IN  
IN  
= 1.8 V  
= 1 mF  
= 3.3 V  
= 1 mF  
OUT  
OUT  
0.0004  
IN  
IN  
= 1 mF  
0.0002  
0
= 1 mF  
0.0002  
0
OUT  
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Load Regulation vs. Temperature −  
OUT = 1.8 V  
Figure 12. Load Regulation vs. Temperature −  
VOUT = 3.3 V  
V
0.0020  
0.0018  
0.0016  
0.0014  
0.0012  
0.0010  
0.0008  
0.0006  
0.0004  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
V
V
C
C
= 5.5 V  
IN  
= 5.14 V  
= 1 mF  
OUT  
IN  
T = 125°C  
= 1 mF  
J
OUT  
T = 25°C  
J
T = −40°C  
J
V
V
C
C
= 2.8 V  
IN  
= 1.8 V  
= 1 mF  
OUT  
IN  
0.0002  
0
0.15  
0
= 1 mF  
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
0
25 50 75 100 125 150 175 200 225 250  
, OUTPUT CURRENT (mA)  
T , JUNCTION TEMPERATURE (°C)  
I
OUT  
J
Figure 13. Load Regulation vs. Temperature −  
VOUT = 5.14 V  
Figure 14. Ground Current vs. Load Current −  
VOUT = 1.8 V  
www.onsemi.com  
5
NCP160  
TYPICAL CHARACTERISTICS  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
1.50  
1.35  
1.20  
T = 125°C  
J
T = 125°C  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
J
T = 25°C  
J
T = 25°C  
J
T = −40°C  
J
T = −40°C  
J
V
V
= 5.5 V  
V
V
= 4.3 V  
IN  
IN  
= 5.14 V  
= 3.3 V  
OUT  
OUT  
C
C
= 1 mF  
C
C
= 1 mF  
IN  
IN  
0.15  
0
0.15  
0
= 1 mF  
= 1 mF  
OUT  
OUT  
0
0
0
25 50 75 100 125 150 175 200 225 250  
, OUTPUT CURRENT (mA)  
0
25 50 75 100 125 150 175 200 225 250  
, OUTPUT CURRENT (mA)  
I
I
OUT  
OUT  
Figure 15. Ground Current vs. Load Current −  
Figure 16. Ground Current vs. Load Current −  
VOUT = 5.14 V  
V
OUT = 3.3 V  
150  
135  
120  
105  
90  
250  
225  
200  
175  
150  
T = 125°C  
J
T = 25°C  
J
T = 125°C  
J
125  
100  
75  
75  
60  
T = 25°C  
J
T = −40°C  
J
45  
T = −40°C  
J
V
C
C
= 1.8 V  
= 1 mF  
= 1 mF  
V
OUT  
= 3.3 V  
OUT  
50  
30  
C
C
= 1 mF  
IN  
OUT  
IN  
25  
0
15  
0
= 1 mF  
OUT  
25 50 75 100 125 150 175 200 225 250  
, OUTPUT CURRENT (mA)  
0
25 50 75 100 125 150 175 200 225 250  
, OUTPUT CURRENT (mA)  
I
I
OUT  
OUT  
Figure 17. Dropout Voltage vs. Load Current −  
OUT = 1.8 V  
Figure 18. Dropout Voltage vs. Load Current −  
VOUT = 3.3 V  
V
150  
135  
120  
105  
90  
250  
225  
200  
175  
150  
125  
100  
75  
I
= 250 mA  
OUT  
V
OUT  
= 1.8 V  
T = 125°C  
J
75  
C
C
= 1 mF  
IN  
60  
= 1 mF  
T = 25°C  
J
OUT  
45  
T = −40°C  
J
I
= 0 mA  
V
OUT  
= 5.14 V  
OUT  
30  
50  
C
C
= 1 mF  
IN  
15  
0
25  
0
= 1 mF  
OUT  
25 50 75 100 125 150 175 200 225 250  
, OUTPUT CURRENT (mA)  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
I
T , JUNCTION TEMPERATURE (°C)  
J
OUT  
Figure 19. Dropout Voltage vs. Load Current −  
VOUT = 5.14 V  
Figure 20. Dropout Voltage vs. Temperature−  
VOUT = 1.8 V  
www.onsemi.com  
6
NCP160  
TYPICAL CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
150  
135  
120  
XDFN  
105  
90  
75  
60  
45  
30  
15  
0
XDFN  
CSP4  
Package  
CSP4  
60  
Package  
40  
20  
0
0
25 50 75 100 125 150 175 200 225 250  
0
25 50 75 100 125 150 175 200 225 250  
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 21. Comparison Dropout for XDFN and  
CSP – 1.8 V  
Figure 22. Comparison Dropout for XDFN and  
CSP – 3.3 V  
100  
80  
60  
40  
20  
0
XDFN  
CSP4  
Package  
0
25 50 75 100 125 150 175 200 225 250  
, OUTPUT CURRENT (mA)  
I
OUT  
Figure 23. Comparison Dropout for XDFN and  
CSP – 5.14 V  
www.onsemi.com  
7
NCP160  
TYPICAL CHARACTERISTICS  
150  
135  
120  
105  
90  
100  
90  
I
= 250 mA  
OUT  
80  
I
= 250 mA  
OUT  
70  
60  
50  
40  
30  
20  
I
= 0 mA  
OUT  
75  
60  
I
= 0 mA  
= 3.3 V  
OUT  
45  
V
C
C
= 5.14 V  
V
C
C
OUT  
OUT  
30  
= 1 mF  
= 1 mF  
IN  
OUT  
IN  
OUT  
15  
0
10  
0
= 1 mF  
= 1 mF  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 24. Dropout Voltage vs. Temperature−  
OUT = 3.3 V  
Figure 25. Dropout Voltage vs. Temperature−  
VOUT = 5.14 V  
V
750  
740  
730  
720  
710  
700  
690  
700  
690  
680  
670  
660  
650  
640  
630  
620  
V
V
C
C
= 4.3 V  
IN  
680  
670  
V
V
C
C
= 4.3 V  
IN  
= 0 V (Short)  
= 1 mF  
OUT  
= 90% V  
OUT  
OUT(nom)  
IN  
= 1 mF  
IN  
= 1 mF  
660  
650  
610  
600  
OUT  
= 1 mF  
OUT  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 26. Current Limit vs. Temperature  
Figure 27. Short Circuit Current vs.  
Temperature  
1.0  
0.9  
0.50  
0.45  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
OFF −> ON  
ON −> OFF  
V
V
C
C
= 4.3 V  
V
V
C
C
= 4.3 V  
IN  
IN  
= 3.3 V  
= 1 mF  
= 3.3 V  
OUT  
OUT  
= 1 mF  
= 1 mF  
OUT  
IN  
IN  
0.1  
0
= 1 mF  
0.05  
0
OUT  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 28. Enable Threshold Voltage vs.  
Temperature  
Figure 29. Enable Current Temperature  
www.onsemi.com  
8
NCP160  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
300  
290  
280  
270  
260  
250  
240  
230  
220  
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
V
V
C
C
= 4.3 V  
IN  
= 3.3 V  
= 1 mF  
OUT  
IN  
10  
0
210  
200  
= 1 mF  
OUT  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 30. Disable Current vs. Temperature  
Figure 31. Discharge Resistivity vs.  
Temperature  
10,000  
1000  
100  
I
= 250 mA  
OUT  
I
= 10 mA  
OUT  
RMS Output Noise (mV)  
I
= 1 mA  
I
10 Hz − 100 kHz  
14.62  
100 Hz − 100 kHz  
OUT  
OUT  
1 mA  
10 mA  
250 mA  
14.10  
10.48  
9.82  
11.12  
V
V
C
C
= 2.8 V  
10.37  
IN  
= 1.8 V  
= 1 mF  
10  
1
OUT  
IN  
= 1 mF  
OUT  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 32. Output Voltage Noise Spectral Density − VOUT = 1.8 V  
10,000  
1000  
100  
I
= 250 mA  
OUT  
I
= 10 mA  
OUT  
RMS Output Noise (mV)  
I
= 1 mA  
OUT  
I
10 Hz − 100 kHz  
16.9  
100 Hz − 100 kHz  
15.79  
OUT  
1 mA  
10 mA  
250 mA  
12.64  
11.13  
11.96  
10.64  
V
V
C
C
= 4.3 V  
IN  
10  
1
= 3.3 V  
= 1 mF  
OUT  
IN  
= 1 mF  
OUT  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 33. Output Voltage Noise Spectral Density − VOUT = 3.3 V  
www.onsemi.com  
9
NCP160  
TYPICAL CHARACTERISTICS  
120  
100  
80  
120  
I = 10 mA  
OUT  
I
= 10 mA  
OUT  
V
V
C
= 2.5 V  
V
V
C
= 3.6 V  
IN  
IN  
= 1.8 V  
= 3.3 V  
100  
80  
OUT  
OUT  
= 1 mF  
= 1 mF  
OUT  
OUT  
60  
60  
I
= 20 mA  
I
= 20 mA  
OUT  
OUT  
40  
40  
I
= 100 mA  
I
= 100 mA  
OUT  
OUT  
20  
0
20  
0
I
= 250 mA  
0.1  
I
= 250 mA  
0.1  
OUT  
OUT  
0.01  
1
10  
100  
1k  
10k  
0.01  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 34. Power Supply Rejection Ratio,  
OUT = 1.8 V  
Figure 35. Power Supply Rejection Ratio,  
VOUT = 3.3 V  
V
100  
90  
100  
10  
I
= 10 mA  
OUT  
V
V
C
= 5.5 V  
IN  
= 5.14 V  
OUT  
80  
= 1 mF  
OUT  
Unstable Operation  
Stable Operation  
70  
60  
50  
40  
30  
20  
I
= 20 mA  
OUT  
1
I
= 100 mA  
OUT  
I
= 250 mA  
0.1  
OUT  
10  
0
0.1  
0.01  
1
10  
100  
1k  
10k  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (kHz)  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 36. Power Supply Rejection Ratio,  
OUT = 5.14 V  
Figure 37. Stability vs. ESR  
V
V
EN  
V
EN  
I
I
INPUT  
INPUT  
V
C
C
= 2.8 V, V  
= 1.8 V  
V
C
C
= 2.8 V, V  
= 1.8 V  
IN  
OUT  
IN  
OUT  
V
OUT  
V
OUT  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
IN  
OUT  
OUT  
100 ms/div  
100 ms/div  
Figure 38. Enable Turn−on Response −  
OUT = 1 mF, IOUT = 10 mA  
Figure 39. Enable Turn−on Response −  
C
COUT = 1 mF, IOUT = 250 mA  
www.onsemi.com  
10  
NCP160  
TYPICAL CHARACTERISTICS  
4.8 V  
3.3 V  
3.8 V  
V
IN  
2.3 V  
V
IN  
V
OUT  
V
OUT  
V
C
C
= 1.8 V, I  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
= 10 mA  
V
C
C
= 3.3 V, I  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
= 10 mA  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
20 ms/div  
20 ms/div  
Figure 40. Line Transient Response −  
OUT = 1.8 V  
Figure 41. Line Transient Response −  
VOUT = 3.3 V  
V
5.5 V  
V
IN  
V
IN  
5.3 V  
V
OUT  
V
OUT  
V
C
C
= 5.14 V, I  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
= 10 mA  
OUT  
OUT  
IN  
V
= 2.8 V, C = 1 mF (MLCC),  
OUT IN  
I
= 10 mA, C  
= 1 mF (MLCC)  
OUT  
OUT  
OUT  
20 ms/div  
4 ms/div  
Figure 42. Line Transient Response −  
Figure 43. Turn−on/off − Slow Rising VIN  
V
OUT = 5.14 V  
I
OUT  
I
t
= 1 ms  
OUT  
RISE  
t
= 1 ms  
FALL  
V
OUT  
V
OUT  
V
IN  
= 2.8 V, V  
= 1.8 V  
V
IN  
= 2.8 V, V  
= 1.8 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
IN  
OUT  
OUT  
4 ms/div  
20 ms/div  
Figure 44. Load Transient Response −  
1 mA to 250 mA − VOUT = 1.8 V  
Figure 45. Load Transient Response −  
250 mA to 1 mA − VOUT = 1.8 V  
www.onsemi.com  
11  
NCP160  
TYPICAL CHARACTERISTICS  
I
OUT  
I
OUT  
t
= 1 ms  
RISE  
t
= 1 ms  
FALL  
V
OUT  
V
OUT  
V
IN  
= 4.3 V, V  
= 3.3 V  
V
IN  
= 4.3 V, V  
= 3.3 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
IN  
OUT  
OUT  
4 ms/div  
20 ms/div  
Figure 46. Load Transient Response −  
1 mA to 250 mA − VOUT = 3.3 V  
Figure 47. Load Transient Response −  
250 mA to 1 mA − VOUT = 3.3 V  
I
OUT  
I
OUT  
t
= 1 ms  
RISE  
t
= 1 ms  
FALL  
V
OUT  
V
OUT  
V
IN  
= 5.5 V, V  
= 5.14 V  
V
IN  
= 5.5 V, V  
= 5.14 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
IN  
OUT  
OUT  
4 ms/div  
20 ms/div  
Figure 48. Load Transient Response −  
1 mA to 250 mA − VOUT = 5.14 V  
Figure 49. Load Transient Response −  
250 mA to 1 mA − VOUT = 5.14 V  
Short Circuit Event  
Overheating  
V
EN  
TSD Cycling  
I
OUT  
V
OUT  
V
V
= 3.8 V  
Thermal Shutdown  
V
OUT  
IN  
C
= 4.7 mF  
V
IN  
= 5.5 V, V  
= 3.3 V  
OUT  
= 2.8 V  
OUT  
OUT  
C
= 1 mF (MLCC)  
C
= 1 mF (MLCC)  
IN  
IN  
C
= 1 mF (MLCC)  
OUT  
C
= 1 mF  
OUT  
10 ms/div  
400 ms/div  
Figure 50. Short Circuit and Thermal  
Shutdown  
Figure 51. Enable Turn−off  
www.onsemi.com  
12  
NCP160  
APPLICATIONS INFORMATION  
General  
transient response or high frequency PSRR. It is not  
The NCP160 is an ultra−low noise 250 mA low dropout  
recommended to use tantalum capacitors on the output due  
to their large ESR. The equivalent series resistance of  
tantalum capacitors is also strongly dependent on the  
temperature, increasing at low temperature.  
regulator designed to meet the requirements of RF  
applications and high performance analog circuits. The  
NCP160 device provides very high PSRR and excellent  
dynamic response. In connection with low quiescent current  
this device is well suitable for battery powered application  
such as cell phones, tablets and other. The NCP160 is fully  
protected in case of current overload, output short circuit and  
overheating.  
Enable Operation  
The NCP160 uses the EN pin to enable/disable its device  
and to deactivate/activate the active discharge function.  
If the EN pin voltage is <0.4 V the device is guaranteed to  
be disabled. The pass transistor is turned−off so that there is  
virtually no current flow between the IN and OUT. The  
active discharge transistor is active so that the output voltage  
Input Capacitor Selection (CIN)  
Input capacitor connected as close as possible is necessary  
for ensure device stability. The X7R or X5R capacitor  
should be used for reliable performance over temperature  
range. The value of the input capacitor should be 1 mF or  
greater to ensure the best dynamic performance. This  
capacitor will provide a low impedance path for unwanted  
AC signals or noise modulated onto constant input voltage.  
There is no requirement for the ESR of the input capacitor  
but it is recommended to use ceramiccapacitors for their low  
ESR and ESL. A good input capacitor will limit the  
influence of input trace inductance and source resistance  
during sudden load current changes.  
V
OUT  
is pulled to GND through a 280 Ω resistor. In the  
disable state the device consumes as low as typ. 10 nA from  
the V .  
IN  
If the EN pin voltage >1.2 V the device is guaranteed to  
be enabled. The NCP160 regulates the output voltage and  
the active discharge transistor is turned−off.  
The EN pin has internal pull−down current source with  
typ. value of 200 nA which assures that the device is  
turned−off when the EN pin is not connected. In the case  
where the EN function isn’t required the EN should be tied  
directly to IN.  
Output Decoupling (COUT  
)
Output Current Limit  
The NCP160 requires an output capacitor connected as  
close as possible to the output pin of the regulator. The  
recommended capacitor value is 1 mF and X7R or X5R  
dielectric due to its low capacitance variations over the  
specified temperature range. The NCP160 is designed to  
remain stable with minimum effective capacitance of 0.7 mF  
to account for changes with temperature, DC bias and  
package size. Especially for small package size capacitors  
such as 0201 the effective capacitance drops rapidly with the  
applied DC bias. Please refer Figure 52.  
Output Current is internally limited within the IC to a  
typical 700 mA. The NCP60 will source this amount of  
current measured with a voltage drops on the 90% of the  
nominal V  
. If the Output Voltage is directly shorted to  
= 0 V), the short circuit protection will limit  
OUT  
ground (V  
OUT  
the output current to 690 mA (typ). The current limit and  
short circuit protection will work properly over whole  
temperature range and also input voltage range. There is no  
limitation for the short circuit duration.  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
threshold (T * 160°C typical), Thermal Shutdown event  
SD  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
Thermal Shutdown Reset threshold (T  
− 140°C typical).  
SDU  
Once the IC temperature falls below the 140°C the LDO is  
enabled again. The thermal shutdown feature provides the  
protection from a catastrophic device failure due to  
accidental overheating. This protection is not intended to be  
used as a substitute for proper heat sinking.  
Power Dissipation  
As power dissipated in the NCP160 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
Figure 52. Capacity vs DC Bias Voltage  
There is no requirement for the minimum value of  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 2 W. Larger  
output capacitors and lower ESR could improve the load  
www.onsemi.com  
13  
 
NCP160  
The maximum power dissipation the NCP160 can handle  
The power dissipated by the NCP160 for given  
application conditions can be calculated from the following  
equations:  
is given by:  
o
ƪ
ƫ
125 C * TA  
PD(MAX)  
+
(eq. 1)  
ǒ
Ǔ
(eq. 2)  
PD [ VIN @ IGND ) IOUT VIN * VOUT  
qJA  
160  
150  
140  
130  
120  
110  
100  
90  
1.6  
P
P
, T = 25°C, 2 oz Cu  
D(MAX)  
A
1.4  
, T = 25°C, 1 oz Cu  
1.2  
1.0  
0.8  
0.6  
0.4  
D(MAX)  
A
q
, 1 oz Cu  
JA  
JA  
q
, 2 oz Cu  
500  
0.2  
0
80  
0
100  
200  
300  
400  
600  
700  
2
PCB COPPER AREA (mm )  
Figure 53. qJA and PD (MAX) vs. Copper Area (CSP4)  
220  
210  
200  
190  
180  
170  
160  
1.0  
0.9  
q
, 2 oz Cu  
JA  
0.8  
0.7  
0.6  
0.5  
q
, 1 oz Cu  
JA  
P
P
, T = 25°C, 2 oz Cu  
D(MAX)  
A
, T = 25°C, 1 oz Cu  
D(MAX)  
A
0.4  
0.3  
150  
0
100  
200  
300  
400  
500  
600  
700  
2
PCB COPPER AREA (mm )  
Figure 54. qJA and PD (MAX) vs. Copper Area (XDFN44)  
www.onsemi.com  
14  
 
NCP160  
Reverse Current  
Turn−On Time  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
The turn−on time is defined as the time period from EN  
assertion to the point in which V will reach 98% of its  
OUT  
IN  
OUT  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
nominal value. This time is dependent on various  
application conditions such as V , C , T .  
OUT(NOM) OUT  
A
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
characteristics place C and C capacitors close to the  
Power Supply Rejection Ratio  
The NCP160 features very high Power Supply Rejection  
ratio. If desired the PSRR at higher frequencies in the range  
100 kHz – 10 MHz can be tuned by the selection of C  
capacitor and proper PCB layout.  
IN  
OUT  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 or 0201 capacitors with  
appropriate capacity. Larger copper area connected to the  
pins will also improve the device thermal resistance. The  
actual power dissipation can be calculated from the equation  
above (Equation 2). Expose pad can be tied to the GND pin  
for improvement power dissipation and lower device  
temperature.  
OUT  
www.onsemi.com  
15  
NCP160  
ORDERING INFORMATION  
Nominal  
Output  
Voltage  
Device  
Description  
Marking  
Rotation  
0°  
Package  
Shipping  
NCP160AFCS180T2G  
NCP160AFCS250T2G  
NCP160AFCS280T2G  
NCP160AFCS285T2G  
NCP160AFCS300T2G  
NCP160AFCS320T2G  
NCP160AFCS330T2G  
NCP160AFCS350T2G  
NCP160AFCS450T2G  
NCP160AFCS500T2G  
NCP160AFCS514T2G  
NCP160BFCS180T2G  
NCP160BFCS250T2G  
NCP160BFCS280T2G  
NCP160BFCS285T2G  
NCP160BFCS300T2G  
NCP160BFCS330T2G  
NCP160BFCS350T2G  
NCP160BFCS450T2G  
NCP160BFCS500T2G  
NCP160BFCS514T2G  
NCP160AFCT180T2G  
NCP160AFCT250T2G  
NCP160AFCT280T2G  
NCP160AFCT285T2G  
NCP160AFCT300T2G  
NCP160AFCT330T2G  
NCP160AFCT350T2G  
NCP160AFCT450T2G  
NCP160AFCT500T2G  
NCP160AFCT514T2G  
NCP160BFCT180T2G  
NCP160BFCT210T2G  
NCP160BFCT250T2G  
NCP160BFCT280T2G  
NCP160BFCT285T2G  
NCP160BFCT300T2G  
NCP160BFCT330T2G  
NCP160BFCT350T2G  
NCP160BFCT450T2G  
NCP160BFCT500T2G  
NCP160BFCT514T2G  
1.8 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.2 V  
3.3 V  
3.5 V  
4.5 V  
5.0 V  
5.14 V  
1.8 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.3 V  
3.5 V  
4.5 V  
5.0 V  
5.14 V  
1.8 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.3 V  
3.5 V  
4.5 V  
5.0 V  
5.14 V  
1.8 V  
2.1 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.3 V  
3.5 V  
4.5 V  
5.0 V  
5.14 V  
A
D
E
F
J
0°  
0°  
0°  
0°  
WLCSP4  
CASE 567KA  
(Pb-Free)  
5000 /  
Tape &  
Reel  
V
K
L
0°  
250 mA, Active Discharge  
0°  
0°  
P
R
Q
A
D
E
F
J
0°  
0°  
0°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
0°  
WLCSP4  
CASE 567KA  
(Pb-Free)  
5000 /  
Tape &  
Reel  
250 mA, Non-Active  
Discharge  
K
L
P
R
Q
A
D
E
F
J
0°  
0°  
0°  
WLCSP4  
CASE 567JZ  
(Pb-Free)  
5000 /  
Tape &  
Reel  
0°  
250 mA, Active Discharge  
K
L
0°  
0°  
P
R
Q
A
T
D
E
F
J
0°  
0°  
0°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
90°  
WLCSP4  
CASE 567JZ  
(Pb-Free)  
5000 /  
Tape &  
Reel  
250 mA, Non-Active  
Discharge  
K
L
P
R
Q
www.onsemi.com  
16  
NCP160  
ORDERING INFORMATION  
Device  
Nominal Output Voltage  
Description  
Marking  
DF  
Package  
Shipping  
NCP160AMX180TBG  
NCP160AMX250TBG  
NCP160AMX280TBG  
NCP160AMX285TBG  
NCP160AMX300TBG  
NCP160AMX320TBG  
NCP160AMX330TBG  
NCP160AMX350TBG  
NCP160AMX450TBG  
NCP160AMX500TBG  
NCP160AMX514TBG  
NCP160BMX180TBG  
NCP160BMX250TBG  
NCP160BMX280TBG  
NCP160BMX285TBG  
NCP160BMX300TBG  
NCP160BMX330TBG  
NCP160BMX350TBG  
NCP160BMX450TBG  
NCP160BMX500TBG  
NCP160BMX514TBG  
1.8 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.2 V  
3.3 V  
3.5 V  
4.5 V  
5.0 V  
5.14 V  
1.8 V  
2.5 V  
2.8 V  
2.85 V  
3.0 V  
3.3 V  
3.5 V  
4.5 V  
5.0 V  
5.14 V  
DG  
DH  
DJ  
3000 /  
Tape &  
Reel  
(Available  
Soon)  
DK  
DY  
DA  
DL  
XDFN-4  
250 mA, Active Discharge  
(Pb-Free)  
DM  
DW  
DC  
EF  
EG  
EH  
EJ  
3000 /  
Tape &  
Reel  
(Available  
Soon)  
EK  
XDFN-4  
250 mA, Non-Active Discharge  
(Pb-Free)  
EA  
EL  
EM  
EW  
EC  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
17  
NCP160  
PACKAGE DIMENSIONS  
WLCSP4, 0.64x0.64  
CASE 567KA  
ISSUE O  
NOTES:  
A
D
B
E
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO SPHERICAL  
CROWNS OF SOLDER BALLS.  
PIN A1  
REFERENCE  
2X  
0.05  
0.05  
C
C
MILLIMETERS  
DIM  
A
A1  
A2  
b
D
E
e
MIN  
0.35  
0.14  
MAX  
0.45  
0.18  
2X  
TOP VIEW  
0.25 REF  
0.185  
0.215  
A2  
0.64 BSC  
0.64 BSC  
0.35 BSC  
0.05  
C
C
A
0.05  
RECOMMENDED  
SOLDERING FOOTPRINT*  
A1  
SEATING  
PLANE  
NOTE 3  
C
SIDE VIEW  
PACKAGE  
OUTLINE  
A1  
e
4X  
b
4X0.20  
e
0.35  
PITCH  
0.05  
0.03  
C
C
A B  
B
0.35  
PITCH  
A
DIMENSIONS: MILLIMETERS  
1
2
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
BOTTOM VIEW  
www.onsemi.com  
18  
NCP160  
PACKAGE DIMENSIONS  
XDFN4 1.0x1.0, 0.65P  
CASE 711AJ  
ISSUE O  
4X L2  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.20 mm FROM THE TERMINAL TIPS.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
E
4X b2  
2X  
0.05  
C
MILLIMETERS  
DETAIL A  
DIM MIN  
0.33  
A1 0.00  
MAX  
0.43  
0.05  
0.05  
C
2X  
A
TOP VIEW  
A3  
b
b2 0.02  
0.10 REF  
0.15  
0.25  
0.12  
(A3)  
0.05  
0.05  
C
D
1.00 BSC  
D2 0.43  
0.53  
1.00 BSC  
0.65 BSC  
A
E
e
L
C
0.20  
0.30  
0.17  
SEATING  
PLANE  
NOTE 4  
A1  
L2 0.07  
C
SIDE VIEW  
e
RECOMMENDED  
e/2  
DETAIL A  
MOUNTING FOOTPRINT*  
4X L  
D2  
1
4
2
2X  
0.52  
0.65  
PITCH  
PACKAGE  
OUTLINE  
D2  
455  
3
4X  
0.39  
4X  
0.11  
1.20  
4X b  
M
0.05  
C A B  
NOTE 3  
BOTTOM VIEW  
4X  
4X  
0.26  
0.24  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
19  
NCP160  
PACKAGE DIMENSIONS  
WLCSP4, 0.64x0.64  
CASE 567JZ  
ISSUE O  
NOTES:  
A
D
B
E
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO SPHERICAL  
CROWNS OF SOLDER BALLS.  
PIN A1  
REFERENCE  
2X  
0.05  
0.05  
C
C
MILLIMETERS  
DIM  
A
A1  
A2  
b
MIN  
−−−  
0.04  
MAX  
0.33  
0.08  
2X  
TOP VIEW  
0.23 REF  
0.195  
0.225  
A2  
D
E
e
0.64 BSC  
0.64 BSC  
0.35 BSC  
0.05  
C
C
A
0.05  
RECOMMENDED  
SOLDERING FOOTPRINT*  
A1  
SEATING  
PLANE  
NOTE 3  
C
SIDE VIEW  
PACKAGE  
OUTLINE  
A1  
e
4X  
b
4X0.20  
e
0.35  
PITCH  
0.03  
C A B  
B
0.35  
PITCH  
A
DIMENSIONS: MILLIMETERS  
1
2
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
BOTTOM VIEW  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP160/D  

相关型号:

NCP160AMX514TBG

LDO 稳压器,250 mA, 超高 PSRR,超低噪音
ONSEMI

NCP160BFCS180T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS250T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS280T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS285T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS2925T2G

LDO 稳压器,250 mA, 超高 PSRR,超低噪音
ONSEMI

NCP160BFCS300T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS330T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS350T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS450T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS500T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI

NCP160BFCS514T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator for RF and Analog Circuits
ONSEMI